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The completeness of indicator information is a critical issue that requires further
investigation in the evaluation of carbon emissions management efficiency.
However, this problem has not received adequate attention in existing studies,
and there is a dearth of analysis using the total factor productivity method, which
has proven effective in evaluating efficiency in various domains. Consequently,
this study proposes a model for evaluating carbon emissions management
efficiency that integrates indicator information and employs the data
envelopment analysis (DEA)-Malmquist index. The integration of indicator
information is accomplished through the evidential reasoning (ER) approach,
which includes the calculation of indicator weights. The DEA-Malmquist index
is utilized to assess the efficiency of carbon emissionsmanagement and analyze its
total factor productivity based on the integrated indicator information. To
demonstrate the efficacy of the proposed model, a case study of 17 corporates
in China from 2019 to 2021 is provided to illustrate the analysis of three scopes
efficiency distribution, efficiency change and improvement strategy of carbon
emissions management. Results discussion show that the proposed model can be
used to provide a reference for the improvement effectiveness of carbon
emissions management.
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1 Introduction

As the global economy undergoes rapid expansion, society faces a complex balance
between reducing carbon emissions and promoting economic growth. When carbon
emissions exceed the environmental capacity, it exacerbates the challenges related to
environmental remediation and management, putting the sustainability of economic
progress at risk. Consequently, optimizing the strategy for carbon emissions
management has emerged as a critical priority in our endeavor to mitigate the adverse
effects of climate change and environmental degradation, and to achieve sustainable
development.

Existing studies shed light on significant regional discrepancies in the efficiency of
carbon emissions management within China, influenced by factors such as GDP, level of
industrialization, and technological innovation. Ongoing research endeavors strive to refine
methodologies, including various DEA models, to enhance their resilience against
uncertainties. However, in the selection of DEA carbon emissions management related
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indicators, careful consideration must be given to determining the
appropriate number of indicators. The DEA theory adheres to the
rule of thumb, which suggests that the number of decision-making
units should be at least 2 to 3 times greater than the number of
evaluation indicators. An excessive number of input-output
indicators for decision-making units tends to result in efficiencies
converging towards 1, thereby diminishing the distinctiveness
among decision-making units. Conversely, an inadequate number
of indicators renders the decision-making process susceptible to
errors and the loss of vital indicator information.

Simultaneously, it becomes apparent that the evaluation of
carbon emissions management efficiency is influenced by various
indicators to different extents (Ramón et al., 2016; Chen et al., 2017).
Inadequate availability and knowledge limitations have resulted in a
constrained selection of output indicators for efficiency assessment
that is subject to debate as to its sufficiency (Yu et al., 2016; Costa-
Campi et al., 2017). One notable limitation of this indicator selection
approach is its inherent failure to encompass the comprehensiveness
of output indicators in emissions management. For example, Chen
et al. (2017) exclusively considered SO2 as an output indicator to
represent waste gas emissions, thereby overlooking other pertinent
indicators such as O3, smoke, and dust emissions. Furthermore, the
majority of studies have ascribed equal significance to diverse input
and output indicators within the system modeling of carbon
emissions management, despite the evident disparity in their
roles. While certain existing research has incorporated weight
calculation (Yang et al., 2019), application of these weighting
methods within the realm of carbon emissions management has
been limited. Consequently, future studies on carbon emissions
management must confront numerous challenges that remain
unresolved.

Firstly, it is worth noting that the existing body of research on
the evaluation of carbon emissions management efficiency has
displayed inconsistencies, primarily stemming from variations in
the selection of indicators. Different methodologies for indicator
selection have yielded divergent outcomes in terms of the chosen
indicators. Given that indicator selection plays a pivotal role in the
assessment of carbon emissions management efficiency, this
inconsistency poses challenges. Notably, previous studies have
predominantly relied on experts’ experiences or empirical
judgment to guide their indicator selection process (Chen et al.,
2017). Consequently, the accuracy and objectivity of the evaluation
of carbon emissions management efficiency can be significantly
affected by this subjective approach to indicator selection; Secondly,
it is worth noting that the previous studies on evaluating the
efficiency of carbon emissions management have overlooked the
significance of ensuring the integrity of indicator information. This
oversight arises from the potential loss of indicator information and
its subsequent impact on the evaluation results. Concurrently, it is
imperative to consider the thumb rule within the framework of DEA
theory, which necessitates the inclusion of two to three times the
number of decision-making units (DMUs) compared to the total
number of evaluation indicators. Utilizing an excessive number of
indicators in a DEA model can lead to a situation where the
efficiency of all DMUs approaches unity, thereby reducing the
differentiation among DMUs; Finally, it is worth noting that the
prevailing body of research on the evaluation of carbon emissions
management efficiency has primarily relied on statistical analyses to

