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Dam construction interfered with the original environment of the river system and
greatly affected the geochemical behaviors of trace metals. Thus, a set of toxic
metals of Cr, Ni, Cu, Zn, As, Cd, Pb and Hg in soil/sediment of the Three Gorges
Reservoir (TGR) during the period of 2008–2020 were analyzed and summarized.
The results showed that levels of trace metals (except Cr) were apparently higher
than the soil background in the TGR and China, in which Cu, Zn, As, Cd, Pb and Hg
corresponded to themoderately to highly contaminated grade. As expected, most
trace metals (except Ni and As) were observed an evident increase after the full
impoundment stage of 2008–2014, suggesting the dam construction of the TGR
that promoting the sediment adsorption effects for trace metals. For spatial
patterns, metal levels largely depended on the sampling sites, that intensive
anthropogenic activities might well be the primary contributors. Main stream
with higher concentrations of tracemetals in comparisonwith tributaries reflected
the larger loads of metal pollution. In the water-level-fluctuating zone,
hydrological regime induced by damming played a critical role on the
redistribution of trace metals through eroding soil/sediment particles or
bedrocks and altering the physiochemical characteristics and vegetation
coverage of soil/sediment. Finally, submerged sediment seemed as a major
sink of trace metals that had greater concentration than that in the water-
level-fluctuating zone.
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1 Introduction

Dam construction can evidently alter the original environment of riverine systems, such
as flow velocity, hydraulic retention time, sediment discharge, primary productivity, nutrient
retention and reoxygenation capacity, and ultimately regulate the accumulation,
distribution, and transportation of toxic metals (Maavara et al., 2020; Bing et al., 2022).
In the aquatic environment, sediment is not only a large pool for heavy metals, but also a
habitat and food source for benthic fauna (Miranda et al., 2021). Toxic metals would be
bioaccumulated and bioamplified through the food chain and end up in the diet of humans
(Gurung et al., 2018; Hajri et al., 2022). Thus, it is of great significance to pay attention to
heavy metal pollution in reservoirs.

The Three Gorges Reservoir (TGR) is the world’s largest hydroelectric project. Since
2008, the water level has varied from the base level elevation of 145 m in the period of
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water drawdown to the high level elevation of 175 m in the period
of storage (Chen et al., 2013). A water-level-fluctuating zone
(WLFZ) 30 m in altitude (accounting for 55% of the total flooded
area) is annually subject to shifting wetness and red-ox
conditions that plays a vital role on the behaviors of heavy
metals (Wang and Zhang, 2013; Eckley et al., 2015). The
desiccation of the sediments in summer tends to form Fe/Mn
oxides and/or hydroxides to adsorb metals (e.g., Cd, Cu, Pb and
Zn), whereas the rewetting of the sediment reduces Fe/Mn oxides
and/or hydroxides, thereby releasing the heavy metals adsorbed
on them (Zhu et al., 2019). For another, secondary geological
disasters and soil erosion generated by periodic flooding, as well
as strong human disturbances (e.g., agricultural activities)
probably leaded to the migration of accumulated sediments in
the WLFZ to increase metals in the overlying water (Bao et al.,
2015; Gao et al., 2016; Wang et al., 2017). Thus, heavy metal
pollution in the TGR after impoundment has been concerned
(Guo et al., 2021; Bing et al., 2022; Dong et al., 2022). From the
perspective of previous researches, trace metals such as Cd, Pb,
and Zn in the sediments reached a moderate or even high
contaminated degree after impoundment of the TGR (Wang
et al., 2017; Gao et al., 2019; Zhu et al., 2019; Bing et al.,
2022). However, the majority of these studies mainly
considered a limited spatial scale (or study unit) or short time
scale, so that large-scale and long-term spatial variations are still
unclear. To address these problems, concentrations of trace
metals in soil/sediment in previous studies during the period
from 2008 to 2020 were summarized and analyzed. The primary
objectives of this article were to, 1) assess the contamination state
of heavy metals in soil/sediment from the TGR; 2) investigate the
spatial and temporal distribution for heavy metals in soil/
sediment from the TGR; 3) better understand the impact of
the hydrological regime on the redistribution of heavy metals.

