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Introduction: Although freshwater ecosystems encompass 12% of all known
species, their study has achieved less progress in systematic conservation
planning exercises compared with terrestrial and marine ecosystems.
Moreover, little attention has been given to ecosystem services and cultural
and spiritual values, which are pivotal in the long-term preservation of
freshwater ecosystems. Conservation, restoration, and sustainable
management actions within freshwater systems are currently addressed
individually, underscoring the necessity of comprehensive methodological
frameworks that holistically address the questions of where and how to
conserve while integrating ecosystem services and cultural factors as
conservation values.

Methods: We propose a new methodological framework for the conservation of
freshwater ecosystems that incorporates these elements and fulfills six
prioritization criteria: 1) representativeness, 2) integrity, 3) importance, 4) rarity,
5) complementarity, and 6) connectivity. To illustrate the application of this
approach, we conducted a regional study in the Caquetá River basin in Colombia.

Results: By applying our methodological framework, we demonstrated that the
Caquetá River basin hosts 518 distinct freshwater groups with unique
characteristics that contribute to the maintenance of ecosystems and the
preservation of their inherent values. Additionally, our analysis revealed that
protection is the most effective conservation strategy for 77.4% of the Caquetá
River basin, whereas restoration and sustainablemanagement are suitable for 4.7%
and 17.9% of the basin, respectively. The prioritized portfolio for the Caquetá River
basin encompasses 80.1% of all freshwater groups, effectively meeting The Nature
Conservancy’s proposed conservation objectives.

Conclusion: This novel methodological framework provides a pragmatic
approach to systematic conservation planning and answers the questions of
both where and how to conserve.
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1 Introduction

Systematic conservation planning (SCP) is a process aimed at
identifying and preserving areas with high conservation value
(Kukkala and Moilanen, 2013; Beyer et al., 2016). The most
significant progress in SCP has been made in terrestrial and
marine ecosystems (Darwall et al., 2011); SCP in freshwater
ecosystems has lagged (Nogueira et al., 2023) despite their high
species richness (~12% of all known species) in a very small fraction
of Earth’s surface area (~2%) (Garcia-Moreno et al., 2014; Román-
Palacios et al., 2022). The amount of scientific research focused on
aquatic systems, including freshwater ecosystems, increased by 60%
between 2010 and 2017 (Di Marco et al., 2017), reflecting the need
for research on SCP to strengthen decision-making and help
counteract the degradation these ecosystems are exposed to
(Harrison et al., 2018; Grill et al., 2019; Desforges et al., 2022).

SCP efforts have prioritized defining protected areas to preserve
biodiversity (Hermoso et al., 2011; 2018; Tognelli et al., 2019; Dorji
et al., 2020; Linke and Hermoso, 2022; Nogueira et al., 2023),
overlooking other equally important aspects, such as ecosystem
services and cultural and spiritual values, which support societal
wellbeing. Recently, Higgins et al. (2021) proposed a conceptual
methodological framework to guide the development of more
effective conservation strategies for freshwater ecosystems.
According to these authors, durable conservation of freshwater
ecosystems must incorporate ecosystem services and cultural and
spiritual values as conservation values. Doing so will enable the
integration of community-driven conservation strategies through
the management of common resources, thereby enhancing
conservation outcomes (Campos-Silva and Peres, 2016; Garnett
et al., 2018; Fa et al., 2020).

Higgins et al. (2021) also argued that the essential characteristics
of ecosystems, or key ecological attributes (KEAs), must be
identified to maintain the persistence of conservation values
(e.g., hydrological regime, connectivity, water quality, physical
structure). According to the authors, identifying KEAs also
allows for the precise identification of threats to freshwater
ecosystems and can guide the selection of appropriate
conservation actions and mechanisms to reduce or mitigate
these threats in the long term. SCP has attempted to answer
fundamental conservation questions, including what should be
prioritized for conservation and where it is most cost-effective to
do so (Dorji et al., 2020; Pienkowski et al., 2021). However, the
question of how to conserve has, so far, been addressed separately
(Howard et al., 2018; Mu et al., 2022). Though numerous
researchers have focused on defining areas for protection
(Tognelli et al., 2019; Szabolcs et al., 2022; Valencia-Rodríguez
et al., 2022; Nogueira et al., 2023), SCP frameworks must include
other strategies, such as restoration and sustainable management.
The freshwater biodiversity emergency recovery plan (Tickner et al.,
2020) recognizes the importance of restoration and sustainable
management as necessary actions for the conservation of
biodiversity, cultural values, and ecosystem services (Janishevski
et al., 2015; Arthington, 2021; Mu et al., 2022). Therefore, as stated
by Higgins et al. (2021), SCP exercises must integrate different
conservation actions with protection to expand the options for
selecting legal mechanisms for conservation and the criteria for
designing specific conservation activities.

Riato et al. (2020) proposed a multi-scale methodological
approach that links KEAs and their threats through an integrity
index, which is used to prioritize protection, restoration, and
sustainable management actions in rivers and streams,
particularly for benthic communities. Other authors have also
made valuable contributions; for example, Mu et al. (2022)
proposed a methodological framework based on SCP theories to
identify optimal sites for cost-effective protection and restoration
that consider ecosystem services, such as water yield and carbon
storage, as conservation values. Furthermore, Cattarino et al. (2015)
proposed a novel algorithm for prioritizing multiple conservation
actions within the same site, assuming that threats to freshwater
ecosystems can be mitigated by selecting a specific conservation
action. This algorithm also considers the inherent connectivity of
freshwater ecosystems, building upon the advances by Hermoso
et al. (2011). The proposal presented by Riato et al. (2020) stands out
among these methodologies by including the concept of basin
integrity. This proposal is particularly interesting given its multi-
scale approach to the identification of conservation actions, as it
inherently evaluates the basin’s capacity (based on its integrity) to
support a particular action. Furthermore, the scheme proposed by
Riato et al. (2020) is highly adaptable because it does not depend on a
specific tool or dataset, giving it great practicality and operability
(Riato et al., 2020; 2023).

The efforts mentioned above that incorporate one or several of
the criteria described by Higgins et al. (2021) highlight the need for
new methodological frameworks that comprehensively address the
questions of where and how to conserve. However, although Higgins
et al. (2021) described the criteria that should be considered to
achieve durable protection of freshwater ecosystems, they did not
specify how these criteria should be applied within the context of an
SCP process to provide an integrated response to these questions.
Therefore, we aimed to develop a new methodological framework
for freshwater ecosystem conservation that consolidates and
articulates the concepts proposed by Higgins et al. (2021) in an
SCP environment. Furthermore, we include the methodological
scheme proposed by Riato et al. (2020) to simultaneously address
the questions of where and how to conserve.

To achieve our goal, we integrated various models and analytical
tools to employ a set of indexes with six prioritization criteria: i)
representativeness, ii) integrity, iii) importance, iv) rarity, v)
complementarity, and vi) connectivity. Given the Amazon is one
of the few megadiverse regions in the world where freshwater
biodiversity remains relatively healthy, we used the dam-free
Caquetá River basin in the Amazon region of Colombia as a case
study (Albert et al., 2011; Anderson et al., 2018; He et al., 2018;
Caldas et al., 2023). The Amazon is also home to several Indigenous
and local communities that have deep social, cultural, and economic
connections with the intricate network of freshwater ecosystems
(Campos-Silva and Peres, 2016; Garnett et al., 2018; Fa et al., 2020).

2 Methodological framework

The methodological framework we propose for the SCP of
freshwater ecosystems incorporates six criteria commonly used
for prioritization (Kukkala and Moilanen, 2013; Linke and
Hermoso, 2022; Valencia-Rodríguez et al., 2022): i)
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representativeness, which prioritizes ecosystems not already under a
conservation figure (e.g., protected areas); ii) integrity, which favors
ecosystems with less pressure on their KEAs; iii) importance, which
prioritizes ecosystems with greater conservation values; iv) rarity,
which promotes the selection of unique ecosystems; v)
complementarity, which accounts for existing conservation zones;
and vi) connectivity, which promotes the connection between
ecosystems. Figure 1 schematically depicts the proposed
methodological framework, which uses indexes to quantify each
of the established prioritization criteria.

We selected the indexes following the criteria described by
Higgins et al. (2021). All indexes were estimated at the micro-
basin scale, as this is the planning unit considered for the portfolio.
Specifically, for the criterion of integrity, our methodology involves
calculating this index at two scales: i) micro-basin and ii) sub-basin.
These two scales are linked through the framework proposed by
Riato et al. (2020), with which we selected the best conservation
opportunities (actions).

Finally, the indexes are integrated into a mathematical
optimization scheme to select priority areas. The resulting
prioritized conservation portfolio combines the priority areas
with conservation opportunities. Each of the steps in our
methodological proposal is detailed below.

2.1 Establishing the study basin

The first phase of our methodology involves defining the study
area, gathering all the secondary information, and defining the field
campaigns necessary for the study. At this stage, it is also important
to identify the existence of previously established protected areas in

the study area as the criteria for representativeness and
complementarity depend on this information.

2.2 Setting the conservation targets

Defining conservation objectives serves several purposes. For
example, it facilitates the selection of the minimum area
necessary to represent and ensure the persistence of
conservation values (Linke et al., 2011). These objectives may
be established considering the economic constraints related to
investment in actions, or they may simply be a product of the
specific goals of an organization or group of organizations (Téllez
et al., 2011). In this methodological framework, the conservation
objectives are set as input criteria for prioritization (see Step
2.17), allowing conservationists to address specific questions or
interests.

