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Extreme heat events are happening more frequently and with greater severity,
causing significant negative consequences, especially for vulnerable urban
populations around the globe. Heat stress is even more common in cities with
dense and irregular planning and lacking urban blue-green infrastructures. This
study investigates the greening and cooling effects of five selected urban
transformation projects and their surrounding areas (within a 10-min walking
distance) in Istanbul from 2013 to 2021, with a focus on environmental justice and
climate adaptation planning perspectives. By employing temporal analysis of
Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature
(LST) values derived from Landsat data sets to detect changes in these five selected
urban transformation projects in the megacity of Türkiye, Istanbul, this study finds
that the distribution of green infrastructures (e.g., tree canopy) is only limited to
project sites of long-running and state-supported urban transformation projects
in Istanbul. Consequently, the unequal distribution of green infrastructures creates
cooling effects only for the locals residing in the new residential projects.
However, the surrounding areas have less urban green infrastructure and are
exposed more to the urban heat over time. Urban development policies and
planning highly contribute to increasing the climate vulnerabilities among those
who do not benefit from the recently developed residential units in Istanbul. Such
a trend can affect adaptive capacity of vulnerable communities and redress
environmental injustices in urban planning in the megacity of Istanbul.
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1 Introduction

Cities and urban communities are considered the nexus for transforming into a
sustainable and climate-resilient society. This transformation typically involves changes
in the built urban environment, such as urban refurbishment and densification, from small-
scale (e.g., parcel) to large-scale (e.g., neighborhood or district) levels of urban
transformation (UT) projects. Such projects in the built urban environment have the
opportunity to adapt cities and urban communities to the increasing impacts of climate
change (e.g., extreme heat and flash floods). Nevertheless, they also have the risk of
increasing existing disadvantages for socio-economically vulnerable urban groups. UT
projects may occur in a shared spatial and temporal context, but their outcomes affect
different residential populations living in the same neighborhoods, triggering social
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exclusion, environmental injustices for socio-economically
disadvantaged groups, and green gentrification (Anguelovski,
2016; Maia et al., 2020; Yazar et al., 2020; Mital, 2023). Urban
transformations for sustainable buildings and green public spaces,
for instance, may decrease heating costs and ease the impacts of
urban heat through green infrastructures (e.g., tree canopy) (Gill
et al., 2007). Still, they may drive up property values and
consequently push out socio-economically vulnerable renters into
the city outskirts with worse housing and less green infrastructure
access (Chow et al., 2012; Dialesandro et al., 2021). A comprehensive
planning approach is necessary to ensure equal distribution of
cooling and greening effects throughout the city (Rakoto et al.,
2021); otherwise, green benefits will only be experienced by high-
income residents who can afford to live in the transformed areas.

This study investigates the effects of five selected UT projects on
green infrastructure and land surface temperature within their
respective project sites and surrounding neighborhoods (within a
10-min walking distance) in the megacity of Türkiye, Istanbul.
While UT projects are expected to create more green spaces and
to reduce urban heat vulnerability within project sites (Smith et al.,
2017; Mabon and Shih, 2018), it is unclear if these benefits extend to
nearby communities. Moreover, surrounding neighborhoods may
still lack open green spaces or experience similar greenery changes
despite project sites becoming greener.

Thus, this study aims to analyze 1) shifts in green infrastructure
within the five UT projects and their surrounding neighborhoods
from 2013 (after Law 6306, Transformation of Areas under Disaster
Risk entered into force) to 2021, and 2) whether such shifts in green
infrastructure have an impact on land surface temperature within
these five UT projects and their surrounding neighborhoods within
a 10-min distance. The study is limited to a 10-min distance
approach, in which the authors aim to determine whether there
is a differentiation in the distribution of urban green infrastructure
within such a short proximity between the selected newly developed
areas and their surrounding areas.

Istanbul was selected for this study because UT projects have
been implemented in different parts of the metropolitan area,
particularly after the Turkish parliament enacted Law 6306 (Law
on the Transformation of Areas under Disaster Risk) in 2012. Law
6306 aimed to transform settlements in disaster-prone areas.
However, the central government, municipalities, and private
developers have orchestrated numerous UT projects to transform
old housing units or industrial areas into lucrative residential
complexes (Iban, 2020). The central government has delineated
and announced some risky areas across the city and provided
support for UT projects through economic stimulus packages
(Ünsal, 2023). Even though these UTs have brought about short-
term economic growth based on construction, they have led to
tensions and conflicts between those in charge of the projects and
the residents of affected neighborhoods, particularly when the
“disaster” law is invoked (Durmaz, 2015; Kuokkanen and Yazar,
2018). Nevertheless, the term “risky areas” is not clearly defined in
the legislation, and private construction companies aim to gentrify
inner-city neighborhoods, mainly historical places or squatter
settlements, to develop high-income office and housing sites
under the guise of transforming the risky areas (Güzey, 2016).

