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Based on the up-to-date knowledge we critically discuss the current
understanding of the influence of the compounds secreted by phytoplankton
species on the fate of metal-containing engineered nanoparticles (ENPs) in
aquatic settings. Different biomolecules, such as extracellular polymeric
substances (EPS) and exometabolites play important, yet to elucidate, role in
the dissolution, colloidal stability, transformations and biouptake of the ENPs and
thus shape their behavior within the phycosphere. Phytoplankton secretions can
alsomediate the synthesis of ENPs fromdissolved ions by reducing themetals ions
and capping the newly formed ENPs. However, the environmental significance of
this process remains to be demonstrated. Exposure to ENPs triggers changes in
the secretion of the biomolecules. An improved understanding of the regulatory
mechanism and exometabolite changes due to ENP exposure is essential for
deciphering the ENPs-phytoplankton interactions. Unveiling the significance of
secreted biomolecules in modulating the behavior of the metal-containing ENPs
is central for understudying the phytoplankton-ENPs feedbacks, drivers of
transformations of ENPs and their mechanisms in the aquatic environment.
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1 Introduction

Engineered nanoparticles (ENPs) have dimensions ranging from 1 to 100 nm (Vert et al.,
2012), and possess unique properties which make them highly valuable for various
applications in technology, medicine, environment and consumer products (Zhang et al.,
2016; Mitchell et al., 2021; Keller et al., 2023). When released into freshwater environment,
ENPs can undergo a variety of physical and chemical transformations (Levard et al., 2012;
Batley et al., 2013; Yu et al., 2018;Wheeler et al., 2021; Liu et al., 2022; RexM et al., 2023). The
interconnected transformation processes determine collectively the environmental behavior
and effects of ENPs on aquatic biota (French et al., 2009; Fernando and Zhou, 2019; Khort
et al., 2022).

In the present review paper, we focus on the role of the phytoplankton secretions in the
fate of the metal-containing ENPs in the freshwater environment. Phytoplankton play a
central role in the global biogeochemical cycles of various nutrients (C, O, N, P, and Si)
(Falkowski, 1994; Litchman et al., 2015), essential (Sunda, 2012) and toxic (Gregoire and
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Poulain, 2014; Cossart et al., 2022) trace metals and ENPs
(Slaveykova, 2023). For example, the phytoplankton species have
been shown to influence the fate of the ENPs by i) secreting various
exometabolites and extracellular polymeric substances (EPS); ii)
accumulating the ENPs and transforming them via different
cellular processes; iii) synthesizing the ENPs inside the cells and/
or on cell surfaces from dissolved metal species (Slaveykova, 2023).

The phytoplankton secretions contain various exometabolites
and EPS, which form its “secretome” and play a key role for the
processes in the phycosphere (Seymour et al., 2017; Mühlenbruch
et al., 2018). The EPS are known to represent up to 25% of natural
organic matter (NOM) in freshwaters, especially during algal
blooms (Wilkinson et al., 1997) and to be predominant fraction
of marine NOM (Corsi et al., 2020). The composition, types, and
properties of microalgal and cyanobacterial EPS vary with the
phytoplankton species and environmental conditions, and most
often are dominated by polysaccharides and proteins as reviewed
(Naveed et al., 2019).

The phytoplankton are source of exometabolites, such as
carbohydrates, amino- and carboxylic acids, thiols, fatty acids etc.
However, up to now, these exudate components have received
limited attention in the research literature. The exudates of
different strains of green algae, diatoms, red algae and
cyanobacteria have been shown to contain multiples
monosaccharides, uronic acid, pyruvate, glucosamine, glucuronic
and galacturonic acids (Xiao and Zheng, 2016; Babiak and
Krzemińska, 2021; Laroche, 2022). Amino acids have been
measured in the secretions of the diatom Skeletonema costatum
(Hosny et al., 2022), thiols in the secretions of green algae and

diatoms (Mangal and Guéguen, 2015; Mangal et al., 2020), as well as
different marine microalgae (Yang et al., 2022). They are present in
nanomolar concentration in freshwater environment (Mangal and
Guéguen, 2015; Rasheduzzaman et al., 2018). Moreover, it has been
demonstrated that various microalgae and cyanobacteria release
various allelochemicals, serving for communication, defense, and
adaptation purposes (Śliwińska-Wilczewska et al., 2021). Microalgal
allelochemicals contain alkaloids, fatty acids and derivatives,
polyketides, peptides, phenolics, terpenoids and other volatile
organic compounds (Chaïb et al., 2021; Casanova et al., 2023).
Lipids have also been found in the exudate (Tambiev et al., 1989),
together with other non-polar exometabolites, such as di-tri
peptides, lumichrome and prostaglandin-like substances (Brisson
et al., 2021). Different constituents of secretome contain divers
cationic (e.g., –NH4

+, –RNH2
+) or anionic (e.g., –SH, –NH2,

–COOH, –PO4
3−) functional groups, which confer them metal

binding properties (Xu et al., 2013), and play key role in the
biomolecule adsorption to ENPs (Chetwynd and Lynch, 2020;
Liu et al., 2022).

Drawing upon the latest advancements in current state of the
research, the aim of the present review paper is to thoroughly discuss
the impact of biomolecules produced by phytoplankton species on
the fate of the ENPs in the aquatic environment. Our critical analysis
delves into how phytoplankton secretions influence: i) the colloidal
stability of the ENPs, the formation of biomolecular corona around
them; ii) the chemical transformations, such as dissolution and
sulfidation, and iii) the formation of the ENPs from dissolved ions
(Figure 1). Furthermore, the influence of the ENP exposure on the
secretion of exometabolites and EPS by different phytoplankton

FIGURE 1
Conceptual view of the main physical and chemical processes involved in the interactions between phytoplankton secretions andmetal-containing
ENPs in the aquatic ecosystems, subject of this review paper.
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TABLE 1 Selected examples illustrating the interaction between biomolecules and metal-containing ENPs.