2 Materials and methods

2.1 Study area

The region of the TGR (28◦28′-31◦44′N, 105◦49′-110◦12′E)
covers a number of counties and cities in Chongqing and Hubei
Province (Figure 1), with a total water surface area of 1,080 km2

and a storage capacity of 39.3 billion m3 (Bing et al., 2022). This
area experiences a humid subtropical monsoon climate, with
rainfall focused on April to October. During the period of
2003–2020, the annual average air temperature and rainfall
are 18°C and 1,127 mm, respectively. The information about
pollutant discharges (e.g., industrial effluents, urban sewage,
fertilizer usage, ship sewage) were shown in Supplementary
Figure S1.

2.2 Data sources

Data used in this study were all obtained from previous studies
Supplementary Table S1 and Supplementary Table S2.

2.3 Statistical analysis

The calculation method for the geo-accumulation index (Igeo)
was provided in Supplementary Material. Statistical analysis was
performed using SPSS software (version 25) for Windows. Mann-
Whitney U test, t-test and Kruskal–Wallis test were employed to
compare significant difference between paired or unpaired
samples. Pearson correlation coefficient were computed for
different heavy metals. Significant differences were all declared
at p < 0.05.

FIGURE 1
Location of the TGR (S1-S22 and T1-T9 represented the sampling sites that had statistical concentrations of trace metals in this study).
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3 Results and discussion

3.1 Levels of trace metals

The average concentrations of trace metals in the TGR from
2008 to 2020 were 74.8 mg/kg (Cr), 42.2 mg/kg (Ni), 51.2 mg/kg
(Cu), 126 mg/kg (Zn), 12.1 mg/kg (As), 0.77 mg/kg (Cd),
44.1 mg/kg (Pb) and 0.13 mg/kg (Hg), respectively
(Supplementary Table S3). The levels of most heavy metals
(apart from Cd and Hg) exceeded the threshold effect
concentration (TEC) indicating risks of adverse effects,
whereas all trace metals were below the probable effect

concentration (PEC) (Macdonald et al., 2000). The mean
value of Cr (74.8 mg/kg) was basically consistent with the soil
background in the TGR, which mainly came from the crust and
rocks (Chen et al., 2011). Levels of Ni, Cu, Zn, As, Pb and Hg were
2-3 times higher than the soil background values in the TGR and
China, and Cd was 6-7 times higher (Wei et al., 1991; Tang et al.,
2008). Based on the average Igeo values (Supplementary Figure
S2), the increasing order was Cr (−0.75) < Ni (−0.09) < Pb
(0.11) < Zn (0.19) < Cu (0.28) < As (0.31) < Hg (0.63) < Cd
(1.63). It implied that Cr and Ni had no contamination, while Pb,
Zn, Cu, As, Hg and Cd contaminated soil/sediment mildly to
moderately. Parts of Igeo values for Cd ranged 3 to 5, reflecting

FIGURE 2
The temporal distribution patterns of heavy metals in soil/sediment from the TGR.
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highly to extremely polluted levels. The labile percentage of Cd
with high bioavailability was reported to exceed 50%, followed by
Zn (10%–20%), Cu (5%–15%), Pb (around 5%), Ni (<5%) and Cr

(<1%) (Bing et al., 2022). Thus, Cd was the most polluted metal
in the TGR, which is the key factor of ecological risk in the TGR
(Gao et al., 2019; Bing et al., 2022).

FIGURE 3
The Spatial distribution patterns of heavy metals in soil/sediment of the TGR from 2008 to 2020.
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3.2 Temporal and spatial variations of heavy
metals

Most trace metals (except Ni and As) in soil/sediment were
observed an evident increase after the full impoundment stage of
2008–2014, and then showed dynamic fluctuation change
(Figure 2). Despite the high levels of Cr and Hg were
observed in 1985, this might be attributed to the difference of
sampling sites (Xu et al., 1999). In comparison with the
monitoring data before impoundment, the concentrations of
all trace metals have increased to some extent, especially As
and Cd were about doubled (Figure 2). This might be attributed
to the dam construction of the TGR that promoting the sediment
adsorption effects for trace metals (Wei et al., 2016; Bing et al.,
2022). After impoundment, notable decreased water flow velocity
and increased water retention time accelerated the sinking
process of suspended particulate matter and attached heavy
metals (Wang et al., 2017; Bing et al., 2022). Moreover, the
effects of damming on river ecosystems are long-lasting and
likely to persist for few decades (Porvari, 1998; Bodaly et al.,
2007). The correlation analysis for Cu, Zn, Cd and Pb clearly
identified a consistent positive correlation with each other
(Supplementary Table S4, p < 0.05), and studies have shown
that they were primarily from industrial effluents or intensive
fertilizer use (Chen et al., 2011; Zhu et al., 2019; Shui et al., 2020).
Meanwhile, Pb was confirmed to come from ore mining and
smelting, coal combustion, aerosols and traffic exhaust by isotope
ratios (Bing et al., 2016; Zhu et al., 2019). Ni generally had a close
correlation with all other trace metals (p < 0.05), indicating
diverse sources.

