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Bioremediation can be effective method for achieving polycyclic aromatic
hydrocarbons (PAHs) degradation in soil contaminated with petroleum. The
aim of this study was to compare the effect of Rhodococcus bioaugmentation
(BIOE) and biostimulation (BIOS) on dibenzothiophene biodegradation and
bacterial community interaction in petroleum-contaminated soils. The findings
revealed that compared to natural degradation treatment (NAT) and BIOS, BIOE
had the highest dibenzothiophene (DBT) and the majority of DBT degradation
occurred within the first 30 days. BIOS had a positive impact in the early stage but
an opposite effect in the later stages for degrading DBT. Beta diversity analysis
revealed significant differences of bacterial composition among NAT, BIOS, and
BIOE. Sequencing results indicated that Bacillus and Paenibacillus were dominant
genera involved in DBT degradation. Network analysis revealed co-occurrence
patterns and connectivity, with BIOE exhibiting higher connectivity and the
highest number of links in BIOS. In summary, Rhodococcus bioaugmentation
was the simplest and effective method to enhance the clustering degree of
bacterial network and DBT degradation in petroleum-contaminated soil,
compared to NAT and BIOS.
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1 Introduction

Soil contamination caused by petroleum hydrocarbons is a
critical environmental issue that has severe consequences for
ecosystems and human health (Adipah, 2019). It has been
reported that there was extensive occurrence of polycyclic
aromatic hydrocarbons (PAHs) in soil contaminated with
petroleum, which are hard to be biodegraded than aromatic
compounds with single rings or branched hydrocarbons (Rodrigo
et al., 2014). Bioremediation is widely used for removal of these
pollutants in the environment; however, it is always limited by the
existence of indigenous degrading species and abiotic factors such as
nutrient availability (Lu et al., 2019). Consequently, it has gained
great attention in recent decades for improving the PAHs
biodegradation method and efficiency (Ossai et al., 2020).

Soil microbial communities play a crucial role in the degradation
of organic contaminants, including PAHs (Duarte et al., 2001). These
microbial communities consist of diverse bacterial taxa that possess
themetabolic capabilities to break down complex hydrocarbons (Patel
et al., 2021). Previous studies have demonstrated the involvement of
specific bacterial groups, such as Actinobacteria and Firmicutes, in soil
with PAHs pollution (Yuan et al., 2015). However, the dynamics of
bacterial communities and their responses to different pollution
conditions and bioremediation strategies remain poorly
understood. Biostimulation is a kind of bioremediation method by
adding specific nutrients, mainly nitrogen (N) and phosphorus (P) to
increase the microbial population and metabolic activities, and
bioaugmentation is a feasible strategy to enhance the existing
microbial community by adding indigenous or commercial
microorganisms for soil bioremediation (Hamdi et al., 2007). Thus,
it becomes imperative to comprehend the dynamics of soil bacterial
communities and their roles in PAHs biodegradation in the process of
bioaugmentation and biostimulation.

Microbial interactions and community dynamics within soil
ecosystems are essential factors influencing the degradation of
organic pollutants (Semple et al., 2007). Microorganisms can form
intricate networks of cooperative or competitive relationships, which
affect pollutant degradation rates and ecosystem functioning (Liang
et al., 2016). Network analysis provides a powerful tool for deciphering
the complex interactions and co-occurrence patterns among soil
bacterial taxa (Barberán et al., 2012). Therefore, identifying keystones
or functional groups within these networks can offer insights into the
microbial consortia driving PAHs degradation. Furthermore,
investigating the structural properties of these networks can reveal
the resilience and stability of microbial communities during PAHs
degradation, which provides insights into the functional potential and
metabolic versatility of microbial communities and helps to the
development of strategies to manipulate microbial interactions.

Dibenzothiophene (DBT) as one of persistent and toxic
aromatic compounds in the family of condensed thiophenes
containing sulphur, is commonly used as a model compound in
the PAHs biodegradation studies (Davoodi-Dehaghani et al., 2010;
Rodrigo et al., 2014). Therefore, the aim of this study was to (1)
investigate the influence of exogenous microbial agents and
nutrients on the degradation of DBT in oil contaminated soil; (2)
assess the response of soil bacterial communities in bioaugmentation
and biostimulation; (3) identify key DBT-degrading bacteria and
examine their interactions within the bacterial networks in soil. This

research provides the potential bacterial resources and sustainable
approaches for petroleum-contaminated soil bioremediation.