Biomolecules Phytoplanktonic species ENPs type (size, type, and
coating)

Type of transformation Comment References

Biomolecules released by phytoplankton species

EPS Chlorella pyrenoidosa 20 nm citrate and PVP-coated AgNPs Aggregation, eco-corona formation,
dissolution, influence on toxicity

Adsorption of EPS on both AgNPs
prevented the dissolution, favored the
aggregation, decreased the toxicity and
the internalization in the cells

Zhou et al. (2016)

40 nm CuONPs Heteroaggregation, EPS production,
influence on toxicity

Adsorption of EPS on CuONPs, favored
the heteroaggregation, reduced the
dissolution of ENPs. S-EPS and B-EPS
increased the EPS production as a
possible cellular protective mechanism

Zhao et al. (2016)

5, 10, and 40 nm (anatase) and 25 nm
(rutile) TiO2NPs

Adsorption, aggregation and
stabilization

Adsorption increased with specific
surface area of TiO2NPs. It depended on
the composition of EPS, the size and type
of TiO2NPs. EPS stabilized the NPs

Gao et al. (2019)

25 nm anatase and rutile TiO2NPs EPS and metabolite release Increase of EPS and exometabolites
production during TiO2NPs exposure.
Effect of anatase was higher

Gao et al. (2020)

25 nm anatase and rutile TiO2NPs EPS and ENPs uptake EPS favored the accumulation of ENPs
on algal surface, but reduced TiO2NPs
internalization by cells. The removal of
EPS activated the associated endocytosis
pathways

Gao et al. (2021)

Chlamydomonas reinhardtii and
Phaeodactylum tricornutum

38 nm TiO2NPs and 423 nm bulk TiO2 EPS production and aggregation EPS induced ENPs heteroaggregations.
Exposure to higher concentration of
ENPs resuled in higher
exopolysaccharides production

Sendra et al. (2017)

Scenedesmus obliquus Functionalized QDs CdSe/ZnS PEG-
COOH and QDs CdSe/ZnS PEG-NH2

Aggregation, ecocorona formation and
toxicity

EPS formed an eco-corona that induced
aggregation and altered the surface
charge of the QDs. EPS reduced the
cellular uptake and toxicity of CdSe/ZnS
QDs. Change in surface charge of QDs

Chakraborty et al. (2021)

Chlorella vulgaris 15 nm PVP-coated AgNPs Bioaccumulation and toxicity EPS complexed Ag ions and reduced
their bioaccumulation and toxicity

Zheng et al. (2019)

(Continued on following page)
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TABLE 1 (Continued) Selected examples illustrating the interaction between biomolecules and metal-containing ENPs.

Biomolecules Phytoplanktonic species ENPs type (size, type, and
coating)

Type of transformation Comment References

Microcystis aeruginosa 50 nm CeO2NPs, 50 nm CuONPs,
30–50 nm ZnONPs

EPS production Increase in the EPS production as a
response to ENPs exposure

Hou et al. (2017)

Synechocystis sp. 20 nm and 50 nm citrate, PVP- and lipoic
acid coated-AgNPs

Aggregation, stabilization, dissolution The effect was dependent on the surface
coating and primary size of the AgNPs.
PVP-coated AgNPs agglomerated to a
lesser extent as compared with the
citrate- and lipoic acid coated-AgNPs

Jiménez-Lamana and
Slaveykova (2016)

Cyanobacterial bloom ZnONPs Aggregation, stabilization, and
adsorption

Electrostatic attraction and surface
complexation contribute to the
adsorption of EPS to ZnONPs. EPS-
favored stability and dissolution of NPs

Xu and Jiang (2015)

Cyanobacterial biomass TiO2NPs Adsorption Adsorption of EPS on TiO2NPs
depended on the molecular weight of the
proteins and polysaccharides

Xu et al. (2020)

Skeletonema costatum and Nitzschia
closterium

10–30 nm CuNPs and 40 nm CuONPs Heteroaggregation and toxicity EPS induced collisions between
microalgae and the EPS and alleviated
CuONPs toxicity

Huang et al. (2022)

Cylindrotheca closterium 12 nm SiO2NPs Aggregation EPS prevented aggregation of SiO2NPs Vukosav et al. (2023)

Odontella mobiliensis, Skeletonema
grethae, Phaeodactylum tricornutum,
Thalassiosira pseudonan, and Dunaliella
tertiolecta

25 nm TiO2NPs, 10–20 nm EPS production and toxicity Exposure to TiO2NPs decreased EPS
production. CeO2NPs had a
concentration dependent effect on the
EPS production. SiO2NPs increased
significantly the EPS production

Chiu et al. (2017)12 nm SiO2NPs, and 15–30 nm
CeO2NPs

EPS Amphora sp., Dunaliella tertiolecta,
Phaeocystis globosa, and Thalassiosira
pseudonana

Coated (carboxyl- and amine-) or
uncoated QDs

Stabilization Decrease in the stability of both
nonfunctionalized and functionalized
(carboxyl- and amine-) QDs in artificial
seawater. The degradation rate of the
QDs was positively correlated to the
protein content in the EPS

Zhang et al. (2012)

EPS Dunaliella tertiolecta Aeroxide® P25 TiO2NPs Aggregation, sedimentation and
ecocorona formation

Stabilization and hindering of
aggregation, 20–80 kDa exoproteins
involved. No changes in carbohydrate/
protein proportion and quantities over
24 h exposure

Morelli et al. (2018)

EPS Chlamydomonas reinhardtii and
Dunaliella tertiolecta

3.6 nm (anatase) and 23 and 24 nm
(rutile) TiO2NPs

Aggregation, ecocorona formation and
stabilization

Electrostatic interactions and chemical
bonding (bridge-coordination) between
the COO− group of EPS and TiO2NPs.
Change in surface charge of TiO2NPs in
presence of EPS

Adeleye and Keller (2016)

(Continued on following page)
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TABLE 1 (Continued) Selected examples illustrating the interaction between biomolecules and metal-containing ENPs.