2.3 Delimitation of spatial units of analysis

Following the proposal by Riato et al. (2020) to select
conservation actions (see Step 2.16) using the integrity criterion,
our framework uses micro-basins and sub-basins as the scales of
analysis. We based our scales on basins as they are appropriate units
for the SCP of freshwater ecosystems (Tognelli et al., 2019; Dorji
et al., 2020; Linke and Hermoso, 2022; Nogueira et al., 2023). This
stage of our proposal consists of automatically delimiting these units
using a digital terrain elevation model (DEM), which allows us to
obtain the units of analysis and the river segments between two
consecutive nodes or within the units. This approach produces a

FIGURE 1
Proposed methodological framework for integrated planning of freshwater ecosystems.
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graph representation of the study area that defines the connectivity
between the units, which facilitates efficient cumulative calculations
(important aspects for Steps 2.8, 2.11, and 2.17).

2.4 Defining conservation values

According to Higgins et al. (2021), conservation values refer to
various aspects, such as species, ecosystem services (cultural,
provisioning, supporting, and regulating), as well as cultural
and spiritual values that are important to a particular
community. In our methodology, it is possible to consider one
or several of these elements; the number of values to consider will
depend on their level of relevance in the selected study area. At the
end of the process, conservation values are condensed into a
numerical index that we have defined as an index of
importance (in Step 2.13).

2.5 Identification of KEAs, threats, and their
sources

KEAs are essential characteristics for the maintenance of
freshwater ecosystems and, therefore, for the conservation values
(Higgins et al., 2021). Existing research has identified the
hydrological regime, sediment transport, water quality, physical
structure, and connectivity as the main determinants of the
physical habitat and biotic communities of freshwater ecosystems
(Poff et al., 1997; Castello et al., 2013; Zeiringer et al., 2018; Higgins
et al., 2021). In turn, these characteristics shape the social dynamics
of communities that depend on these ecosystems for their
livelihoods. Therefore, this methodology prioritizes these KEAs
for analysis.

Threats, on the other hand, are factors that generate stress on
KEAs—e.g., climate change, deforestation, pollution, and dam
construction (Poff et al., 1997; Castello et al., 2013; Dudgeon,
2014; Alho et al., 2015; Arthington et al., 2016; Zeiringer et al.,
2018)—resulting in ecosystem degradation (Higgins et al., 2021).
Therefore, the KEAs, the threats to the KEAs, and the sources of the
threats must be selected depending on the study basin. This step is
crucial because these decisions will determine the indexes, models,
or analysis tools to be used in the study.

2.6 Identification and selection of attribute
indexes for freshwater groups by KEA

A freshwater group is a set of planning units, or micro-basins,
that possess similar KEAs. In this sense, freshwater groups can be
understood as collections of habitats within a basin. Our
proposed framework employs simple characteristics and
indexes for each KEA, allowing for precise differentiation of
areas with unique KEAs without requiring extensive amounts of
information for their configuration. The freshwater groups are of
great importance in our proposal because we understand them as
the freshwater habitats present in the basin. Additionally, the
rarity and representativeness criteria are derived from these
groups.

2.7 Identification and selection of integrity
indexes by KEA

Our methodology considers integrity as the capacity of a basin to
support and maintain the broad range of ecological processes and
functions essential for both biodiversity sustainability and the resources
and services that the basin provides to society (Flotemersch et al., 2016).
Based on this definition, our framework uses a set of indexes to assess
how the identified threats (in Step 0) may impact the KEAs in the study
basin, in turn affecting ecosystem integrity.

2.8 Identification, selection, and
configuration of models or analysis tools
and calculation of indexes for freshwater
groups and integrity

The selection of models and analysis tools is based on the indexes
defined for the freshwater and integrity groups. The selected toolsmust be
sensitive to the threats identified in each KEA. Our framework is flexible
and allows for the adoption of different approaches and strategies, such as
a conceptual approach (Thornbrugh et al., 2018), machine learning (Giri
et al., 2019), empirical models, or a combination of these (Einheuser et al.,
2013).Moreover, it is possible to select individual tools for eachKEAor to
use the same tool to model multiple KEAs.

Once themodels and analysis tools have been chosen, this stage also
includes collecting and processing the information needed to build the
models, configuring and running the selected models, and calculating
the indexes corresponding to the river and integrity groups.

2.9 Identification of freshwater groups
sharing similar KEAs

In this step, the defined attribute indexes are used to group the
planning units to identify freshwater clusters. Different clustering
approaches can be used to achieve this, including hierarchical,
partitional, grid, density-based, or model-based methods (Saxena
et al., 2017). The choice of method will depend on the characteristics
(qualitative or quantitative) of the attribute indexes selected in Step 2.6.
Our goal in identifying freshwater group clusters is to generate connected
corridors of high–conservation value micro-basins that host the greatest
possible diversity of freshwater groups (representativeness criterion) and
include the rarest freshwater groups (rarity criterion).

2.10 Defining and calculating the rarity index

In ourmethodology, rarity is a measure of the uniqueness or scarcity
of a given freshwater group within the study basin, or the proportion or
area occupied by that group compared with the rest of the groups present
in the basin. Rarity is a criterion in the prioritization process, as described
in Step 2.17. Thus, in this phase, we construct an index that reflects the
rarity of each freshwater group in the basin using a formula that considers
the proportion or relative area occupied by the group in relation to all the
groups present. This process produces a numerical index that captures
the rarity of each group, enabling the subsequent comparison and
prioritization of the groups in the basin.
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2.11 Defining and calculating the
connectivity index

Because impacts on aquatic ecosystems are cumulative, we seek
to foster connectivity in the prioritized micro-basins due to the
importance of connectivity for freshwater ecosystems (Saura et al.,
2017; Herrera-Pérez et al., 2019). Therefore, in this step, we
construct an index that reflects the degree of connection between
two micro-basins to prioritize corridors of connected micro-basins
linking headwater rivers (see Step 2.17). This index is based on the
proximity between micro-basins, measured from their centroids or
across their river segments. Key references for the construction of
this index were Hermoso et al. (2011, 2018), Cattarino et al. (2015),
Wohl (2017), and Dorji et al. (2020).

2.12 Defining and calculating the integrity
index

In our proposal, integrity plays a fundamental role in both
prioritization (see Step 2.17) and the definition of conservation
opportunities (see Step 2.16). Both steps require a single index
ranging from 0 to 1, where 0 represents low integrity and
1 represents high integrity. Therefore, this step involves
constructing an integrity index that groups the indexes defined in
Step 2.7 and calculated in Step 2.8. This can be accomplished using
aggregation methods, such as geometric or arithmetic aggregation
(Juwana et al., 2012), or multiplicative approaches, such as those
used by Thornbrugh et al. (2018).

2.13 Defining and calculating the
importance index

The concept of importance in our methodology is closely related
to the quantity of conservation values present in a micro-basin. As
described in the prioritization section (see Step 2.17), our
methodology seeks to maximize importance while achieving the
conservation target. In this phase, we construct a numerical index
ranging from 0 to 1, where 0 denotes the total absence of
conservation values and 1 represents a high concentration of
conservation values. One possible approach is to assign a relative
weight (between 0 and 1) to each conservation value identified in
Step 2.4 and calculate a weighted average of these values. This would
provide an index that reflects the overall importance of the
conservation values present in the micro-basin.

2.14 Defining and calculating the
representativeness index

Our methodological framework defines representativeness as a
measure of the presence of freshwater groups in the network of
existing protected areas in the study area. The representativeness
index can be constructed by considering the area of the freshwater
group and the area covered within the protected areas (Duarte et al.,
2016). If there are no protected areas in the study area, this index will
have a value of 0 for all the micro-basins.

2.15 Configuring complementarity criteria

Complementarity in our methodology refers to the inclusion in
the priority portfolio of those freshwater groups that are not
represented in protected areas. This concept is closely related to
that of representativeness. Therefore, our methodology incorporates
this criterion as a constraint in the prioritization process (see Step
2.17) to ensure that the priority portfolio includes existing protected
areas in the study area. If there are no protected areas in the study
area, this criterion is not considered in the prioritization.

2.16 Defining conservation opportunities

We followed the proposal of Riato et al. (2020) to define
conservation opportunities, including protection, restoration, and
sustainable management, using the integrity index estimated at the
micro-basin and sub-basin levels. The process begins by contrasting
the indexes on a 2D scatterplot (both indexes should be scaled between
0 and 1, where 0 represents low integrity and 1 represents high integrity).
Then, four quadrants are defined, centered on the 0.5 value of each
index. If both themicro-basin and sub-basin indexes show values greater
than 0.5, the ecosystem is in good condition; thus, it would be best to
consider a protection action because doing so would require minimal
intervention. If, instead, the index at the sub-basin scale is greater than
0.5 but the index at the micro-basin scale is less than 0.5, it would be
more appropriate to consider restoration as the best conservation
opportunity because a healthy sub-basin can support this action.
However, if both indexes have values below 0.5, sustainable
management would be the best option. In this case, protection and
restoration would require considerable effort and resources because they
would not be supported by good conditions at either scale.

2.17 Prioritization and optimization

SCP aims to maximize the representation of conservation
objects. In our case, it involves identifying the network of micro-
basins that maximizes conservation values (importance) while i)
promoting the highest representativeness of freshwater groups, ii)
connecting the largest number of rare freshwater groups, iii)
including micro-basins with high integrity, and iv) generating
corridors of connected micro-basins. To achieve this, we relied
on the proposal by Hermoso et al. (2011) to formulate the
following optimization objective function (Of):

Of � ⎛⎝ ∑
Micro−basin

ICV⎞⎠ + ( ∑
Integrity
penalty

−I) + ( ∑
Rarity
penalty

IR)

+( ∑
Representativity

penalty

IRep) + ( ∑
Connectivity

penalty

−CI)

We propose using the integrity, rarity, representativeness, and
connectivity indexes as penalties (with equal weights) along with a
constraint that ensures the selection of micro-basins located within
existing conservation areas. Thus, micro-basins with lower
integrity, higher abundance of a freshwater group, and
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representation in existing conservation areas will be penalized
more significantly.