Previous studies have utilized parameters such as the
Normalized Difference Vegetation Index (NDVI) and Land

Surface Temperature (LST) for monitoring the environment in
urban areas (Goward et al., 2002; Guha and Govil, 2022). Many
researchers have documented the importance of themulti-scalar and
GIS-based aspects of green infrastructure and its planning in urban
contexts (Langemeyer et al., 2020; Depietri, 2022; Cong et al., 2023;
Pan et al., 2023; Venter et al., 2023), and its disproportionate impact
on urban communities (Dooling, 2009; Pearsall, 2010). This study
employs similar methods, using both NDVI and LST, and links them
to perspectives on environmental justice and urban planning
through the examination of five selected cases and their
surroundings within a 10-min distance in the megacity of
Istanbul. The wider implications of this study are that it
advances our understanding of the challenges posed by urban
transformation projects, in which green infrastructure solutions
can exacerbate existing spatial injustices in a megacity from the
Global South.

The paper is structured as follows: Section 2 establishes the link
between UT projects and their potential pitfalls, which can increase
risks posed by climate change impacts and lead to environmental
injustices; Section 3 introduces the case selection and methodology
employed in the study; Section 4 outlines the results; and Section
5 discusses the five case studies and their 10-min walking distance
neighborhoods. Finally, the paper concludes and suggests further
avenues of research.

2 Environmental injustices in urban
planning amid climate change

Cities fail to mitigate the social and economic impacts of climate
change rapidly (Dodman et al., 2022). The impacts of climate change
in cities, especially extreme heat events, are already increasing
significantly unequal results (Hsu et al., 2021; Dodman et al.,
2022). Heat stress becomes more prevalent in both the cities of
Global North and South, with extreme heat leading to illness and
death, increasing pollutant levels, and demands for energy for
cooling purposes (Harlan and Ruddell, 2011; Lundgren et al.,
2013). Researchers show that socio-economically vulnerable
communities are disproportionately exposed to urban heat and
heat-related sickness due to urban thermal inequalities (Harlan
and Ruddell, 2011; Dialesandro et al., 2021). Cities also
incorporate policies, such as green infrastructures or use cooling
technologies for buildings, to enhance the microclimate of urban
areas to achieve climate-resilience (Langemeyer et al., 2020; Cong
et al., 2023). Against this backdrop, successful urban planning and
policies with interactive GIS-based multi-criteria applications are
required for the allocation of urban green infrastructures (Depietri,
2022; Venter et al., 2023), especially to alleviate rising heat stress for
vulnerable communities. Although there is an advancement in
climate change adaptation policies, plans and actions, scholars
show that political elites and developers often in favor of
boosting property values by investing in green infrastructures,
excluding public access for vulnerable urban communities
(Dooling, 2009; Pearsall, 2010).

The political environment and the surrounding governance
structures of a given urban context can also affect the likelihood
of the effective policies and actions to respond to climate change-
related challenges (Lee and Hughes, 2017; Yazar, 2023).
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Technocratic-oriented governance decision-making embraces
green infrastructure as a technological solution to secure local
investments and foster growth in response to the impacts of
climate change within existing regulations (Horwood, 2011).
Such an engineering and technology-oriented understanding of
green infrastructure leaves little room for an inclusive political
process, which is highly valuable in facilitating dialogue to
determine urban climate adaptation priorities. Environmental
justice scholars, for instance, have historically been vocal about
the inclusion of lived experiences and diverse knowledge systems
in decision-making processes. Yet, such epistemological
plurality in urban decision making often diverges from
dominant plans and policies (Bahadur and Tanner, 2014;
Leach, 2015).

The environmental justice literature aims to comprehensively
analyze how socio-economically vulnerable communities, especially
marginalized communities with specific racial and ethnic
backgrounds, are disproportionately exposed to environmental
externalities due to development projects, land-use policies, and
plans (Boone et al., 2009; Pearsall, 2010; Locke et al., 2021). This
literature is broadened with three main dimensions of justice:
distributional, recognitional, and procedural justices, each of
which tackles overcoming inequalities triggered by environmental
risks (Schlosberg, 2004; Low, 2013; Yazar and York, 2022).
Specifically, individuals’ adaptive capacity amid changing climatic
conditions are highly related to hard and soft infrastructure (e.g.,
urban planning and governance structure), socio-demographic
structure (e.g., income level, race, gender), and agency that
depends on how people mobilize the highlighted conditions
within existing structures (Lemos et al., 2016; Waters and Adger,
2017). Urban planning and urban transformation actions directly
affect the increase (or decrease) of people´s adaptative capacities to
mitigate extreme hazards. For instance, economic growth priorities
can overshadow building climate-resilient buildings and
neighborhoods for all society, and such priorities have direct
impacts on socio-economically disadvantaged populations, as
they can either hinder or increase risks from hazards (Fainstein,
2018).