2 Materials and methods

2.1 Soil and inoculum

A sandy loam soil sample was collected from the 0–10 cm soil
layer with a previous history of oil contamination in an oil field of
Shanxi, stored at 4°C and transferred to laboratory. The main
characteristics of soil samplewas provided in Supplementary Table S1.

The DBT degrader was isolated from sandy loam soil samples
contaminated with oil and purified using liquid and solid mineral
salt medium with increasing DBT concentration (100, 200, 300, and
400 mg/L) according to the method of Jiang et al. (2022). The
isolated cultivable DBT degrader was identified as Rhodococcus
sp. CGMCC 24903 and preserved in the ecological engineering
laboratory of China Agricultural University and China General
Microbiological Culture Collection Center. Prior to
experimentation, the strain was cultured in liquid LB medium at
180 rpm for 3 days to 109 cells/mL determined by the microplate
method (Estrada-Bonilla et al., 2017), and subsequently centrifuged
bacterial cell was used as inoculum for further study on DBT
degradation microcosms.

2.2 Microcosms

Three treatments with 1,000 g soil were carried out to study the
effect of Rhodococcus bioaugmentation and biostimulation on DBT
biodegradation performance in soils and experiment lasted 40 days
(Liu et al., 2023). The natural degradation treatment (NAT)
consisted of original soil. The biological augmentation treatment
(BIOE) involved soil combined with Rhodococcus sp. CGMCC
24903 inoculation at the total populations of 109 cells/g soil. The
biostimulation treatment (BIOS) included soil with optimizing
nutrient levels by adding nutrient solution, e.g., CH4N2O and
NaH2PO3 to a final C:N:P ratio of 100:10:1, with concentrations
of C at 24.36 mg/g, N at 2.427 mg/g, and P at 0.24 mg/g. (Xu and Lu,
2010). The soil used in Microcosms was air-dried, and particles
larger than 2 mm were removed to achieve soil homogeneity. DBT
in the three treatments was set at a final concentration of 100 mg/kg.
The microcosms were incubated at 25°C ± 1°C for 40 days in the
dark in triplicates, with soil moisture maintained at 20% through
periodic addition of distilled water. 50 g of soils were sampled on day
0, 10, 20, 30, and 40. All samples were stored at −20°C until further
physicochemical and DNA analysis.

All solvents used were laboratory grade chemicals obtained from
Beijing Chemical Company (China). Dibenzothiophene (CAS 132-
65-0, purity >99%) were obtained from Sigma Aldrich. Deionized
water was used to prepare all media and solutions.

2.3 DBT extraction and GC-MS analyses

DBT analysis was performed by extracting 5 g of soil using ethyl
acetate at a ratio of 1 mL per Gram of soil. Each soil-solvent mixture
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was sonicated for 1 h, followed by nitrogen drying and resuspension
of the residue in 4 mL of the same solvent. Prior to GC-MS analyses
(Agilent 7890A-5975C) using a TG-5SILMS column (30 × 0.25 mm,
0.25 μm), samples were filtered (0.22 μm filter, Pall). The GC oven
temperature was programmed to increase from 50°C to 250°C at a
rate of 15°C per minute, and held at 250°C for 2 min. The injector
temperature was set to 250°C. The DBT determination were
conducted in triplicate, and the mean values were taken as the
results.

2.4 DNA sequencing and bioinformation
analysis

Total DNA of soil samples was extracted using the FastDNA spin
Kit for soil (MP Biomedicals, Santa Ana, Carlsbad, CA, United States).
PCR amplification of 16S rRNA gene fragments was performed using
the primers 338F (5′-ACTCCTACGGGAGGCAGCAG-3′) and 806R
(5′-GGACTACHVGGGTWTCTAAT-3′). The PCR products were
sequenced in a 2 × 300-bp paired-end format on the Illumina MiSeq
platform, which was conducted by Majorbio BioPharm Technology
Co. Ltd. (Shanghai, China). The sequences were deposited in the
NCBI database under the project accession number PRJNA914518.