2.18 Prioritized portfolio

The conservation portfolio is composed of the priority areas
resulting from the optimization process and the conservation
opportunities identified from the 2D scatterplot proposed by
Riato et al. (2020), which must be addressed to achieve the
established conservation objectives.

3 Materials and methods

3.1 Study area

For the application of our methodological framework, we
considered the Caquetá River basin, which covers an area of
148,763 km2 and represents 31% of the Colombian Amazon
biome (Figures 2A–C). This region has an altitudinal gradient of
4,200–60 masl (Figure 2D), generating a spatially variable annual
precipitation range of 790–4,924 mm. The climate is characterized
by two rainy seasons per year in the mountain zone (March–May
and October–December) and one season in the central and foothill

zones (April–June). These climatic conditions foster a wide range of
cold to warm tropical environments.

The Caquetá River is 1,400 km in length and collects the waters
from other important rivers, such as Orteguaza (696 m3/s), Caguán
(1,142 m3/s), Yarí (2,138 m3/s), Cahunarí (986 m3/s), and Mirití
Paraná (654 m3/s), reaching an average annual flow of 10,100 m3/
s. Approximately 13% of its drainage area is wetlands, of which 18%
have been intervened on or transformed by anthropic actions
(Ministerio de Ambiente Desarrollo Sostenible, 2021). Currently,
21% of the basin is protected by 10 natural parks (Figure 2C)
(Parques Nacionales Naturales de Colombia, 2020).

The characteristics of the Caquetá River basin support
biodiversity in its freshwater ecosystems. More than 400 fish
species have been recorded in the different tributaries (Celis-
Granada et al., 2022). The Caquetá River is also an important
migratory corridor for 23 species, including turtles (e.g.,
Podocnemis expansa), fish (e.g., Brachyplatystoma rousseauxii),
and dolphins (e.g., Sotalia fluviatilis) (He et al., 2018; 2021;
Caldas et al., 2023). Cultural richness is also a distinctive feature
of this area, which is home to Indigenous, peasant, and Raizales
communities (Agencia Nacional de Tierras, 2023). Indigenous
communities have a greater presence in the territory, with
96 legally constituted Indigenous reserves occupying 43% of the
total area and bringing together peoples such as the Murui-
Muinane, Yucuna, Andoque, Inga, and Coreguaje, among others

FIGURE 2
Caquetá River basin. (A) Location in South America. (B) Location in Colombia. (C) Hydrographic map of the Caquetá River basin and main rivers. (D)
Elevation profile of the Caquetá River. (E) Profile of accumulated area (tributaries) on the Caquetá River.
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(Agencia Nacional de Tierras, 2023). There is also recorded evidence
of uncontacted isolated communities in this region (Seifart and
Echeverri, 2014; Walker et al., 2016; Walker and Hamilton, 2019).

3.2 Conservation targets

Recognizing the global importance of the Amazon River basin
for the conservation of freshwater biodiversity and the communities
that depend on it, The Nature Conservancy has prioritized this area
in its conservation vision for 2030 (The Nature Conservancy, 2022).
As part of this commitment, they have embarked on a conservation
planning process to establish a roadmap for their future work,
thereby helping to preserve the biodiversity and the values it
supports. To achieve this, The Nature Conservancy developed a
conservation plan for the Amazon River basin with the following
objectives, which we have considered for the Caquetá River basin.

• Conserve 80% of the main rivers (large and very large;
flow >100 m3/s), ensuring connected corridors that remain
functional/healthy.

• Conserve 30% of the headwater rivers (small and medium-
sized; flow ≤100 m3/s), ensuring connected corridors to the
main channels that remain functional/healthy.

The materialization of these objectives by The Nature
Conservancy would contribute to Target 3 of the United Nations
Convention on Biological Diversity: to protect and effectively
manage 30% of the world’s terrestrial, inland waters, and coastal
and marine areas by 2030 (ONU, 2022).

3.3 Spatial units of analysis

To delimit the micro- and sub-basins of the Caquetá River basin,
we used the Shuttle Radar Topography Mission DEM with a 90-m
resolution (Jarvis et al., 2008). We processed the DEM using ArcGIS
10.7 and ArcHydro Tools. To delimit micro-basins, we used an area
accumulation threshold of 2.8 km2. However, in areas where the
river profile showed a steeper slope than the adjacent segments,
known as knickpoints, we performed an additional segmentation.
For this subdivision, we considered the geomorphological
conditions of the areas and the habitats they provide (Ross et al.,
2001) and used the algorithm proposed by Hayakawa and Oguchi
(2006) to detect the knickpoints. We defined the sub-basins
according to the delimitations established by the environmental
authority, Corporación para el Desarrollo Sostenible del Sur de la
Amazonia (Corpoamazonía), so the proposed conservation
portfolio can be effectively integrated with territorial planning
instruments.

3.4 Conservation values

We considered the following conservation values for the
Caquetá River basin:

Species: i) We obtained information on 55 species of fish,
47 species of amphibians, and 102 species of aquatic birds from

the collaborative BioModelos system of the Alexander Von
Humboldt Institute (Velásquez-Tibatá et al., 2019). ii) We
considered the distribution of four species (Pteronura
brasiliensis, S. fluviatilis, Tapirus terrestres, Tapirus
pinchaque) in danger of extinction as reported by the IUCN
(2022). iii) Data on megafauna species and their migratory
corridors were taken from Caldas et al. (2023) and He et al.
(2018), respectively.

Ecosystem services: Recreation and tourism were integrated
based on the distribution of recreation person-days, which we
generated using the InVEST Visitation: Recreation and Tourism
model (Natural Capital Project, 2022).

Cultural areas: Ninety-six Indigenous reserves were included
from two areas of the Raizales community and one peasant reserve,
using the information reported by Agencia Nacional de Tierras
(2023).

Spiritual areas: Sacred and spiritual sites for Indigenous
communities were defined according to Organización Nacional
de los Pueblos Indígenas de la Amazonia Colombiana (2017),
considering the importance they represent for the cosmovision of
Indigenous peoples (The Nature Conservancy and The Amazon
Conservation Team, 2019).

3.5 KEAs, threats, and their sources

In Amazonian freshwater ecosystems, including the Caquetá
River basin, deforestation is primarily driven by agricultural and
livestock expansion. These activities are also sources of phosphorus
and nitrogen pollution resulting from the fertilization of pastures
and crops. Other sources of pollution include oil and gas concessions
and legal and illegal mining activities, the latter of which is primarily
associated with mercury contamination from gold extraction
(Castello et al., 2013). According to Diaz et al. (2020), Colombia
is among the countries that use the greatest amount of mercury to
produce one ton of gold (4.19 Hg/ton). Moreover, climate change
has reduced precipitation and increased temperatures in the
Amazon (Killeen and Solórzano, 2008). The Caquetá basin does
not currently have hydropower development modifying water and
sediment flows or disrupting the river network. Table 1 summarizes
the main threats and the sources that we considered in our analysis,
according to the selected KEAs.

3.6 Freshwater group indexes

Here, we describe the indexes selected for each KEA in the case
study.

Hydrological regime: We considered the components of the
hydrological regime (magnitude, frequency, duration, timing, and
rate of change) using the following hydrological signatures of the
Caquetá River (McMillan, 2020; 2021): i) mean annual flow
(magnitude), ii) high flow duration (duration), iii) frequency of
peak flow (frequency), iv) slope of the flow duration curve (rate of
change), and v) mean half flow date (timing) (Table 1).

Sediment transport: We estimated the sediment transport
capacity under bankfull conditions as an index for this KEA
(Table 1).
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Water quality: For Amazonian environments, three types of
water have been defined in terms of chemical composition (Ríos-
Villamizar et al., 2013): i) blackwater rivers, ii) clearwater rivers, and
iii) whitewater rivers (see Table 1).

Physical structure: Considering the importance of biotic
productivity (Venarsky et al., 2018) and available habitats in
freshwater ecosystems (Flores et al., 2006; Buffington and
Montgomery, 2022), we selected the following indexes to assess
the study area’s physical structure: i) the morphological
configuration of the river, which can be confined or unconfined,
and ii) the specific stream power, which can be capacity- or supply-
limited (Table 1).

Connectivity:Connectivity is an essential attribute of freshwater
ecosystems (Saura et al., 2017; Herrera-Pérez et al., 2019),
particularly for fish that perform migratory movements in the
Caquetá River basin, such as the B. rousseauxii catfish (Córdoba
et al., 2013). For this KEA, we have selected the dendritic
connectivity index, as proposed by Cote et al. (2009) (Table 1).

Step 3.9. details how we used these attribute indexes to identify
freshwater groups.

3.7 Integrity indexes

Hydrological regime and sediment transport: Based on the
hydrological alterations concept by Poff et al. (2010), we created an

index that allows us to evaluate the impact of the climate change
threat on the hydrological regime and sediment transport. The mass
flow index (IHR or IST, according to the considered variable) assesses
the average percentage variation of the p percentiles of the duration
curve (5, 10, 15, . . ., 95) of streamflow (Q) or sediment transport
(QS) between a historical condition (h) and a climate change
condition (cc):

IHR � 1
N

∑Np

p�1

Qp,cc − Qp,h

Qp,h

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

IST � 1
N

∑Np

p�1

Qsp,cc − Qsp,h
Qsp,h

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

where Np is the number of percentiles of the streamflow or
sediment flow duration curve.

Water quality:We considered the following water quality index
(IWQ) (Orjuela and Lopez, 2011; Akhtar et al., 2021) as
representative of the river’s chemical composition in our study area:

IWQ � ∑Nd

d�1
Wd × SWQd

∑Nd

d�1
Wd

⎛⎝ ⎞⎠ � 1

where SWQd is the value of the sub-index for water quality
determinant d, which has a value between 0 and 1; Nd is the
number of water quality determinants considered; and Wd is the

TABLE 1 Key ecological attributes (KEAs), main threats, their sources and attribute and integrity indexes selected for the Caquetá River basin.