At the urban scale, transformation and development projects
with sustainability and climate-resilient efforts can also potentially
lead to green gentrification. These projects generally distribute
green infrastructure only to affluent citizens in gated communities
or wealthy neighborhoods (Dooling, 2009; Curran and Hamilton,
2012). Environmental injustices are perpetuated primarily due to
the unequal distribution of environmental benefits, favoring only
wealthy citizens, which forces evictions of marginalized
communities from urban transformation areas. The socially
excluded urban transformation projects may cause green divides
between wealthy and low-income neighborhoods, exacerbating
exposure to urban-related climate impacts, such as extreme
heat, especially for marginalized communities (Bolin et al.,
2013; Hsu et al., 2021). Scholars focused on urban climate
adaptation and planning have documented that exclusionary
land use policies spurred by urban regime coalitions, including
political elites and private developers, can worsen spatial
inequalities (Bolin et al., 2013; Fainstein, 2018; Yazar and York,
2021; Kearl and Voger, 2023). As a result, exclusionary zoning and
land use policies coupled with the threats posed by climate change

increase displacements and higher exposures to urban climate
impacts among vulnerable urban communities (Bolitho and
Miller, 2017; Fainstein, 2018).

3 Case study and methods

3.1 Case study selection

Istanbul’s uncontrolled and fragmented urbanization has
resulted in a complex structure incorporating diverse land use
types. This structure has evolved into a mosaic of
morphologically distinct neighborhoods encompassing various
forms, geometries, and architectural typologies (Erdem Okumus
and Terzi, 2021). Furthermore, the complex structure with a multi-
layered identity puts the concept of urban transformation (UT) on
the decision-makers’ agenda to improve the city’s physical
appearance (Turgut, 2021). Against this backdrop, this study
identifies five UT projects, namely, Cendere a), Sarıgöl b),
Tarlabaşı c), Fikirtepe d), and Kartal e) (see Figure 1), that have
distinct typologies mentioned above. Following the enactment of
Law no.6306 in 2012, demolition and construction activities
commenced promptly at these sites. Consequently, we chose a
study period that spans from 2013 to 2021, aiming to
comprehend the environmental changes occurring within and
around the project sites during this time frame.

The rationale behind the selection of these five UT projects in
Istanbul is multifaceted. Firstly, their strategic location in the city
center or immediate environs implies their significant potential
impact on the city’s overall climate and environment. Secondly,
they are among the largest and most extensive UT projects in
Istanbul, encompassing substantial land areas and involving
significant changes in land use, infrastructure, and building
development. Thirdly, their diverse features regarding location,
size, and objectives render them suitable for comparative analysis
of the effects of green infrastructure on urban heat. Lastly, these
projects have been widely discussed in the literature on urban
transformation in Istanbul, which provides a rich source of
information.

1) The Cendere Valley is located adjacent to the Büyükdere-Maslak
axis, which is the central business district of the city, and the
secondary highway network. Industrialization effects became
apparent in the valley in the 1960s, the need for cheap and
large spaces required for industrial activities led to the
proliferation of industrial activities in the city’s outskirts.
However, since the 2010s, industrial activities and informal
settlements have gradually moved out of the area and have
been replaced by fragmented mass housing, shopping malls,
and residential and luxury office structures without a
comprehensive plan. As a result, the high-income group has
started to establish itself in the valley with the increase in mixed-
use, new and luxury buildings (Aybar and Dokmeci, 2022; Kırtaş
and Tomruk, 2022).

2) The Sarıgöl neighborhood is located in Istanbul’s
Gaziosmanpaşa District, where several UT projects have been
ongoing for years to enhance living conditions and
infrastructure. The projects aim to improve the district’s
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residents’ quality of by creating a more livable, sustainable, and
modern urban environment. However, as with other UT projects
in Istanbul, the Sarıgöl project has faced some criticism. Some
people believe that the projects are unfair and lack transparent,
leading to displacement and green gentrification (Yazar et al.,
2020)

3) The Tarlabaşı neighborhood, located near the city’s heart
Taksim Square, has undergone substantial UT in recent
years. Once a diverse working-class neighborhood with a
significant number of immigrants and refugees, the area
has been targeted for redevelopment by the government.
Unfortunately, this has resulted in the displacement of
many residents and the destruction of historic buildings.
The project aims to gentrify the area by constructing new
luxury housing, hotels, and shopping centers, attracting
upper-income residents. This has led to significant
controversy and protests from residents and activists, who
argue that the redevelopment displaces long-time residents
and erases the neighborhood’s cultural heritage (Arıcan, 2020;
Tsavdaroglou, 2020).

4) Fikirtepe is a neighborhood in the Kadıköy district of
Istanbul, which is predominantly inhabited by lower-
income groups. In 2005, the Istanbul Metropolitan
Municipality adopted a land use plan aimed at improving
the area’s physical and living conditions. However, in 2011,
the courts cancelled the detailed local plan of Fikirtepe,
stating that it was not in line with the principles of
regulatory planning systems, upper-level plans, and the
reconstruction law. As a result, in 2013, the Ministry of
Environment and Urbanization declared Fikirtepe a “risky
area” and approved a new detailed local plan. Subsequently,

developers have been constructing high-rise luxury buildings
in the neighborhood (Tarakci and Turk, 2022).