The raw 16S rRNA gene sequencing reads were demultiplexed
and quality-filtered using fastp version 0.20.0 (Chen et al., 2018), and
then merged using FLASH version 1.2.7 (Magoč and Salzberg,
2011). Operational taxonomic units (OTUs) with a 97%
similarity cutoff were clustered using UPARSE version 7.1
(Stackebrandt and Goebel, 1994; Edgar, 2013), and chimeric
sequences were identified and removed. The taxonomic
classification of each OTU representative sequence was
determined using RDP Classifier version 2.2 (Wang et al., 2007)
with a confidence threshold of 0.7, based on the silva reference
database (Quast et al., 2012).

2.5 Statistical analysis

The basic indicators were visualized using Origin Pro 2022.
Heatmaps were generated using the pheatmap package in R 4.1.3.
Bacterial diversity metrics, including Shannon diversity, Pielou’s
evenness, Chao1 index, and Faith’s phylogenetic diversity, were
estimated using the Picante and vegan packages. Principal
coordinates analysis (PCoA) was conducted based on Bray-Curtis
dissimilarity index matrices (Sheng et al., 2023).

Correlation network analysis was conducted to ascertain the role
of core microorganisms in DBT degradation. Based on Pearson
correlation coefficients, bacterial taxonomic groups at the OTU level
that exhibited significant correlations with DBT degradation (p <
0.05, r > 0.97) were selected as core microorganisms, and the
visualization was carried out using Cytoscape 3.9.1. Co-
occurrence networks at the OTU level were conducted using
Molecular Ecology Network Analysis with a cutoff value of 0.85.
The networks were visualized using Gephi 0.9.2. Keystones,
including connectors, network hubs, and module hubs, were
categorized based on within-module connectivity (Zi) and
among-module connectivity (Pi) in the network, following the
classification proposed by (Deng et al., 2012).

3 Results and discussion

3.1 DBT degradation performance

Gas chromatographic analysis revealed that the degradation
efficiency of DBT in BIOE was significantly higher than that in
NAT and BIOS over a period of 40 days (Figure 1). Within the first
20 days of soil incubation, the DBT degradation efficiency in BIOE
and BIOS was significantly higher compared to natural degradation,
suggesting that both Rhodococcus bioaugmentation and
biostimulation could enhance the initial biodegradation ability of
soil microbes. In the subsequent 20 days of incubation, though
bioaugmentation group still had the highest degradation rate and
increased to ~60% at day 40, the DBT degradation performance in
BIOS was lower than that in NAT. After day 30, the degradation
level of the three treatments was gradually flatten, suggesting that the
majority of DBT degradation occurred within the first 30 days.
Biostimulation had only a positive impact at the early stage of
soil incubation, which could be attributed to the proliferation of
microorganisms capable of degrading DBT that were promoted by
the additional nutrients. However, during the later stage of soil
incubation, the nutrients were depleted and the dominant species
might be changed to unfavorable conditions for DBT-degrading
microorganisms, which reflected the complex interaction between
microbial populations and nutrient availability (Fuhrman et al.,
2015). The above results suggested that the addition of inoculum
(Rhodococcus) for bioaugmentation significantly stimulated the
biodegradation of DBT and improved the bioremediation
performance in petroleum-contaminated soils.

3.2 Variations of soil bacterial community
composition and diversity

After the optimization of sequencing, a total of
1,125,468 bacterial reads of the 16S rRNA gene were obtained,
which were subsequently clustered into 1,362 bacterial operational

FIGURE 1
Degradation profile of dibenzothiophene in the soil. NAT: natural
degradation treatment, BIOE: biological augmentation treatment,
BIOS: biostimulation treatment. Different letters indicate significant
difference at p < 0.05.
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taxonomic units (OTUs). Among these OTUs, the NAT, BIOE, and
BIOS treatments had 119, 6 and 42 unique OTUs, respectively, and
had 344 OTUs shared among all treatments (Figure 2A). Firmicutes
and Actinobacteria were identified as the dominant phyla in all
treatments (Figure 2B). Notably, the addition of nutrients increased
the relative abundance of Firmicutes, while reduced the levels of
Actinobacteria. To gain deeper insights into the dynamic changes
within the bacterial community, a heatmap analysis was performed

on the 20 most abundant genera (Figure 2C). Based on the relative
abundance, the genera were classified into two clusters. Bacillus,
Micromonospora, Streptomyces, Bhargavaea, and Chungangia
formed one cluster, while Sporosarcina, Sphingobacterium,
Paracoccus, and others clustered together, indicating potential
functional similarities or ecological interactions among these taxa
(Bao et al., 2023). Bacillus and Streptomyces were dominant genera
during soil incubation, which had the ability to degrade