Biomolecules Phytoplanktonic species ENPs type (size, type, and
coating)

Type of transformation Comment References

EPS Raphidocelis subcapitata and
freshwater NOM

Citrate and PVP-coated AgNPs Dissolution EPS prevented dissolution Watanabe et al. (2023)

EPS and biomolecules Scenedesmus sp. 40–80 nm cemented tungsten carbide
cobalt (WC–Co) NPs and CoNPs

Ecocorona formation and toxicity Biomolecules from green algae culture
decreased the toxicity to Daphnia magna
due to eco-corona formation

Ekvall et al. (2021)

S-EPS and B-EPS Microcystis sp. and Chlorella vulgaris 50 nm ZnONPs Aggregation and deposition under
different ionic strength

Hindering of aggregation and influence
on the deposition of the ZnONPs

Huang et al. (2023)

S-EPS and B-EPS Microcystis aeruginosa 50 nm CeO2NPS Aggregation and toxicity S-EPS induced heteroaggregation by
forming EPS-NPs aggregates with cells
and B-EPS buffered the toxicity of the
nCeO2

Yang et al. (2018)

B-EPS Chlamydomonas reinhardtii 60–120 nm spherical AgNPs Bioaccumulation and toxicity Exopolysaccharide and protein in
bound-EPS increased under AgNPs
stress, providing a first barrier against
AgNPs toxicity

Xu et al. (2022)

Chlorella sp. P25 TiO2NPs Aggregation/agglomeration,
sedimentation, and toxicity

Exudate increased the sedimentation of
nTiO2 forming aggregates and reduced
the toxicity on Chlorella sp.

Natarajan et al. (2023)

Chlorella vulgaris 30 nm ZnONPs Increasing EPS production Exposure to ZnONPs increased S-EPS
and B-EPS production as a protective
mechanism

Zhao et al. (2019)

Model biomolecules

Thiols 100 nm AgNPs Aggregation and toxicity N-acetyl-L-Cysteine, L-Cysteine, and
glutathione promoted aggregation and
lower the cytotoxicity of AgNPs

Ferreira et al. (2020)

13 metal oxide NPs Adsorption 2-naphthalenethiol (2-NPT) and
methanethiol (MT) adsorbed on ZnO,
TiO2, and In2O3 NPs and not on the
others, suggesting an adsorption of a
range of thiols to these three NPs

Grimm et al. (2021)

5–13 nm citrate-coated AgNPs Stabilization, chemical interaction, and
coating replacement

Mercaptohexanol formed an Ag (I)
thiolate complex; Cysteine replaced the
citrate coating of AgNPs

Toh et al. (2014)

18 nm citrate-coated AgNPs Stabilization and dissolution L-Cysteine and N-acetyl L-cysteine
decreased AgNPs dissolution, having an
impact on the stability based on the
functional group on the molecules

Afshinnia et al. (2018)

(Continued on following page)
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TABLE 1 (Continued) Selected examples illustrating the interaction between biomolecules and metal-containing ENPs.

Biomolecules Phytoplanktonic species ENPs type (size, type, and
coating)

Type of transformation Comment References

20 nm citrate-coated AgNPs citrate
coated

Dissolution Glutathione, phytochelatins with 2,3 and
6 thiols, and copper chaperone Atx1
(protein with thiol site exposed) favored
AgNP dissolution; The dissolution rate
increased with the number of thiols per
molecule

Marchioni et al. (2018)

20 nm citrate-coated AgNPs Dissolution, aggregation, and toxicity Cysteine changed the diameter, zeta
potential, and Ag+; dissolution of AgNPs,
increasing the stability and decreasing
the toxicity

Yi et al. (2016)

Amines 10 nm citrate-coated AuNPs Adsorption 13 amines (primary, secondary, and
tertiary) showed a replacement in the
coating of AuNPs. The replacement yield
was influenced by steric factor. The
mechanism involved the reduction of
surface Au(I) in ENPs

Lyu et al. (2023)

Amino acids, monosaccharides 22 nm SiO2NPs, 13 mm TiO2NPs
(uncapped, polyvinylpyrrolidone capped,
and Dispex AA4040 capped)

Metabolite corona Presence of proteins facilitated the
complete biomolecular corona
formation with metabolites. Metabolite
corona formation, highly specific to the
isomeric nature, was confirmed with two
categories of metabolites (30 cations and
12 anions)

Chetwynd et al. (2020)

12 nm PVP-coated AgNPs Adsorption (biocorona formation) and
aggregation

Glucose and glutamine reduced nAg
aggregation improving colloidal and
chemical stability of ENPs

Rónavári et al. (2021)

4–130 nm ZnONPs Dissolution Citric acid promoted ligand-dependent
dissolution

Mudunkotuwa et al. (2012)

50 nm CuONPs Dissolution Eleven amino acids promoted the
dissolution of the CuONPs depending
on the nature of the amino acids

Wang et al. (2013)

6 nm CuONPs Adsorption Negative ENPs interact with arginine, a
positively charged amino acid, through
an electrostatic mode, but they do not
interact with aspartic acid, a negatively
charged amino acid

El-Trass et al. (2012)

Lipids TiO2NPs Adsorption Adsorption of lipids on the particle was
driven by affinity to different class of
lipids

Lee et al. (2018)
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species is also considered. The role of the secreted biomolecules on
the uptake of ENPs to phytoplankton species and thus their cellular
transformations is also briefly discussed. The discussion is illustrated
by selected recent examples (Tables 1, 2) and sheds light on the
complex interplay between phytoplankton, their secretions, and the
behavior of ENPs in aquatic ecosystems.

2 Phytoplankton secretions and
colloidal stability of ENPs

Most of the available knowledge has been obtained from the
studies with EPS produced by cultures of marine and freshwater
phytoplankton. It reveals that EPS are able to form biomolecular
corona on different ENPs which alters the colloidal stability,
transformations (Zheng et al., 2019; Zhang et al, 2020b; Junaid
and Wang, 2021; Liu et al., 2022; Slaveykova, 2023) and the uptake
(and toxicity) of the ENPs by phytoplankton (Zhou et al., 2016;
Natarajan et al., 2023). Key transformations involving ENPs in
freshwaters, the role of the NOM in these transformation
(Hedberg et al., 2019; Abbas et al., 2020; Milosevic et al., 2020;
Spurgeon et al., 2020) and the uptake and biological effects have
been comprehensively reviewed (Xu et al., 2020). The EPS released
by the major phytoplankton groups, such as cyanobacteria, green
algae and diatoms were shown to increase the stability of the ENPs,
although examples of enhanced aggregation exist too (Table 1;
Figure 1. ①).