5) Kartal is a district located on the Asian side of Istanbul. One of
the significant projects in the area is the construction of the
Kartal-Pendik Master Plan, a large-scale urban development
project that aims to create a new city center in Kartal. The
project involves the construction of new residential, commercial,
and recreational areas, as well as the creation of new
transportation infrastructure. The project is also designed to
address the housing shortage in Istanbul by creating new housing
units for over one million people. However, it has also had
negative impacts such as the displacement of residents,
destruction of green spaces and cultural heritage, and rising
property values, making the area unaffordable for many locals
(Çalışkan, 2017).

3.2 Data sets

3.2.1 Vector data
This study investigates the cooling and greening effects of

selected UT projects within their project sites and surrounding
areas. It aims to determine whether the benefits of these projects
are limited to the project sites or extend to nearby communities.
To achieve this, we implemented a GIS operation that considers
project sites and their surrounding areas separately. The
boundaries of the five UT projects were obtained from the
website megaprojeleristanbul.com, which features a map of
ongoing mega projects in Istanbul created by the Istanbul
Association of Architects in Private Practice
(MEGAISTANBUL, 2023). These digital boundary data are

FIGURE 1
The selected neighborhoods for this study.
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stored in the form of vector shapefiles. To calculate the
surrounding areas, this study uses a 10-min walking distance
(1000 meters) from the project sites based on Istanbul’s road
network obtained from OpenStreetMap (Open Data Commons,
2023) data. Figure 2 shows the selected UT project areas and
their 10-min walking surrounding areas (shown in red lines).
This approach enables us to measure the cooling or warming
effect of these projects on surrounding neighborhoods.
Moreover, it enables a comparison of the greenness of
surrounding neighborhoods with that created within the
project sites throughout the study.

3.2.2 Raster data
In recent years, the utilization of Remote Sensing (RS)

technologies has become crucial in examining urban green spaces
and surface urban heat islands (SUHIs) due to their capacity to
furnish historical time series data. Programs such as Copernicus and
Landsat have made it possible for many researchers and managers to
access medium spatial resolution satellite imagery for their research.
Since 2009, all archived Landsat images have been made available to
all users at no cost. However, these data sets are not suitable for
mapping green spaces and SUHIs at a detailed level, but they can be
used to evaluate the overall pattern of SUHIs and green spaces
within cities (Shahtahmassebi et al., 2021). In other words, a vast
number of published studies has used medium resolution satellite

images (e.g., Landsat, Sentinel-2) for mapping green spaces (Xu
et al., 2022; Ju et al., 2022) and SUHIs (Carrillo-Niquete et al., 2022;
Halder et al., 2022).

3.2.2.1 Land surface temperature (LST)
Land Surface Temperature (LST) is a measure of the

temperature of the Earth’s surface, including urban areas. It is
often used in studies of SUHIs to examine the relationship
between surface temperature and urbanization in cities
(Sekertekin and Bonafoni, 2020a). LST can be measured using
thermal infrared RS, which detects the infrared radiation emitted
by the Earth’s surface and converts it into a temperature value
(Sobrino et al., 2008). LST can be used to map the distribution of
surface temperature in an urban area and to identify areas with
higher or lower temperatures. In urban areas, the LST is often higher
than in rural areas due to the concentration of buildings, roads, and
other man-made surfaces that retain and radiate heat. The LST can
also be influenced by factors such as vegetation, water bodies, and
the presence of heat sources such as air conditioning units (Zaitunah
et al., 2022). In SUHIs studies, LST can be used to identify areas with
high surface temperatures, which are often associated with
urbanization (Xu et al., 2022). It can also be used to monitor the
changes in surface temperature over time and to evaluate the
effectiveness of heat mitigation strategies (Lemoine-Rodríguez
et al., 2022).

FIGURE 2
The selected UT project areas (shown in black lines) and their 10-min walking surrounding areas (shown in red lines).
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3.2.2.2 Normalized Difference Vegetation Index (NDVI)
Normalized Difference Vegetation Index (NDVI) is a method

used to measure the amount of green vegetation in a given area
(Pettorelli et al., 2005). It is commonly used in studies of SUHIs
and green gentrification to investigate the relationship between
vegetation and temperature in urban areas (Li and Grant, 2022;
Stuhlmacher et al., 2022; Wu and Rowe, 2022). NDVI is calculated
by using the red and near-infrared bands of an RS image, and the
values range from −1 to 1. A higher NDVI value indicates a greater
amount of green vegetation, while a lower NDVI value indicates
less vegetation or bare soil. NDVI can be used to map the
distribution of vegetation in an urban area and to locate areas
with high or low levels of vegetation cover. NDVI values can also
serve as an indicator of the cooling effect of vegetation since
increased vegetation can lower surface temperature by shading
and evaporative cooling (Venter et al., 2023). This data can be used
to identify areas where vegetation can be added to reduce the SUHI
effect and to evaluate the effectiveness of vegetation management
strategies.