FIGURE 2
Variation of bacterial communities in soil during incubation with different treatments. (A) The quantity difference of common and unique OTUs. (B)
Relative abundance of bacterial phylum. (C) Relative abundance of genera (top 20). NAT: natural degradation treatment, BIOE: biological augmentation
treatment, BIOS: biostimulation treatment.

FIGURE 3
(A) Alpha diversity indices including Shannon diversity, Chao1 richness, Simpson evenness and Faith’s phylogenetic diversity (PD) of bacterial
communities during incubation in different treatments. (B) The principal coordinates analysis (PCoA) of bacterial communities in different treatments.
NAT: natural degradation treatment, BIOE: biological augmentation treatment, BIOS: biostimulation treatment.
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dibenzothiophene through their participation in the 4S pathway
(Buzanello et al., 2014). This finding highlights their potential as key
DBT-degrading bacteria in the remediation of petroleum-
contaminated soil. Surprisingly, Rhodococcus genus was not
shown in the heatmap even though it was inoculated in the
BIOE, which might be due to its low relative abundance in soil
and its colonization related to the concentration of PAHs (Cunliffe
and Kertesz, 2006).

The alpha diversity of soil bacterial community during the
incubation periods was shown in Figure 3A. The Shannon
diversity of the NAT treatment was significantly higher than that
of the BIOE and BIOS treatments on the 10th day of incubation.
However, after the 40 days of incubation, there were no significant
differences in Shannon diversity among the three treatments.
During the incubation period, the BIOE treatment exhibited
significantly lower Chao1 richness and phylogenetic diversity
compared to the other treatments. However, the Simpson
evenness of the BIOE treatment was significantly higher than
that of the other treatments. The BIOS treatment showed higher
Simpson evenness but lower Chao1 richness and phylogenetic
diversity compared to the NAT treatment during the incubation
period. The above results indicated that Rhodococcus
bioaugmentation increased the dominance of species in
petroleum-contaminated soil while reducing the richness of total
bacterial community. principal coordinates analysis (PCoA) based
on Bray-Curtis distance matrix was conducted to visualize the
succession patterns of soil bacterial communities in diverse
groups (Figure 3B). The first two principal components
accounted for 74.7% of the community variance. Notably, the
bacterial communities during incubation in all samples were
divided into three classes, indicating dissimilar bacterial
composition in the microcosms of NAT, BIOE and BIOS. The
results highlighted the significant impact of different treatments
on the beta diversity of bacterial communities, especially the critical
role of nutrient addition and inoculation on bacterial community
composition in the degradation process of DBT during soil
incubation (Strickland et al., 2009; Wang et al., 2018).

3.3 Identifying core microorganisms and
exploring interspecies relationships in soil
incubation for dibenzothiophene
degradation

The degradation of DBT was inevitably influenced by the
dynamics of the bacterial community and their interaction
during soil incubation process. Here, network analysis was
employed to identify the key microbial taxa at the OTU level
that were associated with DBT degradation, which were screened
based on significant correlations with DBT degradation (p < 0.05).
In NAT, BIOE, and BIOS groups, there were 15, 1, and 7 nodes,
respectively, significantly participating in the DBT degradation
process (Figure 4). The OTU1291 (Shimazuella), OTU1532
(Paenibacillus) in NAT, OTU 1851 (Bacillus) in BIOE and
OTU1292 (Bacillus), OTU1322 (Bacillus) in BIOS were not only
the core OTUs involved in DBT degradation but also belonged to the
top 20 bacterial genera during soil incubation (Figure 2C;
Supplementary Table S2). Previous studies also reported that

Shimazuella and Bacillus had strong capabilities in DBT
degradation (Buzanello et al., 2014).