assess efficiency levels. However, the evolutionary trajectory of these
efficiencies, particularly at the industry or corporate level, has been
infrequently examined. As highlighted by Sheng et al. (2015), the
examination of efficiency changes offers a valuable means of
quantifying the rate of change in carbon emissions management
efficiency. This approach proves instrumental in comprehensively
assessing issues associated with the input-output structure via the
lens of efficiency fluctuations.

To address the aforementioned challenges associated with the
evaluation of carbon emissions management efficiency, this study
introduces a novel efficiency evaluation model. The key components
of this model are as follows: 1) the determination of relative weights
for different input, undesirable and desirable output indicators
pertaining to carbon emissions management; 2) the integration of
the set of undesirable output indicators and desirable output
indicators, based on the obtained weights, utilizing the evidential
reasoning (ER) approach to generate new combined indicators; 3)
the utilization of the integrated indicators in conjunction with the
DEA model and Malmquist index to assess the efficiency of carbon
emissions management. Consequently, the proposed model makes
the following contributions to the evaluation of carbon emissions
management efficiency:

1) The Correlation Coefficient and Standard Deviation (CCSD)
method is employed to compute the relative weights of diverse
input, undesirable, and desirable output indicators that are
pertinent to carbon emissions management. This method is
specifically designed to allocate appropriate significance to
each indicator within the comprehensive evaluation process;

2) The integration of input, undesirable, and desirable output
indicators is achieved through the use of the ER approach,
thereby circumventing the loss of pertinent information and
adhering to the fundamental principles of the DEA model. This
integration mechanism enables the comprehensive analysis of
the various indicators, ensuring their collective consideration
and evaluation within a unified framework;

3) The utilization of integrated indicators plays a pivotal role in
facilitating the efficiency evaluation of carbon emissions
management through the adept application of the DEA model
and the Malmquist index. These analytical tools provide a
rigorous methodological framework for comprehensively
assessing the efficiency of carbon emissions management
founded upon the integrated indicators. By addressing the
limitations encountered in prior research, this innovative
model aims to contribute to a more precise and holistic
evaluation of the efficiency of carbon emissions management.

In order to validate the effectiveness of the proposed model, a
comprehensive case study is conducted using input, desirable
output, and undesirable output indicators as well as data
pertaining to carbon emissions management from
17 corporations in China. The dataset encompasses the period
spanning from 2019 to 2021. Through this empirical analysis,
multiple efficiency-related outcomes are computed, thereby
presenting a research framework for the management of carbon
emissions in China. Furthermore, the evaluation results of carbon
emissions management efficiency highlight significant disparities
between comprehensive efficiency and pure technical efficiency
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during different management periods. Notably, both overall
environmental efficiency and pure technical efficiency
demonstrate an upward trajectory within these Chinese
corporations. This suggests that the positive impact of the
existing input-output structure and technical aspects on the
comprehensive efficiency of carbon emissions management
becomes increasingly pronounced over time.

2 Literature reviews of carbon
emissions management

The escalating issue of carbon emissions necessitates effective
scientific management to mitigate its detrimental impact on the
global climate and environment. Consequently, an increasing
number of scholars have directed their attention towards
conducting research on the analysis of influencing factors and
addressing the myriad challenges that arise from carbon
emissions. Presently, investigations pertaining to carbon
emissions predominantly center around exploring the connection
between energy consumption and carbon emissions, examining the
influencing factors associated with carbon emissions, and
developing evaluation model for carbon emissions management.