3.2.3 Preparation of LST and NDVI time series
The Google Earth Engine (GEE) was used to select images

and perform LST and NDVI computations. GEE is a web
platform that utilizes cloud-based technology for geospatial
tasks and takes advantage of Google’s powerful computational
resources for various Earth monitoring activities. GEE also helps
to manage many of the challenges related to data storage,
cataloging, and projection, and has incorporated many
commonly used RS data sources (Gorelick et al., 2017). The
UT project sites, and their surrounding areas were delineated by
importing the digital vector files into the GEE platform. Scenes of
atmospherically corrected surface reflectance (SR) taken by
Landsat 8 (L8) satellite (USGS, 2013) for the period of
2013–2021 were selected from GEE platform to study the
changes in LST and NDVI during the study period. All
images cover a nice weather period between April 1 and
October 30, as this time of year allows for fewer cloudy and
snow-covered scenes. Pixels that were cloudy or invalid were
identified using the CFmask band from the SR collection to
produce an output with a cloud mask. This study set a maximum
cloud cover of 10% for images to guarantee that the data
acquisition date had optimal atmospheric conditions. The
scenes were already rectified to WGS84 datum in the GEE
platform, and they were downloaded in GEOTIFF format. In
the end, the final data set consists of 37 L8 scenes within the
study period. All selected and filtered images (Rows/Paths:
180–181/33–34) were clipped to five selected UT project sites
and their surrounding areas. Band 10 (TIR1) values from
L8 Thermal Infrared Sensor (TIRS) were used to compute
LST values which were retrieved with the help of NDVI-based
emissivity method (Sobrino et al., 2008). NDVI values were
computed using Band 4 (Red) and Band 5 (Near-Infrared
NIR) SR digital number (DN) values of L8 Operational Land
Imager (OLI) data. NDVI values were derived from Eq. 1
(Sekertekin and Bonafoni, 2020a).

NDVI � NIR − RED

NIR + RED
(1)

Furthermore, LST values were computed with the help of the
Landsat 8 Data Users Handbook.DN of each pixel was converted to
top of atmospheric Spectral Radiance (Lλ) inWatts*sr−1*m−2*μm−1

using Eq. 2:

Lλ � ML( )* DN( ) + AL( ) (2)
where ML and AL are the values of band-specific radiance rescaling
factors. Then, the obtained Lλ values helped to calculate the
brightness temperature (BT), which is the actual temperature
recorded by the L8 sensors with the assumption that the
emissivity value equals to 1 (Eq. 3):

BT � K2

ln K1
Lλ
+1( )−273.15 (3)

where K1 and K2 are the calibration constants obtained from the
metadata of the L8 (K1� 774.89,K2� 1321.08). The absolute zero
(−273.15 °C) was added to get temperature values in Celcius (Song
et al., 2022).

Different components of land, such as composition,
roughness, and structure, influence land surface emissivity,
thus, spectral emissivity (ε) correction must be applied
according to the type of land cover. In this study, we focused
on vegetation cover, so NDVI-based ε correction was performed
using Eq. 4. (Sobrino et al., 2008; Sekertekin and Bonafoni,
2020b):

ε �
0.979 − 0.046*ρRED,NDVI< 0.2
0.987*Pv+0.971 * 1−( Pv , 0.2) ≤NDVI≤ 0.5
0.987, NDVI> 0.5

⎧⎪⎨⎪⎩ (4)

Where Pv is the vegetation fraction derived from NDVI which is
calculated as:

Pv � NDVI −NDVI min

NDVI max −NDVI min
[ ]2

(5)

Where NDVImax equals to 0.5 and NDVImin is 0.2 in a global
context (Carlson and Ripley, 1997; Sekertekin and Bonafoni,
2020a). On the other hand, ρRED is the reflective value of the
red band. Finally, the LST was estimated using corrected land
surface emissivity values:

LST � BT

1 + λ*T*s
h*c( ) ln ε (6)

where BT is the brightness temperature derived from Eq. 3, λ is the
effective wavelength of thermal band (0.00115), s is Boltzmann’s
constant (1.38*10−23JK−1), h is Planck’s constant (6.626*10−34Js),
and c is the velocity of light (2.998*10−8ms−1).

Finally, the mean LST and mean NDVI values were
calculated separately for each UT project site and its
surrounding area based on the pixels in each scene. The
mean values provide a general idea of the LST and NDVI
values of each pixel within our study areas. As a result, time
series data were obtained for mean LST and mean NDVI values.
Both data sets contain five different polygons for each project
site and five polygons for the surrounding areas of each
project site.
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3.2.4 Trend analysis
Employing trend analysis on time series data of LST and

NDVI values derived from L8 imagery is rooted in the need to
systematically assess and quantify long-term environmental
changes. In the context of urban transformation projects, this
approach becomes particularly valuable and it enables to
discern meaningful patterns and trends in LST and NDVI
over time. For instance, increasing LST trends may indicate
urban warming effects due to changes in land use and
infrastructure, while rising NDVI trends may suggest a
greening effect, possibly related to vegetation growth or
restoration efforts. The systematic analysis of these trends
enables scientists, policymakers, and urban planners to better
understand the consequences of urban development on local
climate and ecosystem dynamics, providing a robust foundation
for evidence-based decision-making and sustainable urban
planning.