The EPS isolated from bloom-forming cyanobacteria has been
demonstrated to stabilize the ZnONPs via electrostatic attraction
and surface complexation (Xu and Jiang, 2015). Interestingly, the
binding affinity of EPS to ZnONPs differs for the fluorophore
families identified in the EPS and decreased in the order humic-
like > tryptophan-like > fulvic-like components (Xu and Jiang,
2015). Rich in proteins soluble and bound EPS extracted from
cyanobacterium Microcystis sp. have been shown to hinder the
aggregation of 50 nm ZnONPs in NaCl and low CaCl2 media
due to the adsorption of the proteins to the surface of the ENPs
for the soluble EPS and through steric repulsion for the bound EPS.
However, at higher Ca2+ concentration, soluble EPS promoted the
aggregation, whereas the bound EPS stabilized ZnONPs through
steric repulsion (Huang et al., 2023). The EPS from C. vulgaris
prevented the aggregation of ZnONPs likely due to the electrostatic
interactions (Huang et al., 2023). Hydroxyl, carboxyl and amide
groups in the EPS have been shown to participate in the adsorption
of dissolved and bound EPS of C. vulgaris on the ZnONPs in
addition to the interaction of the tryptophan-like components in
the soluble EPS with ZnONPs (Zhao et al., 2019). Hydrogen
bounding involving the hydroxyl, carboxyl and the amine groups
of the EPS have also been shown to play a role in the EPS interaction
with ZnONPs (Chen et al., 2012).

The adsorption of the EPS with high molecular weight (HMW,
1 kDa-0.45 μm) isolated from lake cyanobacteria on the TiO2NPs
has been found to be more important than that of low MW EPS
(LMW, <1 kDa) (Xu et al., 2020). The EPS secreted by green alga
Chlorella pyrenoidosa decreased significantly the aggregation rate of
TiO2NPs (Lin et al., 2016). Interestingly, a selective adsorption of
aromatic components of the EPS from the same alga onto four types
of TiO2NPs (5, 10, and 40 nm anatase and 25 nm rutile) and an

increase of the adsorption (and stabilization effect) with the specific
surface area of the ENPs have been observed (Gao et al., 2019).
Comparative study of the soluble EPS from C. reinhardtii and D.
tertiolecta has revealed that the EPS adsorption to three commercial
TiO2NPs with different coatings depends on the particle surface
area, surface charge and hydrophobicity. The interactions between
EPS and TiO2NPs have been shown to be driven by electrostatic
interactions and chemical bonding between the COO- group of EPS
and TiO2NPs (Adeleye and Keller, 2016). The exoproteins (MW of
20–80 kDa) produced by green alga Dunaliella tertiolecta prevent
the aggregation of the TiO2NPs in marine water by forming an eco-
corona (Morelli et al., 2018; Corsi et al., 2020).

The EPS produced by diatomCylindrotheca closterium stabilized
12 nm SiO2NPs in marine environment due to molecular and
nanoscale interactions (Vukosav et al., 2023). However, the EPS
isolated from four other diatoms Amphora sp., D. tertiolecta,
Phaeocystis globosa, and Thalassiosira pseudonana decrease the
stability of both nonfunctionalized and functionalized (carboxyl-
and amine-) quantum dots (QDs) in artificial seawater with a rate
positively correlated to the protein fraction of the EPS (Zhang et al.,
2012). Similarly the EPS from green alga Scenedesmus obliquus
induced the aggregation of both PEG-COOH and PEG-NH2

functionalized QDs, forming an eco-corona that changes the
surface charge of the ENPs (Chakraborty et al., 2021). A steric
stabilization of sulfide/silica-modified zero valent iron (ZVI) NPs by
organic matter released from C. reinhardtii at different growth
stages, demonstrating that the feedback from algae may play
important roles in the environmental implications of ENPs
(Adeleye et al., 2016).

The EPS (<1 kDa MW) released by cyanobacterium
Synechocystis sp. stabilized AgNPs with primary size of 20 nm
and 50 nm, and three different coatings (Jiménez-Lamana and
Slaveykova, 2016). However the stabilization was dependent on
the primary surface coating as the effect was significant for
citrate-, and lipoic acid-coated AgNPs, but minor on the PVP-
coated AgNPs (Jiménez-Lamana and Slaveykova, 2016). EPS from
green alga C. vulgaris stabilized both PVP and citrate coated AgNPs
(Zhou et al., 2016).

Opposite to the studies with the EPS, very limited knowledge is
available concerning the effect of the exometabolites on the stability
of the ENPs. Some examples from rather scarce literature are
provided below. The adsorption of glucose and glutamine on
PVP-coated AgNPs resulted in a formation of biomolecular
corona, decreasing their zeta potential and aggregation (Rónavári
et al., 2021). A recent study on the interaction between citrate-coated
AuNPs and 13 different primary, secondary, and tertiary amines has
revealed that the exchange of coating is influenced by steric factors
and by the presence of oxidized Au (I) on the surface of ENPs
allowing the reduction of Au (I) by amines involved also in the
protein corona formation (Lyu et al., 2023). Positively charged
arginine adsorbs on the negatively charged CuONPs, but this was
not the case of negative charged aspartic acid, demonstrating the
importance of the electrostatic interactions (El-Trass et al., 2012). A
pilot study has shown the formation of a metabolite corona on
SiO2NPs and three different TiO2NPs by 28 cationic metabolites and
12 anionic metabolites, which was highly specific to the isomeric
nature of the metabolites (Chetwynd et al., 2020). Thiols such as 2-
naphthalenethiol and methanethiol have been also demonstrated to
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form a corona on the ZnONPs, TiO2NPs, and In2O3NPs (Grimm
et al., 2021). Cysteine, but not serine, stabilized ZnS- and HgSNPs,
showing the importance of the chemical nature of the
exometabolites in the interactions with ENPs (Gondikas et al.,
2010). By contrast, the presence of cysteine destabilized the
citrate-coated AgNPs, whereas the addition of N-acetyl L-cysteine
stabilized the same NPs. This contrasting effect has been attributed
to the different functional groups in these two molecules: negatively
charged carboxylic groups and positively charged amine group in
the cysteine favor bridging interactions (Afshinnia et al., 2018). The
addition of small thiols (e.g., cysteine) mitigated the aggregation
kinetics of AgNPs in the presence of Suwannee River fulvic acid
(Afshinnia et al., 2018), pointing out the complexity in determining
the ENPs stability in complex environmental settings. Different
classes of lipids formed corona on the TiO2NPs, with LysoPL
exhibited higher affinity to TiO2NPs than other lipid categories
(Lee et al., 2018).