KEAs Threats Source Attribute indexes Integrity indexes

Hydrological
regime

Climate change Precipitation and temperature
variations

Magnitude: mean annual flow Index of percentage variation in the duration curve
percentiles of streamflow (IHR)

Duration: high flow duration

Frequency: seasonality of high flow

Rate of change: slope of flow duration
curve

Timing: high flow date

Sediment flow Climate change Agriculture Average sediment transport capacity in
bankfull condition

Index of percentage variation in the duration curve
percentiles of sediment flow (IST)

Deforestation Livestock

Precipitation and temperature
variations

Water quality Pollution Agriculture Backwater river
Whitewater river
Clearwater river

Water quality index (IWQ)

Livestock

Legal and illegal mining

Oil and gas concessions

Physical structure Deforestation Agriculture livestock Confined Stressor mapping index (IPS)

Infrastructure Unconfined

Fires Capacity-limited

Supply-limited

Connectivity Hydropower
plants

Without current sources Dendritic connectivity index Longitudinal connectivity index (IC)
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weighting factor. We used equal weights for each determinant with a
value of 1/Nd. The subscripts for each considered water quality
determinant are presented in Table 2.

In Table 2, SS is the suspended solids concentration (mg/L);X is the
concentration of pathogenic organisms (NMP/100 mL); TN is the total
nitrogen concentration (mg/L), which includes organic nitrogen,
ammoniacal nitrogen, and nitrates; TP is the total phosphorus
concentration (mg/L), which includes organic and inorganic
phosphorus; OM is the organic matter concentration (mg/L); DO is
the dissolved oxygen concentration (mg/L);Os is the saturation oxygen
concentration (mg/L); and THg is the total mercury concentration
(mg/L), which includes elemental, divalent, and methyl mercury. For
total mercury, we considered a binary sub-index with two categories
(good = 1 and bad = 0), according to the permissible limit (0.001 mg
Hg/L) defined byMinisterio de Salud y Protección Social andMinisterio
de Ambiente Desarrollo Sostenible (2007) for Colombia.

Physical structure: We adapted a stressor mapping index (IPS)
from Flotemersch et al. (2016) by applying a geometric aggregation
method (Juwana et al., 2012):

IPS � ∏Nz

z�1
gz

Sz
Sz,max

( )( ) 1
wz

∑Nz

z�1
Wz

⎛⎝ ⎞⎠ � 1

where Sz is the observed value of stressor z in a micro-basin, Sz,max is
the maximum value of stressor z at the micro-basin level in the

entire study area (where Sz/Sz,max varies from 0 for unaltered to 1 for
maximum impact), Nz is the number of stressors affecting the
physical structure of the ecosystem, gz is a mathematical function of
a single variable that describes the degree of impact caused by
stressor z, andWz is the weighting factor. We used equal weights for
each stressor with a value of 1/Nz.

The stressors we refer to are anthropogenic disturbances that
degrade ecosystems and, therefore, their functions (Flotemersch
et al., 2016) (e.g., human-caused forest fires, agricultural land use,
urban areas, and road density). To calculate the IPS index, we used
the stressors listed in Table 2. The technical details of the
configuration, inputs, and outputs of the models used can be
found in the Supplementary Material.

Connectivity: We constructed a longitudinal connectivity
index (IC):

IC � LB

LA

where LA is the length of the shortest path from a micro-basin to the
mouth of the analyzed basin, without considering the presence of
barriers that may generate a disconnection, and LB is the length of
the shortest connected path between amicro-basin and themouth of
the analyzed basin, considering the presence of barriers in the
channel. In this case, the length is measured from the mouth to
the first barrier encountered. Table 1 presents a summary of the
integrity indexes by KEA. The implementation of the indexes
described here (including scaling and ranges) is detailed in Step 3.12.

TABLE 2 Sub-indexes considered for each of the water quality determinants considered in the water quality index and stress factors considered to affect physical
structure.

Sub-indexes for each of the water quality determinants

Water quality determinants Sub-index functions Source

Dissolved oxygen SWQDO � (1 − (0.01*DO
Os
)) Orjuela and Lopez (2011)

Suspended solids SWQSS � 1 − (−0.02 + (0.003*SS)) Orjuela and Lopez (2011)

Total nitrogen (NO + NH4 + NO3) SWQTN � 1 − (0.5log10 TN) Armida (2007)

Total phosphorus (Po + Pi) SWQTP � 1 − (0.6 + 0.4log10 TP) Armida (2007)

Pathogenic organisms SWQX � 1 − (−1.44 + 0.56log10 X) Armida (2007)

Organic matter SWQOM � 1 − (−0.05 + 0.7log10 OM) Ramirez et al. (1997)

Total mercury
SWQTHg � if

THg > 0.001mg/l( ) � 0
THg ≤ 0.001mg/l( ) � 1

{ Ministerio de Salud y Protección Social, and Ministerio de Ambiente y
Desarrollo Sostenible (2007)

Stress factors considered to affect physical structure

Stressor (Sz) Unit Source

Presence of roads m Instituto Geográfico Agustín Codazzi (2022)

Presence of urban area m2 Departamento Administrativo Nacional de Estadística (2018)

Presence of oil wells number Agencia Nacional de Tierras (2023)

Presence of mining titles m2 Unidad de Planeación Minero Energética (2022b)

Density of burning areas m2/m2 Instituto Amazónico de Investigaciones Científicas (2022a)

Density of deforested area m2/m2 Instituto Amazónico de Investigaciones Científicas (2020)

Density of transformed wetlands m2/m2 Burbano-Girón et al. (2020)
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3.8 Models and analysis tools

To estimate the two groups of considered indexes—freshwater
group indexes and river integrity indexes—we configured a set of
models and analysis tools for each KEA. The purpose and objectives
of these tools are outlined in the following sections. The
Supplementary Material provides the technical details of the
configuration, inputs, and outputs of the models.

3.8.1 KEA: Hydrological regime
We used the aggregated conceptual hydrological model GR4J

(Perrin et al., 2003) to generate a time series of daily mean discharge
in each of the micro-basins and sub-basins defined for the Caquetá
River basin. We selected this model for its parsimonious structure,
low data requirements for configuration, and good performance in
tropical basins (Carvajal and Roldán, 2007; Anshuman et al., 2019;
Carlos et al., 2023). For its configuration, we used data generated by
the hydro-climatological monitoring network of the Instituto de
Hidrología, Meteorología y Estudios Ambientales (IDEAM), which
consists of 104, 92, and 11 stations that record precipitation,
temperature (maximum, minimum, and mean), and discharge,
respectively. We used the Grubbs test (Grubbs, 1950), the Tukey
test (Tukey, 1977), and the double median absolute deviation test
(Prabhakar et al., 2022) to detect and remove outliers. We filled in
missing precipitation and temperature records using the inverse
distance weighting method (Shepard, 1968) and ordinary least
squares method (Stahl et al., 2006), respectively. To calibrate the
hydrological model, we applied the dynamically dimensioned search
optimization algorithm proposed by Tolson and Shoemaker (2007)
and selected the Nash-Sutcliffe efficiency coefficient as the objective
function (Nash and Sutcliffe, 1970). The calibration and validation
periods for the 11 selected discharge stations were 1985–2005 and
2005–2020, respectively.

To evaluate climate change, we relied on projected precipitation
and temperature data between 2020 and 2050 from six global
circulation models (Table 3). These data were generated under a
shared socioeconomic pathway of fossil-fuel-driven development to
reach a radiative forcing condition of 8.5 W/m2 by 2,100 (most
critical scenario) (Almazroui et al., 2021). We corrected bias in the
data using the bias-corrected statistical disaggregation method
(Wood et al., 2004; Gupta et al., 2019; Ratri et al., 2019). We
used the adjusted series to run the GR4J model, generating six
discharge series, which were then ensemble-averaged at each
time step.

Using the toolbox for streamflow signatures in hydrology
(Gnann et al., 2021) and the discharge series generated with the
GR4J hydrological model for the historical condition, we assessed
the selected hydrological signatures to determine the freshwater
groups.

With the same tool, we constructed flow duration curves for
both the historical and climate change conditions and calculated the
hydrological integrity index, IHR. The schematic representation of
our calculation process for the two groups of hydrological regime
indexes is shown in Supplementary Material.

3.8.2 KEA: Sediment transport
We used a modified version of the Catchment Sediment

Connectivity and Delivery tool (Schmitt et al., 2016) to represent

sediment flow and provenance in the Caquetá River basin. To
configure the tool, we divided the micro-basins into those with
sandy riverbeds and reaches with gravel beds, assuming that the
former is capacity-limited (slope ≤0.025 m/m) and the latter are
supply-limited (slope >0.025 m/m), using the criterion proposed by
Flores et al. (2006).

We determined the bankfull hydraulic conditions (width, depth,
and velocity) and the mean sediment size (D50) by solving the
equations proposed by Wilkerson and Parker (2011) (sand beds)
and Parker et al. (2007) (gravel beds) based on the approach used by
Schmitt et al. (2016). We verified the estimation results for micro-
basins with sandy beds using D50 data from six sediment samplings
we gathered from the main channel of the Orteguaza and Caquetá
Rivers. The number of samplings was limited due to safety
conditions in the Caquetá River basin. We adjusted both
equations by introducing correction factors—one for slope in the
sections with sandy beds and another for width in the channels with
gravel beds—both of which depend on the bankfull discharge of the
micro-basins.