We used linear regression to model the trend of our time
series data by fitting a straight line. Our aim was to fit a trend line
for a long-term data set without considering seasonality and
meteorological anomalies (de Jong et al., 2011). The line is
represented by the equation y � a + bx, where y is the
dependent variable (i.e., LST or NDVI in our case), x is the
independent variable (i.e., time), a is the y-intercept, and b is the
slope. The slope (b) of the line represents the rate of change of the
dependent variable with respect to the independent variable, which
can be interpreted as the trend of the data. A positive slope indicates
an upward trend, a negative slope indicates a downward trend, and a
slope of zero indicates a flat trend. It is a good practice to check the
assumptions of linear regression and validate the results using
statistical methods such as the mean absolute error (MAE) and the
root mean square error (RMSE). The MAE is a measure of the
difference between the predicted values and the actual values for a
set of data. It is a commonly used measure of the accuracy of a
forecast or prediction model and is calculated as the average of the
absolute differences between the predicted values and the actual
values. In our case, the predicted values are the values
corresponding to the trend line. The formula for the mean
absolute error (MAE) is:

MAE � 1
n
∑n

i�1 yi − xi

∣∣∣∣ ∣∣∣∣ (7)

where n is the number of observations, yi is the actual value of the ith
observation, xi is the predicted value of the i-th observation, and Σ
denotes the sum over all observations. The MAE provides an
indication of how far the predictions are, on average, from the
actual values, without considering the direction of the error (positive
or negative). A lowMAE indicates that the model is accurate because
the predictions are close to the actual values. Conversely, a high
MAE indicates that the model is inaccurate because the predictions
are far from the actual values.

On the other hand, RMSE is another metric to measure the
difference between the predicted and actual values. Unlike MAE,
RMSE is sensitive to outliers because it squares the differences
between predicted and actual values. Large errors have a more
significant impact on RMSE, making it useful when one wants to
penalize large errors heavily. The formula for the RMSE is:

RMSE �
�������������
1
n
∑n

i�1 yi − xi( )2√
(8)

4 Results

Analyses comprising NDVI and LST measurements from
2013 to 2021 to evaluate the five selected UTs in Istanbul Metro
Area and their surroundings (10-min walking distance) are
explained in detail below.

4.1 Increase in green infrastructures is only
limited to urban transformation areas and
excludes surrounding neighborhoods

Figure 3 displays scatter plots representing the time series
data of NDVI values extracted from L8 imagery for selected
project sites and their respective surroundings. In these plots,
individual NDVI values from each image are denoted by green
dots, while red lines represent the regression lines fitted to
visualize the trends. Accordingly, Table 1 below reveals the
NDVI results for the selected UT projects and their
surrounding areas (within 10-min walking distance). The table
presents the initial and final NDVI values obtained from
L8 imagery for each project site and its adjacent areas.
Additionally, it showcases the NDVI fluctuations over the
course of the study period, along with the RMSE and MAE
scores associated with the regression lines fitted to the data.
The analyses reveal that the distribution of urban green
infrastructure is not uniform across the selected UT areas
when compared to their respective surroundings. Generally, an
upward trend in the green canopy is observed within the UT
areas, whereas a decrease or minor fluctuations are noted in the
surrounding urban areas. Notably, Tarlabaşı UT stands out as an
exception, experiencing a sharp decline in urban green over the 9-
year study period (2013–2021), while the surrounding areas have
witnessed an increase in green cover. The rest of the UT projects
exhibit similar trends of increasing NDVI values over the study
period. The highest increase in the green canopy was observed in
Kartal UT with 23.11%, followed by Cendere UT (21.18%) and
Sarıgöl UT (15.68%), whereas the lowest change in NDVI was
observed in Fikirtepe UT with 8.97%.

The comparison of the NDVI values for the UT areas and their
surrounding areas reveals that the increase in green canopy is
unfortunately limited only to the project areas but does not have
a spillover effect. The highest NDVI values were observed in the
Kartal UT project; however, their surrounding area has a meager
1.82% increase in the green canopy. Similarly, the surrounding areas
of Fikirtepe UT have a minimal increase in NDVI values (0.22%),
whereas in the surrounding areas of Sarıgöl and Cendere UT
projects, we observe a reduction in NDVI values, −0.97%
and −2.05% respectively. Conversely, in Tarlabaşı UT, an
unanticipated increase in the green canopy (6.01%) is observed
in the surrounding areas (see Figure 2 for the urban transformation
projects and their surrounding areas).
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FIGURE 3
Scatter plots representing the time series data of NDVI values extracted from L8 imagery for selected project sites and their respective surroundings.

TABLE 1 NDVI results for the selected UT projects and their surrounding areas.