3 Phytoplankton secretion and ENPs
dissolution and transformations

Studies have demonstrated both increase and decrease of the
dissolution of metal-containing ENPs in the presence of
phytoplankton secretions (Table 1; Figure 1. ①). The EPS from
haptophyta Isochrysis galbana increase the dissolution of CuONPs,
CuNPs and Cu (OH)2NPs (Kocide) (Adeleye et al., 2014). This is in
agreement with early literature showing that the EPS released by
various phytoplankton species, including D. tertiolecta (Gonzalez-
Davila et al., 1995), Chlorella sp. (Kaplan et al., 1987), C. reinhardii
(Xue et al., 1988), Phaeodactylum tricornutum, and T. weissflogii
(Gonzalez-Davila et al., 2000) complexed different ions that can be
released from the ENPs, such as Cu (II).

The EPS from Chlorella sp. (Chen et al., 2012) and lake
cyanobacteria (Xu and Jiang, 2015) decreased the dissolution of
the ZnONPs. Moreover, EPS isolated from C. pyrenoidosa reduced
the dissolution of citrate- or PVP-coated 20 nm AgNPs by
complexing the Ag (I) ions (Zhou et al., 2016). Similarly the EPS
from Raphidocelis subcapitata prevented the dissolution of both
citrate- and PVP-coated AgNPs (Watanabe et al., 2023). High
concentrations of the alginate, an extracellular polysaccharide
released from cyanobacterium M. aeruginosa, adsorbed to 20 nm
citrate-coated AgNPs and reduced their dissolution rate
(Ostermeyer et al., 2013).

Studies on model exometabolites have shown an increase,
decrease or no effect on the dissolution of the ENPs. For
example, cysteine adsorbed to the surface of AgNPs via SH-
group and increased the release of Ag (I) (Gondikas et al., 2012;
Wang et al., 2013), however decreased the dissolution and reduced
the toxicity of AgNPs to Phanerochaete chrysosporium (Yi et al.,
2016). Cysteine has been reported to replace the citrate coating in
AgNPs and to increase their stability, however mercaptohexanol
formed a silver (I) thiolate complex and favored the AgNPs
dissolution (Toh et al., 2014). Cysteine and N-acetyl L-cysteine
(NAL-cys) decreased citrate-coated AgNPs dissolution at high
cysteine and NAL-cys concentrations (Afshinnia et al., 2018).
Given the high affinity of Ag to sulfur and nitrogen groups, it is
expected that sulfur- and nitrogen-rich molecules will adsorb more

strongly on AgNPs and result in a decrease in the dissolution rate of
AgNPs and in an increase of stability (Gunsolus et al., 2015).
Glutathione and phytochelatins with 2, 3 or 6 thiols favored
AgNPs dissolution into Ag (I) with a rate that increases with the
number of thiols per molecule (Marchioni et al., 2018). Citrate
enhanced the dissolution of the ZnONPs by ligand-induced
dissolution (Mudunkotuwa et al., 2012). Eleven amino-acids Cys,
Met, Arg, Glu, Lys, Val, GSH, Thr, Asp, Gln, and His significantly
promoted the dissolution of the CuONPs, but the effect was
dependent on the nature of the amino acids (Wang et al., 2013).

Much less studies dealt with the role of phytoplankton secretions
in other transformation processes, for example, sulfidation. AgNPs,
CdNPs, CuNPs, and ZnNPs have been shown to undergo sulfidation
with reduced sulfur species of different biomolecules (Levard et al.,
2012; Liu et al., 2012). The formation of Ag2SNPs under various
environmental scenarios have been reviewed from thermodynamic
and kinetic perspectives (He et al., 2019). Dissolution–precipitation
mechanism for the sulfidation of ZnONPs (Ma et al., 2013; Banerjee
and Jain, 2018) and CuONPs (Wang et al., 2013) was proposed.
Sulfidation of metallic ENPs is considered as a major transformation
process in urban water sewage systems (Kaegi et al., 2013) and
sulphur-rich environment (Thalmann et al., 2014; Liu et al., 2018;
He et al., 2019; Zhang et al., 2019).

4 Phytoplankton secretions and ENP
formation from dissolved metals

Phytoplankton secretions have been found to mediate the
formation of the metal-containing ENPs via reduction of
dissolved metal ions (Figure 1. ②; Table 2). Indeed, different
EPS components contain reducing functional groups, such as
aldehydes, hydroxyls, and phenolic groups (Sheng et al., 2010),
tyrosine and tryptophan (Si and Mandal, 2007). Indeed, proteins,
peptides, amino acids, polysaccharides, lipids, and nucleic acids and
some aromatic compounds are among the compounds reported to
guide the formation from dissolved ions, crystal growth and
stabilization of metal and metal oxide ENPs (Siddiqi and Husen,
2016). Selected recent examples (Table 2) illustrated the major
interested for the synthesis of AgNPs from Ag (I). For example,
the carbohydrates from green alga Scenedesmus sp. have been used
to synthesize and stabilize the AgNPs (Patel et al., 2015). The
proteases, β-D-glucosidases, chitinases, alkaline phosphatases
have been also shown to participate in the reduction of Ag (I) to
AgNPs (Naveed et al., 2019). In addition, several oxidoreductive
proteins produced by C. reinhardtii, including histone H4,
superoxide dismutase, and carbonic anhydrase, have been
demonstrated to be involved in biosynthesis and stabilization of
AgNPs (Barwal et al., 2011). The exopolysaccharides isolated from
two green microalgae Botryococcus braunii and C. pyrenoidosa were
used to synthetize AgNPs with antibacterial capacity (Navarro
Gallón et al., 2019). Similarly the exudates from another green
alga Desmodesmus abundans, have been found to synthetize AgNPs
under different condition of CO2 and pH (Mora-Godínez et al.,
2022). The exoproteins and exopolysaccharides extracted from C.
vulgaris, have been shown to be responsible for the reduction of Ag
(I) and the consecutive formation and stabilization of AgNPs (Da
Silva Ferreira et al., 2017), as it was the case for the exoproteins of the
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cyanobacterium Oscillatoria willei (Ali et al., 2011) and the
phycobiliproteins produced by Spirulina platensis and Nostoc
linckia, (Ismail et al., 2021). A three-step mechanism for photo-
induced synthesis of AgNPs by EPS released from green alga C.
reinhardtii has been proposed including: i) adsorption of Ag(I) to
EPS biomolecules, ii) a light-dependent reaction that reduce the Ag
(I) for the formation of AgNPs involving functional group like
-COOH, -OH and phenols and iii) capping by biomolecules that
provide the colloidal stabilization of NPs (Rahman et al., 2019b).
Moreover, the polyphenols, polysaccharides and proteins and their
nanoparticle-capping capacity determined the different stability,
size, and shape of AgNPs produced by C. reinhardtii (Rahman
et al., 2019a). A recent study with EPS from Chlorella sp. isolated
from a brackish water high-altitude lake of the Northern-Western
Himalayas demonstrated that exopolysaccharides synthesized
polysaccharide-capped AuNPs that are stable in extended range
of pH and salinity (Jakhu et al., 2021). The EPS from chlorophyceae
Cosmarium impressulum (Dahoumane et al., 2014), diatoms
Navicula atomus and Diadesmis gallica (Schröfel et al., 2011)
favored the formation and controlled the shape and size of the
AuNPs. Alginate has also reduced Ag (I) forming hetero-shaped
AgNPs (Sharma et al., 2012; Bhagyaraj and Krupa, 2020) and Au (I)
into AuNPs (Zhao et al., 2017). Similar results have been obtained
for the synthesis of AuNPs by C. vulgaris cell extract: peptides,
proteins, phenols, and flavonoid carried out the reduction and the
capping of AuNPs from Au ions (Annamalai and Nallamuthu,
2015).