We also adjusted the bankfull widths in sites with rapids or
geological confinement using the rapid sites reported in the Instituto
Geográfico Agustín Codazzi (2022) national base mapping and the
corresponding 2020 satellite images from Google Earth. The
bankfull discharge considered for the analysis corresponds to a
2.33-year return period. Finally, to calculate sediment transport, we
used the equations by Engelund and Hansen (1967) and Wong and
Parker (2006) for sections with sandy and gravel beds, respectively.

To calculate the contributions of suspended sediment, we used
the InVEST sediment delivery ratio model (Natural Capital Project,
2022), which utilizes the revised universal soil loss equation (Renard
et al., 1996) to estimate the annual amount of soil loss and, through
the sediment delivery ratio (Vigiak et al., 2012a), estimates the
proportion of soil loss reaching the river. For its configuration, we
used the information presented in Table 4. We validated the
simulated sediment delivery ratio values with the suspended
sediment records reported by Instituto de Hidrología
Meteorología y Estudios Ambientales (2019).

Once we configured the models, we used climate data,
specifically the multi-year annual average precipitation and the
bankfull discharge in the historical condition, to estimate the
sediment transport capacity (an index for freshwater groups).

Similarly, we use climate data and discharge data associated with
the flow duration percentiles of both the baseline and climate change
scenarios to construct the sediment flow duration curve. Using the
curve data, we estimated the integrity index IST. The Supplementary
Material presents a schematic representation of our calculation of
the two groups of sediment flow indexes.

3.8.3 KEA: Water quality
Based on the assimilation factor concept proposed by Chapra

(2008), we constructed a steady-state water quality model that
allowed us to estimate 14 water quality determinants (WQD) for
the entire Caquetá River basin: temperature (T), conductivity (Co),
organic nitrogen (NO), ammoniacal nitrogen (NH4), nitrates (NO3),
organic phosphorus (Po), inorganic phosphorus (Pi), organic matter
(MO), dissolved oxygen (O), suspended solids (SS), pathogenic
organisms (X), elemental mercury (Hg0), divalent mercury (Hg2),
and methyl mercury (MeHg). The equations for the assimilation
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factors were derived from the ADZ-QUASAR water quality model
(Lees et al., 1998), as addressed by Correa-Caselles (2022), Mamani
(2022), Navas (2016), and Rojas (2011). The computational
implementation of the assimilation factors was carried out in
MATLAB using object-oriented programming. Our model was
designed to operate at the topological network level under a
recursive accumulation scheme, allowing us to analyze large
topological networks in minutes with low memory consumption.
Additionally, our model assimilates inputs from point and diffuse
loads of different WQD.

Considering the identified agricultural sources of contamination
(Table 1), we used the 2020 national coverages at a 1:100,000 scale
generated by Instituto Amazónico de Investigaciones Científicas
(2022b) to assign fertilization loads to crop areas. For fertilization
with different forms of nitrogen, we assigned a fertilizer with
proportions of 50% NO3 and 50% NH4. For grassland areas, we
assigned organic fertilization (manure) with a proportion of 40%
NO, 30% NO3, and 30% NH4 (Sociedad de Agricultores de
Colombia, 2002). We obtained annual nitrogen load values per
fertilizer from the British Survey of Fertiliser Practice (2018). For
phosphorus, we assigned a fertilizer with a proportion of 70% Pi and
30% Po (Wade et al., 2007; Whitehead et al., 2011; Jackson-Blake
et al., 2016), and we gathered annual phosphorus load values from
Pérez-Vélez (2014). To estimate diffuse loads from livestock, we
used information from bovine censuses (ICA, 2021) and the
suggested loads by Iglesias-Martínez (1994). For coliform loads,
we consulted Heras-Sierra et al. (2016). We used the connectivity
index (Vigiak et al., 2012b) suggested in the Nutrient Delivery Ratio
model (Natural Capital Project, 2022) to determine the proportion
of nutrient delivery to the channel.

We gathered population data by population center (IGAC,
2022) from the National Population and Housing Census
Departamento Administrativo Nacional de Estadística (2018) and
presumptive loads for the WQD as defined by Ministerio de
Vivienda Ciudad y Territorio (2017) for Colombia. For oil well
concessions, we used data on producing oil wells reported by
Agencia Nacional de Hidrocarburos (2022). For each well, we
estimated the loads of the DWQ using the permissible discharge
limits established by Ministerio de Ambiente Desarrollo Sostenible
(2021). The quantities of water discharged per well were inferred
from the water use factors for the production phases of
hydrocarbons defined by Instituto de Hidrología Meteorología y
Estudios Ambientales (2010). We quantified mercury discharges
from legal and illegal gold mining using Colombia’s gold production
information for 2022 Unidad de Planeación Minero Energética
(2022a) and the reported mercury use ratios by Diaz et al.
(2020). To determine the distribution of the different forms of
mercury, we used the proportions reported by Sanchéz and
Cañon (2010) and previously implemented by Correa-Caselles
(2022). The spatial distribution of the estimated mercury loads
was performed using legally established mining titles (Unidad de
Planeación Minero Energética, 2022b) and illegal mining sites
reported by (RAISG, 2020). We validated the orders of
magnitude of the modeled conventional determinants with data
reported by Torres et al. (2021) and verified the mercury
distributions with the results reported by Correa-Caselles (2022).

We used the modeled values of suspended solids, nutrients
(nitrogen and phosphorus), and organic matter concentrations
according to the ranges established by Maco-García (2006) to
generate the attribute index for the freshwater groups (Table 1).

TABLE 3 CMIP6 global circulation models evaluated in the study.

Model Institution Country Resolution

ACCESS-ESM1-5 Australian Community Climate and Earth System Simulator Australia 1.25 ° × 1.875 °

CanESM5 Canadian Centre for Climate Modelling and Analysis Canada 2.81 ° × 2.81 °

CESM2 National Center for Atmospheric Research United States of America 0.9 ° × 1.25 °

EC-Earth3 Earth Consortium Europe 0.35 ° × 0.35 °

MIROC 6 Japan Agency for Marine-Earth Science and Technology Japan 1.4 ° × 1.4 °

MPI-ESM1-2-LR Max Planck Institute for Meteorology Germany 1.875 ° × 1.86 °

TABLE 4 Information used to configure the sediment delivery ratio in the Caquetá River basin.

Variable Description

Precipitation Fields interpolated with inverse distance weighting (Shepard, 1968) using the data fed into the hydrological model

Land use/land cover 2020 national land cover at a 1:100,000 scale generated by Instituto Amazónico de Investigaciones Científicas (2021)

Rainfall erosivity Relationship proposed by Perez Arango and Mesa (2002) for Colombia

Soil erodibility Method proposed by Anache et al. (2015), utilizing the textural distribution data from Hengl et al. (2017)

C coefficients Values assigned in accordance with the information reported by Tosic et al. (2011), Rozos et al. (2013), Panagos et al. (2015), and Pacheco et al.
(2019)

P coefficients The default setting is 1 for all coverages
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We adjusted the result with information on Amazonian water types
developed by Ríos-Villamizar et al., 2013; Ríos-Villamizar et al.,
2020a; Ríos-Villamizar et al., 2020b), Wildlife Conservation Society
(2020), and expert opinions from professionals with extensive
experience in the study area. Based on the results obtained from
the model, we calculated the sub-indexes corresponding to each
water quality determinant, which allowed us to estimate the integrity
index IWQ. In the Supplementary Material we present a schematic
representation of the process we followed to calculate the two groups
of water quality indexes.

3.8.4 KEA: Physical structure
For physical structure, we chose to use two indexes that do not

require the construction of a mathematical model, diverging from
the processes used for the previously described KEAs. Instead, we
used an attribute-based approach for the freshwater group indexes
and spatial analysis through stressor mapping to calculate the
integrity index IPS (Table 1).

Calculation of freshwater group indexes: We determined the
degree of river confinement by evaluating the relationship between
the width of the floodplain or active channel area (WARA) and the
width of the bankfull channel (Wbf). According to Beechie et al.
(2006), if (WARA/Wbf)< 4, the river is considered confined;
otherwise, it is considered unconfined. We used the estimated
values of Wbf and those configured with the Catchment
Sediment Connectivity and Delivery tool and calculated the
values of WARA using the Multi-Resolution Index of Valley
Bottom Flatness (Gallant and Dowling, 2003) with a threshold of
1, which was coherent with the 2020 wetlands map of Colombia
(Burbano-Girón et al., 2020).

Calculation of integrity index: Following the approach
proposed by Flotemersch et al. (2016), we calculated the
maximum value for each selected stressor per analysis unit.
Considering that the Amazon’s resilience is declining (Boulton
et al., 2022), we assumed that the ecosystem response to stressors
is one of low resilience. Therefore, we used a logistic function to
represent the behavior shown by Flotemersch et al. (2016) and, in
this way, estimated the IPS. In the Supplementary Material, we
present a schematic representation of our calculation for both
groups of physical structure indexes.

3.8.5 KEA: Connectivity
By delimiting the micro-basins using a DEM, we obtained the

river lengths between consecutive nodes or fluvial connections,
which allowed us to define the topological relationships between
the micro-basins using a graphical approach. From this information,
the paths from each micro-basin to the mouth of the basin were
calculated to construct the established attribute and integrity indexes
(Table 1).

3.9 Freshwater groups

To identify the freshwater groups in the Caquetá River basin, we
clustered the micro-basins based on the similarity of the KEAs using
the indexes defined in Step 3.6 (Table 1). For this process, we used an
agglomerative hierarchical clustering method and selected the
inconsistency coefficient as the metric for determining the

clusters (Saxena et al., 2017). During the clustering process, we
categorized the indexes according to their ranges of variation, as
shown in Table 5, and used these categories as the basis for clustering
to define the freshwater groups.

3.10 Rarity index

We calculated the rarity (IR) of a micro-basin belonging to
freshwater group i as (Duarte et al., 2016):

IR � −ln ai
A

( )
where a is the total area of the micro-basins belonging to freshwater
group i, and A is:

A � ∑Ng

i�1
ai

where Ng is the total number of freshwater groups. High values
indicate a unique habitat in the basin, and low values indicate a
common habitat. The Supplementary Material provides additional
details for the rarity index calculation.