Urban transformation project areas Surrounding area (10-minutes-walking)

Project
areas

NDVI
+/− %

Initial
NDVI
value

Final
NDVI
value

ΔNDVI MAE RMSE NDVI
+/− %

Initial
NDVI
value

Final
NDVI
value

ΔNDVI MAE RMSE

Cendere 21.18% 0.197 0.250 0.053 0.017 0.021 −2.05% 0.137 0.000 −0.137 0.009 0.013

Sarıgöl 15.68% 0.227 0.270 0.042 0.017 0.021 −0.97% 0.133 0.131 −0.001 0.008 0.013

Tarlabaşı −24.86% 0.112 0.089 −0.022 0.012 0.016 6.01% 0.112 0.119 0.007 0.009 0.011

Fikirtepe 8.97% 0.167 0.184 0.016 0.012 0.015 0.22% 0.209 0.210 0.000 0.011 0.016

Kartal 23.11% 0.195 0.253 0.059 0.018 0.022 1.82% 0.221 0.225 0.004 0.011 0.014
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4.2 The correlation between urban green
infrastructure and LST

Figure 4 exhibits scatter plots illustrating the time series data
of LST values derived from L8 imagery for selected project sites
and their surrounding areas. Within these plots, individual LST
values from each image depicted as blue dots can be observed,
while the red lines represent the regression lines fitted to
elucidate the underlying trends. The LST results reveal a

strong correlation between urban green cover. This analysis
shows a decrease in LST between 2013 and 2021 in areas
where urban green infrastructure has increased, as presented
in Table 2. The highest decrease in LST (−3.99%) was observed in
Fikirtepe UT and Kartal UT (−3.53%), where NDVI has
significantly increased. A similar trend in LST was observed in
Cendere UT (−3.16%) and Sarıgöl UT (−1.63%). On the other
hand, Tarlabaşı, where the areal extent of urban green cover has
reduced, has experienced a considerable rise in LST (4.14%) with

FIGURE 4
Scatter plots representing the time series data of LST values extracted from L8 imagery for selected project sites and their respective surroundings.
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a comparatively minor increase (1.27%) in the surrounding areas.
These findings suggest a direct association between the expansion
of urban green infrastructure and its positive impact on LST.

The relationship between NDVI and LST is not uniform for the
surrounding areas of the UT projects. The increase in green canopy
through UT projects is limited only to the transformation project
areas and does not extend to their surrounding areas. Thus, LST
values displayed a slight increase, except for Fikirtepe UT, where due
to increasing NDVI values, LST values have reduced by 0.33%.

5 Discussion

Spatially varied urban transformation projects can contribute to
uneven distribution of green infrastructure, reproducing unequal
patterns of climate change-related impacts (Brand and Baxter, 2020;
Yazar and York, 2023). This is especially important as the location
and distribution of tree canopy can be affected by the legacies of
growth-oriented urban zoning and planning. This study observes
that green infrastructure has generally increased in the five selected
UT areas in Istanbul over the last 9 years. This increase in green
spaces has had positive effect on reducing land-surface temperature
within the UT areas. However, results for the surrounding areas
within a 10-min distance of the five selected UT areas show that
urban green infrastructure generally decreased, with a few instances
of slight increases, while there was a noticeable rise in land-use
temperatures. The findings and observed green patterns and their
potential impacts on urban heat are discussed below for each project
site and surrounding area.

Specifically, the Tarlabaşı UT c) project resulted in an
increase in impervious areas as the construction base area
was reduced, leading to vertical construction. The Tarlabaşı
neighborhood is situated in the city center, a popular tourist
destination with high property values, motivating the project
developers to increase the construction area and jeopardize the
main impetus of UT projects (Arıcan, 2020; Tsavdaroglou,
2020). Thus, the UT project in this area is the only one with
decreased green infrastructure. Moreover, as seen in Figure 2,
due to the proximity of the surrounding neighborhoods to the
urban green areas (e.g., Taksim Gezi Park and other green
amenities developed by private owners and the Istanbul
Metropolitan Municipality), we observe an increase in green
infrastructure in the surrounding neighborhoods. However, the
positive change in green infrastructure did not affect land heat

temperatures. Although an increase in green infrastructure often
helps mitigate the SUHI effect, as in the cases of Cendere a),
Sarıgöl b), Fikirtepe d), and Kartal e) UT projects, the
relationship between green infrastructure and land-surface
heat temperatures also depends on various other factors,
including urban forms and soil types. The absorption of heat
due to old and dense urban infrastructure, such as buildings and
highways (Connors et al., 2013), in the Tarlabaşı neighborhood
may explain the positive correlation between the increase in
green infrastructure and land surface heat.