The exoproteins, exopolysaccharides, and carotenoids from
diatom P. tricornutum have been identified as the agent
responsible for the synthesis of TiO2NPs (Caliskan et al., 2022).
Similarly, the exoproteins and exopolysaccharides produced by C.
reinhardtii played a role in reduction of Zn (II), consecutive
formation and stabilization of ZnO nanoflowers (Rao and
Gautam, 2016). The proteins, peptides, carbohydrates, vitamins,
and fibers of Chlorella sp. have been found to play a role in both
reduction of Zn (II) and effective stabilization of ZnONPs in a three
steps process: (i) initial activation step involving Zn (II) dissolution
from zinc nitrate salt in water, (ii) Zn (II) reduction to metallic form
by algal derived biomolecules and (iii) immediate oxidation to
ZnONPs during air-drying process by hydroxyl groups present in
the biomolecules (Khalafi et al., 2019). Secretions containing
polyphenols, alkaloids, proteins, flavonoids, sugars, vitamins
terpenoids, steroids, tannins, carboxylic acids and amines, have
been demonstrated to synthesize CuONPs (Mallakpour et al.,
2020). The proposed reaction mechanism an innitial interaction
between Cu (II) polyphenols, leading to a sequential reduction to Cu
(I) and to Cu (0), which is further converted to CuONPs.

Glucose was used as reducing and capping reagent in the
synthesis of AgNPs (Pattnaik et al., 2023), AuNPs (Suvarna et al.,
2017), and CuNPs (Granata et al., 2019). Amino acids, tyrosine and
tryptophan, have been shown to be involved in the formation and
capping process of AgNPs (Shankar and Rhim, 2015). Similarly
twenty amino acids contributed to the formation of the AuNPs
(Maruyama et al., 2015). Furthermore, the structural diversity of
amino acids enabled a preparation of Cu nanomaterials with variety
of structure as nanoparticles, nanorods and nanocrystals (Yu et al.,
2015).

5 Influence of ENPs on the release of
phytoplankton secretions

Different ENPs have been shown to alter the concentration and
composition of the secreted biomolecules by various phytoplankton
species (Figure 1.③). For example, the exposure of the green alga C.
pyrenoidosa to anatase and rutile TiO2NPs resulted in an increase of
the EPS secretion, which was more pronounced in the case of
anatase (Gao et al., 2020). The authors have demonstrated that
the effect of anatase on EPS secretion depended mainly on the
cellular ROS production, whereas the rutile altered the Ca2+

signaling pathway (Gao et al., 2020). Exposure to CeO2NPs
induced ENPs-concentration dependent increase in the
production of the EPS by O. mobiliensis, P. tricornutum, D.
tertiolecta (Chiu et al., 2017). SiO2NPs significantly increased the
secretion of the EPS by T. pseudonana (around 600%) and S. grethae
(around 1,000%–1,500%) but not by the O. mobiliensis, P.
tricornutum, D. tertiolecta (Chiu et al., 2017). By contrast, the
exposure of four different diatom species Odontella mobiliensis,
Skeletonema grethae, P. tricornutum, T. pseudonana and green alga
D. tertiolecta to TiO2NPs of comparable size demonstrated a
decrease of the amount of the released biomolecules (Chiu et al.,
2017). AgNPs enhanced the exopolysaccharides and proteins
production in bound EPS of C. reinhardtii (Xu et al., 2022). The
exposure to TiO2NPs increased in the protein content in the EPS of
both C. reinhardtii and marine diatom P. tricornutum (Sendra et al.,
2017) Likewise, the exposure to 30 nm ZnONPs resulted in an
increase of the protein fraction of the EPS as a protective response of
C. vulgaris (Zhao et al., 2019). These findings pointed out that the
effect of the ENPs on the release of the EPS by phytoplankton species
was dependent on both the type of the phytoplankton species and
the type and primary size of the ENPs.

Exposure to 50 nm CeO2NPs, 50 nm CuONPs or 30–50 nm
ZnONPs has led to an increase of both tightly and loosely bound EPS
of cyanobacterium M. aeruginosa (Hou et al., 2017). It has been
suggested that the enhanced EPS production by phytoplankton
species when exposed to ENPs lowered collisions between
microalgae and the ENPs by decreasing the specific contact area,
and thus alleviated CuONPs toxicity in two diatoms S. costatum and
N. closterium (Huang et al., 2022). CuONPs enhanced the
production of both soluble and cell bounded EPS of C.
pyrenoidosa, that consequentially enhance the hetero-aggregation
of the ENPs (Zhao et al., 2016).

Most of the published literature has demonstrated that the
exposure to ENPs resulted in an increase of the EPS produced by
the phytoplankton species, which can be considered as a cellular
defense mechanism (Hou et al., 2017). To date no studies have
explored the effect of ENPs on the release of exometabolites.
However, a recent study revealed an increase in intracellular
microcystin concentrations, which was subsequently released in
the extracellular environment due to cell death triggered by
either ENPs exposure or environmental factors (Zhang et al,
2020a). Despite the current advancements, the underlying
regulatory mechanisms of the EPS and exometabolite secretion
and ENPs-induced effects are not well known and need to be
further explored. In addition to the direct exposure of
phytoplankton species to ENPs, the secretion of biomolecules
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TABLE 2 Selected examples illustrating the involvement of phytoplankton secretions in metal-containing ENPs formation from dissolved metals.