3.11 Connectivity index

To calculate the connectivity index, we constructed a directional
upstream adjacency matrix (Wohl, 2017) that includes, for each
unit, the degree of connectivity defined by the proximity between
micro-basins, measured using the length of the main channel of each
micro-basin. As an example, consider that the study area is
segmented into five micro-basins, each of which has a river
segment with a length of 5 km. The directional upstream
adjacency matrix for the micro-basins would be represented by
A. If we calculate the river segment lengths from one micro-basin to
all upstream micro-basins, we obtain the matrix of accumulated
distances, B. By estimating the maximum distance for each micro-
basin, we obtain the matrix of maximum distances, C. The
connectivity index (CI) would then be given by
1 − ((B(m,n) − C(m,n))/B(m,n)), where values near 1 indicate high
connectivity and values close to 0 indicate low connectivity. The
Supplementary Material offers additional details about the
connectivity index calculation.

3.12 Integrity index

For the Caquetá River basin, we developed a global integrity
index (I) for the micro-basins and sub-basins based on the
integrity indexes (Iki) selected for each KEA (ki �
HR, ST,WQ, PS, C) in Step 3.7. We used a geometric
aggregation method to integrate Iki (Juwana et al., 2012;
Thornbrugh et al., 2018). We assigned equal weights (wki) to
all integrity indexes by KEA, considering that each is crucial for the
integrity of freshwater ecosystems. Therefore, each Iki was assigned
a weight equal to 1/KI, whereKI is the number of KEAs selected in
Step 3.5. The mathematical expression of I is:
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I � ∏KI

ki�1
IN

1
wki
( )
ki

INki � m*Iki,r( ) + αr min − m*min Iki,r{ }( )
m � αr max − αr min

max Iki,r{ } − min Iki,r{ }

In this equation, we normalize each Iki using a linear scaling

method. However, this normalization is performed differentially by

range (r). The values of αr min and αr max correspond to the scaling

limits used in each range: min Iki,r{ } represents the minimum

threshold of Iki,r in range r, and max Iki,r{ } reflects the

maximum threshold of Iki in range r. In the end, I has values

TABLE 5 Ranges and values of attribute indexes per key ecological attribute (KEA) defined for the grouping of freshwater groups in the Caquetá River basin.

KEA Name Attribute
index

Range Description

Hydrology
regimen

Mean annual flow (m3/s) 1 0–10 Low flow river

2 10–100 Medium flow river

3 100–1,000 High flow river

4 1,000–10,000 Very high flow river

Slope of flow duration curve 1 −5.0–−2.4 Very high variability flow river

2 −2.4–−1.8 High variability flow river

3 −1.8–−1.19 Medium variability flow river

4 −1.19–0.0 Low variability flow river

High flow duration (months) 1 1.0–4.5 Low duration high flow

2 4.5–5.5 Medium duration high flow

3 5.5–6.5 High duration high flow

4 6.5–7.5 Very high duration high flow

Mean half flow date (months) 1 - Average flow rate is reached in the first half of
the year

4 - Average flow rate is reached in the second half of
the year

Frequency of peak flow 1 - Single peak per year

4 - Two peaks per year

Sediment
transport

Average sediment transport capacity, in bankfull
condition (tons/year)

1 1.00E+00–1.00E+06 Low sediment transport capacity river

2 1.00E+06–1.00E+08 Medium sediment transport capacity river

3 1.00E+08–1.00E+10 High sediment transport capacity river

4 1.00E+10–1.00E+15 Very high sediment transport capacity river

Water quality Water types 1 - Whitewater river

2 - Blackwater river

3 - Clearwater river, mountain

4 - Clearwater river, Amazon forest

Physical structure Morphological configuration of river and sediment
transport type

1 - Confined, capacity-limited

2 - Unconfined, capacity-limited

3 - Confined, supply-limited

4 - Unconfined, supply-limited

Connectivity Dendritic connectivity index (dimensionless) 1 0.00–0.25 Connected river, long distance

2 0.25–0.50 Connected river, medium distance

3 0.50–0.75 Connected river, small distance

4 0.75–1.00 Connected river, very small distance
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ranging from 0 to 1, where 1 reflects high integrity and 0 reflects low
integrity. Table 6 presents the four ranges considered for the scaling
of each Iki.

The ranges used correspond to integrity index categories: low
integrity (0≤ I< 0.25), medium integrity (0.25≤ I< 0.5), high
integrity (0.5≤ I< 0.75), and very high integrity (0.75≤ I≤ 1).

3.13 Importance index

We constructed an importance index (ICV) that groups v sub-
indexes, which are estimated for each conservation value (CVv)
defined for the basin. This index ranges from 0 to 1, where a value of
1 represents units of high importance.

ICV � ∑Ncv

v�1
CVv

For fish, amphibians, reptiles, and waterbirds, we used the
normalized values of the rarity-weighted richness index (RWRI)
(Williams et al., 1996; Abell et al., 2011). This index counts the
number of species in a micro-basin and weights each species by the
inverse of the number of micro-basins it occupies:

RWRI � ∑Spi
s�1

1
Ns

CVRWR � RWRIi
RWRIi,max

( )
where Spi is the number of species in micro-basin i, Ns is the total
number of micro-basins occupied by species s, RWRIi is the
observed value of RWRI in micro-basin i, and RWRIi,max is the
maximum RWRI value in the entire study area.

For the remaining conservation values (see Table 7) we
constructed a sub-index CV, where Xi,w is the observed value of
conservation value w in micro-basin i and Xw,max is the maximum
value of conservation value w recorded at the micro-basin level in
the entire study area:

CVw � Xi,w

Xw,max
( )

Table 7 summarizes the sub-indices for the selected conservation
values in the Caquetá River basin and presents the numerical ranges
for each conservation value. Note that all values are scaled from 0 to
1 using the equation above. The Supplementary Material details the
calculation of the conservation values sub-indexes.

3.14 Representativeness index

The representativeness index (IRep) of micro-basin i that
belongs to freshwater group k is defined as:

IRep � 1
Ak

∑I
i�1
ak,w⎛⎝ ⎞⎠

Ak � ∑I
i�1
ak

where ak,w is the area of micro-basins belonging to freshwater
group k and contained within an existing conservation area w,
and ak is the area of all micro-basins belonging to freshwater
group k (Duarte et al., 2016). The details of the
representativeness index calculation can be reviewed in the
Supplementary Material.

3.15 Complementarity criteria

To ensure complementarity in prioritization, we selected the
areas of the natural parks as reported by Parques Nacionales
Naturales de Colombia (2020). The Caquetá River basin currently
contains 10 conservation areas representing 21% of the total area of
the basin (Figure 2).

3.16 Definition of conservation
opportunities

We used MATLAB Release 2019b to construct the 2D
scatterplot of the Caquetá River basin to identify conservation
opportunities. This platform allowed us to analyze and visualize
the data and generate graphical outputs.

3.17 Prioritization

We solved the optimization problem for the Caquetá River basin
by using the prioritizr package v8.0.2.1 (Hanson et al., 2023) to find
an accurate, optimal solution in conjunction with Gurobi solver
v10.0, which provides solvers based on integer linear programming.
This combination of packages is computationally efficient compared
with packages such as Marxan, which generates nearly optimal
solutions (Beyer et al., 2016).

TABLE 6 Scaling ranges of integrity indexes.

KEA Range 1
αr min � 0 αr max � 0.25

Range 2
αr min � 0.25αr max � 0.5

Range 3
αr min � 0.5 αr max � 0.75

Range 3
αr min � 0.75 αr max � 1

Hydrological regime 0.15> IHR 0.15≥ IHR > 0.1 0.1≥ IHR > 0.05 0.05≥ IHR ≥ 0

Sediment transport 0.15> IST 0.15≥ IST > 0.1 0.1≥ IST > 0.05 0.05≥ IST ≥ 0

Water quality 0≤ IWQ ≤ 0.5 0.5< IWQ ≤ 0.7 0.7< IWQ ≤ 0.9 0.9< IWQ ≤ 1

Physical structure 0≤ IPS ≤ 0.25 0.25< IPS ≤ 0.5 0.5< IPS ≤ 0.75 0.75< IPS ≤ 1

Connectivity 0≤ IC ≤ 0.25 0.25< IC ≤ 0.5 0.5< IC ≤ 0.75 0.75< IC ≤ 1
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4 Results

4.1 Spatial analysis units

Figure 3 presents the spatial units of analysis obtained for the
Caquetá River basin. We delineated 30,028 micro-basins and
320 sub-basins for the study area (Figure 3A). Considering the

large number of delimited micro-basins, Figure 3 shows example
distributions of the micro-basins within the sub-basins of the
Mamansoya and Peneya Rivers, located in the middle and
upper part of the Caquetá River basin, respectively (see
Figure 3B). Approximately 61% of the defined micro-basins are
smaller than 5 km2, and only 2.4% are larger than 15 km2 (see
Figure 3C).

TABLE 7 Conservation values identified for the Caquetá River.

Category Conservation values Range

Species Rarity-weighted richness index (fish, amphibians, reptiles, and aquatic birds) 0–0.02

Number of species in danger of extinction 0–4

Presence of migratory corridors 0 or 1

Number of megafauna species 0–21

Ecosystem services Distribution of person-days for recreation and tourism 0–1

Cultural areas Presence of Indigenous reservations 0 or 1

Presence of peasant reserves 0 or 1

Presence of Raizal communities 0 or 1

Spiritual areas Presence of sacred and spiritual sites 0 or 1

FIGURE 3
Caquetá River basin. (A) Spatial analysis units defined for the Caquetá River basin. (B) Distribution of micro-basins in the sub-basins of the Mansoya
and Peneya Rivers. (C) Size frequencies of micro-basins.
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4.2 Freshwater groups

We identified 518 freshwater groups with unique ecological
characteristics (Figure 4); 28.4% of these are found in large and
very large rivers (flow >100 m3/s), and 71.6% are present in
medium and small rivers (flow ≤100 m3/s). Thirty percent of
the identified groups are in the mountainous zone, which
encompasses 11% of the entire Caquetá River basin. We also
determined that 70% of the basin is occupied by only 4.2% of
the identified freshwater groups.