For spatial patterns, metal contents largely depended on the
sampling sites (Lin et al., 2020). There were no obvious changing
trends for trace metals from upstream to the Three Gorges Dam
(TGD) (Figure 3). In previous studies, the concentrations for
some trace metals in the soil/sediments generally appeared a
rising trend towards the dam, suggesting the “self-purification”
of the reservoir (Gao et al., 2019; Zhu et al., 2019; Lin et al., 2020;
Bing et al., 2022), whereas the opposite result was simultaneously
discovered (e.g., Cd) (Zhu et al., 2019). In the upper section, most
metals (Cu, As, Cd, Pb and Hg) had relatively low levels in S1 and
S2 (Figure 3). But in and around the main urban area of
Chongqing City with intensive human activities, Cr, Cu, Zn,
Pb and Hg exhibited comparatively high values (Figure 3). Traffic
exhaust and industrial effluents were recognized as the main
sources, reflecting anthropogenic effects on trace metal
contamination in sediments (Chen et al., 2011). After that,
agricultural activities and animal husbandry industries
probably contributed to the metal accumulation in the soil/
sediment of the middle section (Bing et al., 2022). Near the
dam, high values were observed for some trace metals (e.g., Cr,
Cd, Zn and Pb) that might be connected with the high geological
background levels in the host rock (limestone) (Bing et al., 2022).
Furthermore, the average concentration of trace metals in the
soil/sediment of the main stream was commonly higher than that
of the tributaries (Supplementary Figure S3), indicating the
higher metal pollution inputs in main stream (Gao et al.,
2015; Gao et al., 2019). The concentrations of Ni, Cu and Zn
were found significant differences between main stream and

tributaries (Supplementary Figure S3, Mann-Whitney U test,
p < 0.05).

3.3 Impact of the hydrological regime on
heavy metal distribution

The water level scheduling mode of “impoundment in winter
and effusion in summer” in the TGR created a WLFZ with a total
area of 349 km2 (Bao et al., 2015). The WLFZ demonstrated
spatially diverse patterns that responded differently to
hydrological regimes. There were three common types
(Supplementary Table S5), of which type 1 and type
2 represented the most dynamic part of the TGR disturbance
zone. Type 1 (the gradient less than 15°) comprised of purple and
red rocks and a generally thick soil layer with sparsely distributed
vegetation, and type 2 consisted of the lower section that similar
to type1 and the upper section that had shallow soil layer with the
gradient greater than 25° (Bao et al., 2015). During the warm
season, rills and gullies generated by overland flow during storm
events were scattered throughout these areas so that erosional
particulates attached to heavy metals flowed into the water and
deposited in sediments (Bao et al., 2015; Zhu et al., 2019). Type 3
(the gradient greater than 45°) was relatively stable that
dominated by bedrocks with a thin layer of bare soils (Zhang
et al., 2009; Bao et al., 2015). The cycling rising and falling of
water level could bring about rockfalls and bedding landslides
that rock-forming elements were significantly correlated with
heavy metals in submerged sediments of the TGR (Chen et al.,
2011; Bing et al., 2016; Zhu et al., 2019). Hence, different WLFZ
patterns affected the spatial distribution of trace metals in
the TGR.