Biomolecules Phytoplankton species ENPs Comments References

Biomolecules released by phytoplankton studies

Extracellular
biomolecules

Seven cyanobacteria and seven
green algae strains

AgNPs Light-induced synthesis; Nanoparticle formation mediated by
exopolysaccharides; The shape and size of newly formed ENPs
are strain dependent

(Patel et al., 2015)

Desmodesmus abundans and
Spirulina platensis

AgNPs Exudate produced by microalgae in different condition of
CO2 and pH can synthetize AgNPs

Mora-Godínez et al.
(2022)

Exudate Phaeodactylum tricornutum TiO2NPs Biomolecules present in the exudate (exoproteins,
exopolysaccharides and carotenoids) were responsible to the
reduction and synthesis of TiO2NPs

Caliskan et al. (2022)

C. reinhardtii ZnONPs
(nanoflower)

Algal proteins and polysaccharides might play an important role
in the synthesis and stabilization of ZnO nanoarchitectures

Rao and Gautam
(2016)

Scenedesmus sp. AgNPs Biomolecules, proteins, and peptides, were mainly responsible for
the formation and stabilization of SNPs

Jena et al. (2014)

Chlorella vulgaris AgClNPs Exoproteins and exopolysaccharides were responsible for the
synthesis and stabilization of AgClNPs

Da Silva Ferreira et al.
(2017)

Cells-extract Chlorella vulgaris AuNPs Peptides, proteins, phenols, and flavonoid carried out the dual
function of effective Au (III) reduction and capping of AuNPs

Annamalai and
Nallamuthu (2015)

Spirulina platensis Fe3O4@AgNPs The biomolecules contained in the cells-extract were used as
reductant in the formation of the nanocomposites NPs

Shokoofeh et al. (2019)

Spirulina platensis TiO2NPs Cells-extract biomolecules were able to synthetize TiO2NPs Vasanth V et al. (2022)

Chlorella sp. ZnONPs Proteins, peptides, carbohydrates, vitamins, and fibers were
involved Zn (II) reduction and effective stabilization of ZnO NPs.
Three step synthesis: (i) Zn (II) dissolution of zinc nitrate salt in
water, (ii) Zn (II) reduction to metallic form by algal derived
molecules and (iii) oxidation to ZnONPs by hydroxyl groups of
the biomolecules

Khalafi et al. (2019)

Exopolysaccharides Chlorella sp AuNPs Exopolysaccharides reduced Au(III) and capped AuNPs Jakhu et al. (2021)

Botryococcus braunii and C.
pyrenoidosa

AgNPs Exopolysaccharides reduced the Ag(I) and served as AgNPs
capping agents

Navarro Gallón et al.
(2019)

Protein Oscillatoria willei AgNPs Proteins reduced Ag(I) and capped AgNPs Ali et al. (2011)

EPS C. reinhardtii AgNPs Three step photo-induced synthesis: (i) adsorption of Ag(I) to
EPS biomolecules, (ii) a light-dependent reduction of Ag(I) to
AgNPs involving functional group like -COOH, -OH and
phenols of the EPS and (iii) capping of NPs by biomolecules that
provide the colloidal stabilization

Rahman et al. (2019b)

EPS C. reinhardtii AgNPs Polyphenols, polysaccharides, and proteins worked as reducing
agent and determine stability, size, and shape of AgNPs through
their coating capacity

Rahman et al. (2019a)

Phycobiliprotein
extract

Spirulina platensis and Nostoc
linckia

AgNPs The proteins were responsible for stabilizing and capping the
formed AgNPs

Ismail et al. (2021)

EPS Cosmarium impressulum AuNPs EPS favored the formation and controlled the shape and size of
the AuNPs

Dahoumane et al.
(2014)

EPS Navicula atomus and Diadesmis
gallica

Silica-AuNPS and
AuNPs

EPS favored the formation and controlled the shape and size of
the EPS-AuNPs, while frustule is related to the silica-AuNPs

Schröfel et al. (2011)

Model biomolecules

Alginate AgNPs Alginate was employed as both reductant and stabilizer in the
synthesis of AgNPs of different size and shape, and AuNPs

Sharma et al. (2012)

Bhagyaraj and Krupa
(2020)

AuNPs Zhao et al. (2017)

Glucose AgNPs Glucose was employed as both reductant and stabilizer in the
synthesis of AgNPs of different size and shape, and AuNPs

Pattnaik et al. (2023)

(Continued on following page)
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could be affected indirectly via the interaction of the released metal
ions with cells (Naveed et al., 2019).

6 Phytoplankton secretions, ENPs
uptake and biotic transformations

Both intracellular and cell surface-mediated physical and
chemical transformations of ENPs by phytoplankton species have
been reported (Chen et al., 2019; Spurgeon et al., 2020). They include
heteroaggregation of ENPs and cells, cellular dissolution, sulfidation,
redox transformations etc. However, the influence of the
phytoplankton secretions on these processes is overlooked. Few
examples found in the literature demonstrate that the EPS can
reduce the uptake of the ENPs by phytoplankton species (and thus
ENPs cellular transformations). The exudates secreted by S. obliquus
reduced cellular uptake of the eco-coronated amine and carboxyl
functionalized CdSe/ZnS QDs inducing aggregation and altering the
surface charge of the QDs (Chakraborty et al., 2021). The EPS of C.
pyrenoidosa reduced the amount of the internalized anatase and
rutile TiO2NPs (Gao et al., 2021). The EPS from green alga
Scenedesmus sp. formed corona on cemented tungsten carbide
cobalt (WC–Co) NPs and CoNPs and decreased the toxicity of
these ENPs onDaphnia magna (Ekvall et al., 2021). Bound EPS have
shown a barrier effect on the toxicity of AgNPs nanoparticles relative
to the released Ag (I) ions. However, they did not exhibit a distinct
effect on the silver accumulation by AgNPs and Ag (I) in C. vulgaris
(Zheng et al., 2019). Nevertheless, both soluble and bound EPS have
been shown to modify the attachments of the ENPs to the
phytoplankton cells. This alteration occurs through modification
of the steric and electrostatic interactions between the ENPs and the
cells (Natarajan et al., 2021). Similarly, the intact cells of C.
pyrenoidosa with EPS was characterized with greater adsorption
of both citrate and PVP coated AgNPs in comparison with cells with
removed EPS (Zhou et al., 2016). Interestingly, the importance of the
EPS thickness on cells of C. reinhardtii in AgNPs internalization
have been demonstrated (Yan et al., 2021). The presence of EPS on
the C. pyrenoidosa cell surface promoted the heteroaggregation
between anatase and rutile TiO2NPs with primary size of 25 nm,
and algal cells. The amount of the TiO2NPs accumulated on cell
surface was higher in comparison to the algal cells with removed EPS