4.3 Importance index

Figure 5A provides a spatial representation of the importance
index in the Caquetá River basin, highlighting that the micro-basins
that make up the main waterways were assigned the highest
importance values. This is reasonable considering that these
tributaries are migratory corridors for approximately 23 species
of megafauna, including S. fluviatilis (He et al., 2018; 2021; Caldas
et al., 2023), and other important species, such as B. rousseauxii
(Córdoba et al., 2013). Moreover, the basin’s structure does not
currently contain river network interruptions.

High importance was assigned to the middle and lower zones
of the Caquetá River basin, given the significant concentration of
cultural values stemming from the presence of the Murui-
Muinane, Yucuna, Andoque, Inga, and Coreguaje peoples
(who occupy 43% of the entire basin area). These ethnic

groups maintain a profound connection with the territory, as,
in accordance with their worldview, they conceive the world as an
entity encompassing the spiritual, material, and social
dimensions. Consequently, they regard rivers as vital sources
for their communities, providing them with sustenance through
artisanal fishing and facilitating transportation within and
beyond their territories (The Nature Conservancy and The
Amazon Conservation Team, 2019). Additionally, areas of
high importance were identified in the Andean region due to
species abundance and the high provision of ecosystem-cultural
services associated with recreation and tourism activities.

4.4 Representativeness and rarity indexes

We found that 46.7% of the identified freshwater groups in the
Caquetá River basin are located within the 10 existing protected
areas (IRep > 0). Of these areas, the Serranía de Chiribiquete
National Natural Park stands out as it covers 13.1% of the entire
basin area and hosts 23% of all identified groups, equivalent to 49.1%
of the represented groups (Figure 5B, brown areas). We also
discovered that 4.2% of the identified groups are considered rare
(Figure 5C, red areas) because they are uniquely present within the
basin. Out of these rare groups, 41% are found within protected
areas. The representation levels of the identified groups are as
follows: 29.8% have representation below 25%, 26% have
representation between 25% and 50%, and 42.2% have
representation above 50% (see Table 8).

FIGURE 4
(A) Distribution of freshwater groups with unique key ecological attributes in the Caquetá River basin. (B) Length of rivers for freshwater groups.
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4.5 Connectivity index

Figure 5D illustrates the graphical scheme of the connectivity
index for the Caquetá River basin as an adjacency matrix. In this
matrix, the asymmetry to the left indicates the direction of the
connections between the micro-basins, showing the flow of water
and interrelationships from the upper areas (upstream) to the lower
areas (downstream).

4.6 Integrity

We found that 5.5% of the micro-basins presented low integrity
values, 14.8% showed medium integrity values, 33.7% exhibited a
high level of integrity, and 46% had a very high integrity rating
(Figure 6A). The lowest integrity values were recorded in the upper
part of the Caquetá River, especially in the Orteguaza and Caguán
River basins (Figure 6A), which face the highest number of threats to
the KEAs. Upon analyzing the integrity in the main channels of
these rivers, we observed dispersed behavior with an increasing
trend as the accumulated flow increases (Figure 6B), which
translates into an increase in integrity downstream. However, in
the lower part of the main channel of the Caquetá River, integrity
values tend to decrease despite remaining high. Of the sub-basins,
1.7% had low integrity, 16.2% had moderate integrity, 33.4%
exhibited high integrity, and 48.7% received a very high integrity
rating (Figure 6C).

4.7 Conservation opportunities

The 2D scatterplot (Figure 6D) showed that the best opportunity
to conserve 77.4% of the basins is through protection actions. This
action shows a primarily continuous spatial pattern in the middle
and lower zones of the basin, whereas the pattern is more scattered
in the upper zone. Restoration presents a better opportunity in 4.7%
of the basin, specifically in the upper, piedmont, and upper-middle
zones. According to the integrity values, sustainable management
should be implemented in 17.9% of the basin. The pattern of this
action is primarily continuous and is present in the piedmont and
upper-middle zones of the basin (Figure 6E). Furthermore, the
results reveal that the established protection areas in the basin
present the best opportunity for conservation, which we anticipated.

4.8 Prioritized portfolio

The spatial distribution of the prioritized portfolio is mainly
concentrated in existing protected areas, specifically in the Serranía
de Chiribiquete National Natural Park (Figure 7A), which is
consistent with the selected criteria. The prioritized portfolio
shows high connectivity between micro-basins, which generates
corridors, as well as between existing protected areas. It is
noteworthy that the prioritized portfolio includes the Caguán
River despite its reduced integrity values in some sections. The
portfolio managed to represent 96% of the freshwater groups

FIGURE 5
(A) Importance index. (B) Representativeness index. (C) Rarity index, and (D) Connectivity index.
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identified in the large and very large river categories and 74% of the
freshwater groups identified in medium and small rivers. According
to the defined conservation objective, the prioritized portfolio
achieves representation of 80.1% of all the freshwater groups
identified in the Caquetá River basin. We found that 91.9% of
the prioritized micro-basins present opportunities for conservation
through protection, 3% through restoration, and 5.1% through
sustainable management (Figure 7B).

5 Discussion

In this study, we present a methodological framework that allows
prioritization of freshwater ecosystems (micro-basins) and concurrently
identifies the best conservation opportunities. The framework considers
six criteria: representativeness, integrity, importance, rarity,
complementarity, and connectivity. It is highly flexible in its
configuration for each of the mentioned criteria. It has the capability
to adapt to the specific characteristics of each region where it is to be
applied, including modeling schemes and analytical tools for
characterizing key ecological attributes, indexes, conservation values,
data provided to establish criteria, and their relative weights.

The proposed framework contributes to improving the
conservation strategies of freshwater ecosystems (challenge
number 10, according to Olden et al., 2010). This approach goes
beyond conventional SCP paradigms that prioritize areas based
solely on unique or multiple species presence (Hermoso et al.,
2018; Tognelli et al., 2019; Linke and Hermoso, 2022; Nogueira
et al., 2023). For instance, the framework allows for the
incorporation of critical elements for biodiversity maintenance
and persistence, such as ecosystem services and cultural values,
emerging as crucial factors to ensure effective long-term
conservation (Higgins et al., 2021). The integration of culturally
relevant values for communities becomes critically important as it
facilitates understanding and acceptance of conservation actions, in
addition to enhancing community engagement by ensuring
appropriate representation.

As detailed in step 2.17, the prioritization scheme (optimization)
was set up so that micro-basins of greater significance (with lower
conservation value occurrences) are prioritized first, while those of
lesser significance are relegated, regardless of the level of overlap in
feature distributions (freshwater groups). This suggests that micro-
basins with high ecosystem service provision and a high
concentration of cultural values could be prioritized first, even if
they have a low biological value. Such an outcome is consistent
within our framework since it focuses on freshwater ecosystems and
not on a specific species.

Within the framework, it is possible to incorporate a variety of
conservation values into the significance criterion. In the specific
context of the Caquetá river basin, our consideration encompassed
recreation and tourism as cultural ecosystem services. However, this
importance index has the potential for expansion to include
provisioning, supporting, and regulating ecosystem services; or to
cover other forms of cultural values beyond the scope of this study.
Nonetheless, depending on the quantity, configuration, and
weighting given to conservation values, the spatial distribution of
prioritized micro-basins may shift. Yet, considering that cultural and
social values are related to areas of biological importance, it would be
expected that this variation would not be significant, as evidenced by
Whitehead et al. (2014) in terrestrial ecosystems.

Integrating cultural relevant values for communities is essential for
enhancing SCP as it facilitates the understanding and acceptance of
conservation actions, in addition to bolstering community participation,
which in turn increases the likelihood of success of these actions (Geist,
2015; Corrigan et al., 2018; Hoffmann, 2022). Furthermore,
incorporating ecosystem services into conservation strategy
formulation allows for the design of financial mechanisms grounded
in these services (Boulton et al., 2016), such as recreation and tourism.
These approaches motivate communities to conserve freshwater
ecosystems. The inclusion of these elements not only aids in devising
more effective conservation strategies but also establishes robust funding
sources that support the long-term protection of ecosystems.

The integration of connectivity in SCP exercises has been
highlighted as a key criterion for the conservation of freshwater

TABLE 8 Frequency distribution of rarity, representativeness, importance, and integrity indexes.

Rarity Representativeness Importance Integrity

IR Freshwater groups (%) IRep Freshwater groups (%) ICV Micro-basins (%) I Micro-basins (%)

0–0.09 1.0% 0–0.1 59.1% 0–0.1 0.003% 0–0.08 10.9%

0.09–0.17 2.9% 0.1–0.2 4.8% 0.1–0.19 0.03% 0.08–0.17 25.9%

0.17–0.26 13.9% 0.2–0.3 5.8% 0.19–0.29 0.3% 0.17–0.25 14.6%

0.26–0.34 26.8% 0.3–0.4 4.4% 0.29–0.39 0.3% 0.25–0.34 15.0%

0.34–0.43 23.4% 0.4–0.5 6.4% 0.39–0.48 6.3% 0.34–0.42 11.3%

0.43–0.51 18.1% 0.5–0.6 2.5% 0.48–0.58 1.5% 0.42–0.5 4.7%

0.51–0.6 9.1% 0.6–0.7 3.3% 0.58–0.68 11.2% 0.5–0.59 5.0%

0.6–0.68 3.1% 0.7–0.8 1.9% 0.68–0.77 35.9% 0.59–0.67 5.4%

0.68–0.77 0.8% 0.8–0.9 1.7% 0.77–0.87 39.8% 0.67–0.76 4.8%

0.77–0.85 1.0% 0.9–1 10.0% 0.87–0.97 4.8% 0.76–0.84 2.5%
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ecosystems, given their interconnected nature (Hermoso et al.,
2011). Consequently, it has been increasingly incorporated into
SCP frameworks (Linke and Hermoso, 2022; Nogueira et al.,
2023). In our framework, connectivity is addressed not only as a
desirable characteristic in the conservation portfolio but also as an
attribute for defining freshwater groups and assessing their integrity.
This, in turn, impacts the selection of conservation opportunities
and the prioritization process.