In the WLFZ, the distribution patterns of heavy metals with
water level elevation were ambiguous (Supplementary Figure S4).
No significant differences were observed among three kinds of
water level elevations (145–155 m, 155–165 m and 165–175 m) for
all trace metals (Kruskal–Wallis test, p > 0.05). As a whole,
concentrations of trace metals in soil/sediment in the
submerged zone (SUB) were all higher than those in the WFLZ
(Figure 4). Levels of Cr, Cu, Zn and Pb showed statistically
significant difference between the SUB and the WFLZ (t-test,
p < 0.05). During the low water-level period, soil/sediment in
the WLFZ suffered from the intensive anthropogenic activities
(e.g., improper agricultural activities, industrial and residential
wastes) encouraged the enrichment of heavy metals, but
contaminants were likely transferred through the complex
geochemical process (e.g., soil erosion or flushing effects of wet
deposition), and ultimately accumulated in the sediments (Gao
et al., 2016; Wang et al., 2017). Thus, submerged sediment seemed
to act as a major sink of heavy metals.

Hydrological regime brought great changes to the WLFZ and
affected the redistribution of various pollutants (e.g., heavy
metals). Firstly, the drought-rewetting cycles controlled the
physiochemical characteristics of soil/sediment, such as pH,
oxidation-reduction potential (OPR), organic matter, particle
size, element contents, the functional groups and crystal
structure (Lin et al., 2018; Pei et al., 2018; Fu et al., 2020).
The contents of NO3

−-N, pH and element (except C element)
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in sediment were discovered to increase with the elevation of
water level, whereas the OPR, TC, TN, C/N, NH4

+-N, clay, silt
and some trace metals (e.g., Cr, Cd, Cu and Pb) simultaneously
decreased (Lin et al., 2018; Fu et al., 2020). Moreover, the Fourier
transform infrared spectroscopy (FTIR) spectra of sediments
were significantly different at various lateral altitudes,
suggesting diverse active functional groups (like hydroxyl),
some of which were susceptive to heavy metal ion binding (Fu
et al., 2020). Due to rainfall runoff and riverbank erosion,
sediment in lower altitude frequently tended to be coarser,
more porous, and had a higher ratio of silt to clay
componence (Tang et al., 2016; Wang et al., 2016; Lin et al.,
2018). Particularly, there are more crystalline minerals in fine
and silty sand that allows heavy metal contaminants to be easily
adsorbed and fixed on mineral surfaces (Maity and Maiti, 2016;
Fu et al., 2020). Additionally, plant diversity and species richness
decreased markedly under the long-term periodic hydrodynamic
disturbance (Ye et al., 2020). The flooding-tolerant plants
survived to become the dominant species, and differed
significantly at different elevations in some belt transects (e.g.,
Zhong County, Kaizhou and Xiangxi river) (Yin et al., 2020; Zhu
et al., 2020). The vegetated area presented an upward trend with
increasing water level elevation (Zhu et al., 2020). Here plants
have been recognized as an important contributor to heavy
metals in soil/sediment, and their well-developed root systems
were primarily responsible for the uptake and accumulation of
pollutants (Hall and St. Louis, 2004; Wang et al., 2022). During
the high water-level period, flooded plants decomposed to
aggravate anaerobic states and release nutrients that altered

the morphology and bioavailability of heavy metals (Hall and
St. Louis, 2004; Yin et al., 2020). However, microbial community
properties of soil/sediment seemed to be less affected by the
hydrological regimes, suggesting that microbes were more
resilient than plants (Ye et al., 2020).

4 Conclusion

Levels of trace metals were apparently higher than the soil
background values in the TGR (except for Cr) and China, in
which Cd was the most polluted metal in the TGR. The dam
construction of the TGR promoted the sediment adsorption
effects resulting in an evident increase for trace metals (except Ni
and As) after the full impoundment. Intensive anthropogenic
activities largely contributed to the trace metals of soil/sediment
from upstream to dam, and higher metal pollution inputs were
found in the main stream. In the WLFZ, hydrological regime altered
the physiochemical characteristics and vegetation coverage of soil/
sediment, disrupting the distribution of heavy metals. Ultimately,
trace metals were accumulated in submerged sediment resulting
greater concentration than that in the WLFZ.
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The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding author.

FIGURE 4
Concentrations of heavy metals in soil/sediment in submerged zone (SUB) and water-level-fluctuating zone (WFLZ) of the Three Gorges Reservoir
from 2008 to 2020 (“ ”, theminimum andmaximum value; “ ”, mean value; “——“, mid-value; a and b show significant levels after t-test; the data sets were
log-transferred when they were not normal.).
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