(Gao et al., 2021). Moreover, the EPS fromChlorella sp. increased the
sedimentation of TiO2NPs in mixture with polystyrene NPs thus
contributing to the reduction of the number of ENPs interacting
with the organism and consequently reducing the biouptake the
TiO2NPs (Natarajan et al., 2023). The presence of soluble and bound
EPS induced heteroaggregation by forming EPS-NPs aggregates
with cells of cyanobacterium Microcystis aeruginosa (Yang et al.,
2018). To the best of our knowledge, no study has reported the role
of the phytoplankton secretions in the cellular transformations of
metal-containing ENPs, including processes like cellular dissolution,
sulfidation, redox transformations exist.

7 Conclusions and research gaps

An examination of the current state of the research highlights
that different constituents of the phytoplankton secretions play
an important, yet incompletely understood, role in shaping the
behavior of metal-containing ENPs in aquatic environment.
These secretions interact with and adsorb on the ENPs,
forming a biomolecular corona and altering their behavior.
The formation of biomolecular corona on ENPs involves
hydrodynamic, electrodynamic, electrostatic, steric, and
bridging interactions as previously comprehensively reviewed
for eco-corona formed by NOM on the ENPs (Pulido-Reyes et
al., 2017). In most cases the adsorbed secretions, in particularly
the EPS have been shown to stabilize the ENPs. As for the other
components of the NOM, the adsorption and effect on the
colloidal stability are dependent on the i) chemical
composition, primary surface coating, surface charge, surface
area and hydrophobicity; ii) chemical composition of the
secretions, molecular weight and aromaticity, isomeric nature,
which in turn are dependent on the phytoplankton species, algal
growth stage and environmental parameters. The current body of
literature primarily focusses on the interactions between
TiO2NPs or ZnONPs, and EPS isolated from green algae,
diatoms and cyanobacteria. There is a limited amount of
literature concerning the influence of exometabolites on the
stability of the ENPs, despite their presumably important role
in the phycosphere. Further attention and research are
warranded in this area to better understand their impact.

TABLE 2 (Continued) Selected examples illustrating the involvement of phytoplankton secretions in metal-containing ENPs formation from dissolved metals.

Biomolecules Phytoplankton species ENPs Comments References

AuNPs Suvarna et al. (2017)

CuNPs Granata et al. (2019)

Amino acids AgNPs Tyrosine and tryptophan were involved in the synthesis of
AgNPs, as reductant and capping agent

Shankar and Rhim
(2015)

AuNPs Twenty amino acids were involved in the synthesis of AuNPs, as
reductant and capping agent, showing the possible role of
different amino acids in new M NPs

Maruyama et al. (2015)

CuNPs The structural diversity of amino acids enabled a preparation of
Cu nanomaterials with variety of structure as nanoparticles,
nanorods and nanocrystals

Yu et al. (2015)
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Some discrepancy in the information exists concerning the role
of the phytoplankton secretions in the ENPs dissolution, showcasing
both decrease and increase in the dissolution rates. Limited studies
have explored the role of phytoplankton secretions in other
transformation processes, such as sulfidation. Further deep
investigations are essential to understand how phytoplankton
secretions contribute to both the dissolution and sulfidation of
ENPs within aquatic environment.

Most of the up-to-date knowledge largely steems from the
experiments involving whole EPS, isolated polysaccharides, or
proteins from specific phytoplankton species and model
compounds. As a result, the role of some EPS components,
including nucleic acids, lipids, uronic acid, and inorganic
compounds, all part of the phytoplankton secretome, remains
unexplored, despite their likely influence on the stability,
dissolution and transformation of metal-containing ENPs. In
addition, major secretome components such as thiols and amino
acids exist within concentrations ranging from ng L−1 to μg L−1 in
surface water. Their significance in modulating the aforementioned
processes in the presence of the EPS or humic-like components of
NOM (typically present in few mgL−1) still requires a conclusive
demonstartion.

Phytoplankton secretions serve mediators in the synthesis of metal-
containing nanoparticles from the dissolved ions. Nevertheless, the
majority these studies are conducted within biotechnology context
using high metal concentration than those found in the aquatic
environment. Thus their contribution to the metal reduction in the
natural environment is to be explored. In addition, the role of the EPS
and exometabolites released by algae, as well as the importance of
reductive mechanism for ENPs formation from metal ions, its
environmental significance for the ENP biogeochemistry is to be
further explored. It is currently unclear if the phytoplankton could be
considered as a “source” of ENPs in metal contaminated environment
and what will be the environmental relevance in the nanoparticle
production. Further studies are, thus, necessary to understand the
underlying mechanisms and their contribution in natural
environment, where ENPs are present in quite low concentrations is
still to demonstrate.

Exposure of phytoplankton species to ENPs leads to changes in
the concentration and composition of secreted biomolecules. These
alterations might act as a detoxification response and defensive
pathway. To deepen our understanding it is crucial to explore the
underlying regulatory mechanisms, encompassing changes in
exometabolomics of phytoplankton due to ENP exposure.

In conclusion, the lack of understanding on the influence of the
phytoplankton secretions on the destiny of the ENPs is a major

knowledge gap in the aquatic nanoscience. Considering the feedback
of aquatic organisms and the control they exert in shaping the fate
(and impact) of ENPs in the aquatic environment is necessary for: i)
better understanding of drivers of environmental transformations of
ENPs and their mechanisms and ii) reduction of the uncertainties
and the improved assessment of the effect of the ENPs on the
phytoplankton cells, given that the chemical conditions and ENPs
stability will be strongly affected by these secretions in the
microenvironment surrounding phytoplankton cells in
comparison with bulk waters.
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