Although the increase in green infrastructure is an
observable trend among most of the UT projects in Istanbul,
the locations of these UTs and the distribution of green
amenities require closer attention. Specifically, the literature
highlights that the Cendere a) and Kartal e) UTs are located
on old industrial lands (Çalışkan, 2017; Aybar and Dokmeci,
2022; Kırtaş and Tomruk, 2022). As seen in Figure 2, Cendere
UT is located near urban forestry, and more than half of the UT
areas are divided from the surrounding neighborhoods by a large
highway. Therefore, the benefits of the green infrastructures are
limited to those who can afford to live within the gated
communities of Cendere UT areas. The Kartal UT project is
also a large-scale comprehensive UT project aiming to transform
old industrial sites into alternative economic and service centers
for the metropolitan area with a special emphasis on open green
spaces (Çalışkan, 2017). This objective is reflected in high NDVI
values throughout the analysis. Yet, unlike the Cendere case, the
Kartal UT project is located in the middle of existing and old
residential areas in the district, potentially exacerbating the heat
impacts among the urban population living outside the UT
areas.

Finally, the Sarıgöl b) and Fikirtepe d) UT projects are the
most studied and cited cases in the literature as both cases
resulted in the forced evictions of socio-economically
vulnerable groups due to complex land tenure system and
state-driven planned gentrification. The two cases are located
closer to the city center, major transportation, and trade hubs in
the metropolitan areas that attract wealthy locals and
international investors (Ceker and Belge, 2015). Researchers
also documented green gentrification, especially in the Sarıgöl
neighborhood, where buildings with sustainability aims and
energy efficiency certifications are created for gated
communities that exclude locals who could benefit from these
ambitious green visions (Yazar et al., 2020). This study cannot

TABLE 2 LST results for the selected UT projects and their surrounding area.

Urban transformation project areas Surrounding area (10-minutes- walking)

Project LST
+/− %

Initial LST
value

Final LST
value

ΔLST
(°C)

MAE RMSE LST
+/− %

Initial LST
value

Final LST
value

ΔLST
(°C)

MAE RMSE

Cendere −3.16% 29.488 28.584 −0.904 1.225 4.023 1.07% 31.857 32.201 0.344 1.270 3.920

Sarıgöl −1.63% 31.202 30.701 −0.501 1.103 3.955 4.68% 30.601 32.104 1.503 1.346 3.974

Tarlabaşı 4.14% 28.931 30.179 1.248 1.429 4.314 1.27% 31.067 31.467 0.400 1.496 4.481

Fikirtepe −3.99% 30.726 29.548 −1.178 1.370 4.182 −0.33% 29.700 29.602 −0.098 1.362 4.099

Kartal −3.53% 31.860 30.773 −1.087 0.995 3.728 0.45% 31.594 31.735 0.141 1.083 3.915
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conduct further temporal analyses, changes over time, due to
limited socio-demographic and real-estate data for the five
selected cases. Nevertheless, future studies must pay more
attention to the pitfalls of urban transformation projects that
may lead to green and climate gentrification in Istanbul.

6 Limitation of the study

The existing power disparities in land-use policy decision-making
and urban climate governance structures prioritize the policy agenda of
powerful local and national elites. Policymakers must recognize the
unequal outcomes of their land-use planning and implementations. In
this context, it becomes crucial to identify and acknowledge the diverse
needs of vulnerable individuals and groups in cities. However, the
authors acknowledge that this study heavily relies on the observation of
NDVI and LST-based variables due to the unavailability of socio-
demographic data in the selected districts of Istanbul from 2013 to
2021. Therefore, the authors recommend further studies to leverage
NDVI and LST-based data, along with a dynamic analysis (including
time dimension aspects) to assess population exposure and
vulnerability concerning green divide and heat exposures at the
level of the UT and surrounding areas in various urban contexts.

7 Conclusion

Cities that are taking steps towards climate adaptation and
mitigation should take into account the significant variation in
urban transformation, zoning, and planning that directly affect
urban populations’ adaptive capacity. Urban transformation projects
and planning can either hinder or foster people`s adaptation to
withstand and recover from the climate exposures, such as extreme
heat. By utilizing NDVI and LST analyses for the five selected urban
transformation areas and their surrounding neighborhoods in Istanbul,
it is possible to explicitly explore the effects of green infrastructure on
urban heat and connect risk potentials to communities living outside of
increased green amenities. Environmental and climate-change-driven
risks must be critical considerations in urban zoning, planning, and
policies. The goals of curbing urban growth can be separate from
preserving and developing green infrastructure, which is an essential
coping strategy for dealing with extreme weather impacts triggered by
changing climate conditions.

In cities with high populations and building structures, such as
Istanbul, targeted actions for recognizing and reducing urban
infrastructure-related vulnerabilities may need to focus on larger
geographical scales centred on green development interventions and
their distributions. This study illustrates the importance of GIS-based
analyses encompassing multi-scalar aspects of green infrastructures and

their impacts on vulnerable urban communities. Nature-based solutions
are still not mainstreamed in planning and governing practices of global
cities. In this special issue, we argue that nature-based practices, such as
increasing green infrastructure, require inclusive planning and
governance to identify potential spatial injustices that may be
perpetuated by these nature-based practices. Against this backdrop,
green infrastructures must be accessible and beneficial to urban
residents without becoming an exclusive concept for the affluent.
Further studies must pay more attention to the pitfalls of urban
transformation projects that lead to green and climate gentrification
in different cities exposed similarly to climate change.
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