The bacterial interactions under different treatments were
investigated by constructing co-occurrence networks based on
Pearson correlations among OTUs (Figure 5A). All co-
occurrence networks demonstrated general network properties of
scale-free, small-world, and modularity (Supplementary Table S3),
with the network topology following a power-law distribution (R2 =
0.886, 0.756, 0.804 in NAT, BIOE and BIOS, respectively).
Compared to other treatments, BIOE network showed fewer
nodes (163) and links (606), but displayed higher average degree
(avgK) and average clustering coefficient clustering coefficient
(avgCC), as well as lower average path distance (GD) and
average clustering coefficient (HD). These findings suggested that
the BIOE network was more tightly connected, and external
disturbances could quickly propagate throughout the entire
network. Compared to NAT, the BIOS network also exhibits
tight connectivity based on its topological characteristics, with
the highest number of links (2467). The correlations between
bacterial species in the network varied, with NAT showing a
higher percentage of negative correlations (45.85%) compared to
BIOE (16.17%) and BIOS (35.63%). These findings collectively
indicated significant differences in the networks among the three
treatments, and more bacteria in BIOE and BIOS groups showed
strongly cooperative symbiosis to the environmental pressure (DBT
pollution) (Zhang et al., 2020).

Based on the analysis of within-module connectivity (Zi) and
among-module connectivity (Pi) (Olesen et al., 2007), a total of 14, 2,
and 4 module hubs were observed in the NAT, BIOE, and BIOS
networks, respectively, along with 6, 4, and 8 connectors (Figure 5B;
Supplementary Table S4). However, no network hubs were
identified in these groups. More key nodes in the NAT network
indicated its higher complexity. All these nodes represented
keystones that played crucial roles in the network. The
20 keystones in the NAT network mainly belonged to Firmicutes,
Proteobacteria, and Actinobacteriota, the 6 keystones in the BIOE

FIGURE 4
Network analysis of dibenzothiophene degradation and related
bacterial OTUs according to Pearson correlation analysis (p < 0.05, r >
0.97) in incubation. NAT: natural degradation treatment, BIOE:
biological augmentation treatment, BIOS: biostimulation
treatment.
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network belonged to Firmicutes, Actinobacteriota, and
Proteobacteria, and the 12 keystones in the BIOS network were
predominantly from Myxococcota, Firmicutes, and
Actinobacteriota. Members of Firmicutes and Actinobacteriota
were the predominant keystone taxa during the incubation
process of petroleum-contaminated soil, which accounted for
approximately 70% of all module hubs and connectors.
Furthermore, key microorganisms belonging to the genera
Paenibacillus (OTU1532, OTU861, OTU 2001, OTU1317,
OTU1325, OTU206, OTU1390) and Bacillus (OTU1020,
OTU1696) related to DBT degradation were also identified as
keystones in bacterial interaction network, suggesting that these
microorganisms might be indigenous bacteria with a potential
function of DBT degradation by regulating core bacterial
collaborative symbiosis in the co-occurrence network. The above
results indicated that Rhodococcus bioaugmentation (BIOE) was the
simplest and effective method to enhance the clustering degree of
bacterial community network compared to natural degradation for
enhancing DBT degradation in petroleum-contaminated soil.
Additionally, nutrient addition (BIOS) reduces the complexity of
bacterial community in petroleum-contaminated soil without
obviously enhancing DBT degradation capability.

4 Conclusion

The study compared the degradation of DBT and the dynamics
of bacterial communities in the petroleum-contaminated soil
incubation of diverse treatments (NAT, BIOE and BIOS).
Rhodococcus bioaugmentation exhibited higher DBT degradation
efficiency (~60%) compared to other groups after 40 days. The
addition of nutrients exhibited an initial increase followed by a
decrease in the degradation efficiency of DBT with no obvious
advantage compared to NAT. The dominant phyla in petroleum-
contaminated soil were Firmicutes and Actinobacteria, and
biostimulation significantly influenced their relative abundances.
Bacillus and Paenibacillus played crucial roles in DBT degradation.
There were distinct co-occurrence patterns and connectivity among
bacterial species in NAT, BIOE and BIOS. Rhodococcus
bioaugmentation was the simplest and effective method to

enhance the clustering degree of bacterial community network
compared to NAT for enhancing DBT degradation in petroleum-
contaminated soil.
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