Another significant aspect of our framework is that
representativeness and rarity are properly directed towards

freshwater groups, recognizing that KEAs shape and organize the
physical habitat and biotic communities of freshwater ecosystems
(Poff et al., 1997; Castello et al., 2013; Zeiringer et al., 2018; Higgins
et al., 2021). Therefore, our approach aims to prioritize micro-basins
with differentiated KEAs (freshwater groups) that are not yet
represented in a protected area and are unique within the basin.
It also takes into account the pressures to which freshwater groups
are exposed through the integrity criterion. Although we favor
healthy (high-integrity) ecosystems and those with high
conservation values, this does not preclude the selection of areas

FIGURE 6
(A) Integrity at the micro-basin level. (B) Integrity profile of the Caquetá, Orteguaza, and Caguán Rivers at the micro-basin level, starting from their
headwaters. (C) Integrity at the sub-basin level; (D) 2D scatterplot following Riato et al. (2020). (E) Conservation opportunities. The black diamond and
square denote the presence of invasive alien species.
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with low integrity as long as the greatest diversity of freshwater
ecosystems is guaranteed, according to the proposed goal. In the case
of the Caquetá River, we achieved a high representation of
ecosystems with differentiated KEAs in the prioritized portfolio
even though the search margin was limited to less than 11% of the
area of the micro-basins in the Caquetá basin, considering that 21%
of the Caquetá basin is currently under protection.

Our prioritized portfolio results (Figure 7A) in the Andean zone
of the upper Caquetá River, upper Orteguaza River basin, and
between the mouth of the Orteguaza River and the Caguán
River, show agreement with the irreplaceable conservation areas
identified by Tognelli et al. (2019) for freshwater fishes in the
tropical Andes region of South America, threatened and
vulnerable to climate change (Figure 7C). This alignment is
attributed to our methodological framework’s primary criterion,
emphasizing endemic and threatened fish species. However,
disparities are noticeable in specific regions, stemming from
Tognelli et al. (2019) utilization of a traditional CPS scheme with
Marxan, centered on individual species, while our approach is

specifically tailored to freshwater ecosystems. Notably, Tognelli
et al. (2019) did not account for rarity, ecosystem services, and
cultural values in their assessments.

Furthermore, Tognelli et al. (2019) incorporated Marxan’s
Boundary Length Modifier (BLM) to derive interconnected
solutions. However, their methodology did not encompass an
evaluation of longitudinal connectivity, leaving room for future
extensions in research. Consequently, the solution proposed by
Tognelli et al. (2019) does not delineate areas forming connected
basin corridors, which is a significant distinction from our approach.

Our conservation opportunity results (Figure 7B) are very
similar to the Essential Life Support Areas (ELSA) mapped by
Corzo et al. (2021) for Colombia following the United Nations
Convention on Biological Diversity, Framework Convention on
Climate Change, and Sustainable Development Goals
(Figure 7D). ELSA identifies regions for conservation, restoration,
and sustainable management through land use zoning, leveraging
environmental diagnostics and assessments of environmental
supply and demand. This methodology involves evaluating

FIGURE 7
(A) Prioritized portfolio for the Caquetá River basin and (B) conservation opportunities for the prioritized areas. (C) Comparison of the prioritized
portfolio with the sites identified by Tognelli et al. (2019) and (D) the Essential Life Support Areas in Colombia mapped by Corzo et al. (2021).
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anthropogenic pressures affecting the given territory. In our study,
we conducted an integrity analysis within our methodological
framework, which corresponds to the approach taken by ELSA.
However, it is important to note that ELSA incorporates aspects of
public policy that are not integrated into our framework, leading to
variations in proposed conservation activities across certain regions.

The identification of protected areas has been another focus of
SCP analysis (Dorji et al., 2020; Hermoso et al., 2011; Linke &
Hermoso). Instead of considering protection as the lone
conservation option, our methodology applies the framework of
Riato et al. (2020) and assesses the integrity of KEAs according to
their threats to generate micro-basin-level spatial guidance
regarding which ecosystems should be conserved using
protection, restoration, or sustainable management. In the case of
the Caquetá River basin, sustainable management and restoration
opportunities were identified in sites with land overuse compared
with the predominant vocation, e.g., due to productive activities
such as livestock and agriculture (Guerrero, 2020). Protection, on
the other hand, prevailed in some areas of the basin lacking strong
anthropic pressures.

In certain regions, mercury contamination is a growing threat
due to illegal gold mining (Matapí, 2015; Instituto Amazónico de
Investigaciones Científicas, 2022b), which, in the future, could
change the patterns of conservation opportunities for restoration,
especially in the Caquetá River’s main channel. This result is
consistent with the findings of Corzo et al. (2021), who analyzed
100 geographic layers from 18 different institutions to identify
conservation opportunities. Thus, a simple approach, such as that
used by Riato et al. (2020) can i) allow conservation managers to
determine specific actions according to each ecosystem’s threats and
capacity to support such actions (Riato et al., 2020; 2023) and ii)
guide detailed exercises for resource allocation, as in Cattarino et al.
(2015) and Mu et al. (2022).

Using an index-based approach, our proposal can link
additional criteria to those presented in this research. Moreover,
we have identified an opportunity for improvement in our
methodology: we can include a KEA that specifically addresses
biotic interactions and thus develop an index that adequately
captures these processes. This will allow us to broaden the
understanding of ecological and biological aspects within our
approach, providing a more complete view of freshwater systems
and how to conserve them. These interactions are crucial for
maintaining natural diversity and ecological processes and
understanding the dynamics of the distribution and abundance
of freshwater species, especially in the presence of exotic invasive
species that pose a threat to aquatic ecosystems (Castello et al., 2013;
Zeiringer et al., 2018).

A recent study by Nogueira et al. (2023) demonstrated that
relying solely on species presence data may be insufficient to address
ecological needs. The presence of two invasive exotic species,
Oncorhynchus mykiss (rainbow trout) and Poecilia reticulata
(guppy), has been recorded in the Villalobos and Mocoa Rivers,
located in the upper part of the Caquetá River basin. These invasive
species are found in micro-basins where we identified restoration
and protection as the best conservation opportunities (Figure 6).
The presence of these species has significant implications for
restoration processes, from both ecological and social
perspectives. Actions such as eradication and control can involve

the community capturing and consuming these species, generating
social, economic, and environmental benefits. We, therefore, advise
incorporating an index that highlights biotic interactions, thus
expanding the specific measures related to these interactions.

There are multiple challenges involved in the implementation of
the Convention on Biological Diversity (Chandra and Idrisova, 2011),
especially for the 30 × 30 target, including Indigenous issues or the
increasing degradation rate of ecosystem services (Chandra and
Idrisova, 2011). According to the analyses conducted by Moreno
et al. (2020), Indigenous reserves are vulnerable to ecosystem
degradation processes. In the case of the Caquetá River basin, 43%
of the basin’s area corresponds to Indigenous reserves (Agencia
Nacional de Tierras, 2023), and our results show that these areas
are good candidates for conservation. Promoting environmental
governance in Indigenous reserves is fundamental to reducing
biodiversity loss in the Amazon (Moreno et al., 2020). This
highlights the importance of our contribution, as our methodology
considers Indigenous communities and their cultural values. This step
forwardwill allow for the development and long-term sustainability of
conservation strategies, especially in Amazonian basins, such as the
Caquetá River, where Indigenous communities have an important
presence.

6 Conclusion

In this study, we present a methodological scheme of SCP for
freshwater ecosystems that simultaneously answers the questions of
where and how to conserve. Our framework considers basins as
planning units; incorporates integrity from the perspective of the
functional characteristics of the ecosystem as a criterion for
prioritization and selection of conservation opportunities; assesses
the impact of threats to ecosystems; includes species, ecosystem
services, and cultural and spiritual values as conservation values;
considers existing conservation efforts; and recognizes the unique
components and connectivity of freshwater ecosystems.

The proposed framework provides a pertinent technical
instrument for optimizing the interventions of conservation
organizations and, in turn, assisting Colombia in achieving its
30 × 30 target set by the Convention on Biological Diversity. By
identifying priority freshwater ecosystems in the Caquetá River
basin, we offer a tangible foundation upon which future decisive
conservation actions in the Colombia can be based. Although our
framework suggests an integrative capacity at the national level, it
is crucial that subsequent research strengthens and broadens
these findings. In summary, the defined methodological
framework stands as an essential tool for decision-making
regarding conservation, especially when considering
ethnocultural territorial contexts.

The research community must continue to generate
methodological frameworks in which SCP exercises of freshwater
ecosystems incorporate conservation actions into the portfolios. We
also encourage researchers to further strengthen our proposed
methodological framework by analyzing how KEAs and biotic
structure/composition respond to threats while also constructing
and incorporating new KEAs, conservation values, and indexes that
capture synergistic components at local scales and cumulative
impacts at the basin level. In addition, we believe that our
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framework can be adapted to other geographies and scales of
analysis, so we encourage future studies to corroborate this.
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