(1) The connection between energy consumption and carbon
emissions. The relationship between energy consumption and
carbon dioxide emissions has garnered significant attention in
light of the pressing issues of climate change and global
warming. Researchers have consistently highlighted that
carbon dioxide emissions play a crucial role in
environmental hazards (Ali et al., 2022). Several studies have
underscored the viability of adopting clean and renewable
energy as a viable approach to mitigate carbon dioxide
emissions (Zarezade and Mostafaeipour, 2016; Samuel et al.,
2019). To empirically analyze the impact of energy consumption
on environmental degradation, TailonAlisson et al. (2021)
proposed the ARDL bounds testing approach, which was
applied to G7 countries. Findings revealed that coal, oil, and
natural gas consumption had a positive influence on
environmental degradation. Similarly, Samuel and Christian,
(2019) noted that renewable energy sources contributed more
significantly to environmental degradation than nonrenewable
energy sources. In an effort to achieve sustainability and energy
efficiency goals in China, Zhang et al. (2021a) evaluated the
impact of hydroelectric and renewable electricity generation on
carbon dioxide emissions while examining the relationship
between renewable energy consumption and carbon dioxide
emissions. Furthermore, multiple authors have proposed
methods for assessing energy-related carbon dioxide
emissions and have conducted analyses to outline dynamic
low-carbon energy paths towards 2030 (Lin and Agyeman,
2020).

(2) Influencing factors associated with carbon emissions. The
analysis of influencing factors related to carbon dioxide
emissions has been the focus of previous research. For
instance, Wen and Shao (2019) conducted a panel data
analysis to investigate the drivers of carbon dioxide emissions
in the commercial sector in China. Their findings revealed that

diverse influencing factors exerted varying nonlinear effects on
carbon dioxide emissions. Additionally, Hang et al. (2019)
examined the factors impacting economic growth and carbon
dioxide emissions in the manufacturing industry, illustrating
that the adjustment of carbon dioxide emissions density falls
short of achieving the anticipated reduction outcomes.
Reducing carbon emissions and fostering a low carbon
economy constitute important objectives, as highlighted by
Wang and Ma (2018) who employed the Tobit model to
examine influencing factors on the efficiency of carbon
dioxide emissions. Furthermore, Liang et al. (2019)
emphasized energy intensity as a significant factor
influencing carbon dioxide emissions, revealing a consistent
upward trend in carbon dioxide emissions from high energy
consumption sectors in China.

(3) Efficiency evaluation of carbon emissions management. The
examination of carbon emissions management efficiency is a
topic that has garnered significant attention within academic
circles. An emerging trend in the academic discourse on this
subject has been observed in recent years, with the primary
focus of research on carbon emissions management being
empirical analysis and practical studies (Hong et al., 2016;
Makkonen and Repka, 2016; Cheng et al., 2017). Within the
specific context of China, the evaluation of carbon emissions
management efficiency has been rigorously explored by
scholars, with particular emphasis on variances across
different sectors and regions. A study by Zhang et al. (2021b)
scrutinized the efficiency of carbon emissions in the Chinese
construction industry, underlining the substantial impact of
factors such as GDP, level of industrialization, and technological
innovation. Similarly, Meng et al. (2016) performed an extensive
review employing DEA-type models, revealing both stability
and regional inconsistencies in energy efficiency and carbon
emissions efficiency during the course of China’s Five Year Plan.

Building upon previous research, Yan et al. (2017) conducted an
analysis of China’s power industry, which is responsible for
approximately 40% of the nation’s carbon emissions. Their
findings indicated that the wealthier provinces on the eastern
coast demonstrated higher carbon emission efficiency, and that
interregional technological collaboration could further enhance
this efficiency. In a similar vein, Cheng et al. (2018) employed an
enhanced non-radial directional distance function, revealing a
substantial opportunity for efficiency improvement across several
provinces. Their research underscored the importance of technical
advancement in fostering efficiency. Qu et al. (2022) tackled
uncertainties related to climate and governmental economic
policy through the use of a robust DEA model. They advocated
for the adoption of a green and low-carbon lifestyle, a
transformation in energy structures, and the promotion of
coordinated regional development.

3 ER-based indicator information
integration

In this section, Subsection 3.1 presents the methodology for
calculating weights for carbon emissions-related indicators, while
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Subsection 3.2 introduces the ER approach (Wang et al., 2006) for
the integration of indicator information.

3.1 Indicator weight calculation

In the domain of carbon emissions management across diverse
enterprises, a variety of distinct indicators exists, each holding its
unique degree of importance. To ascertain the importance of these
disparate indicators, an esteemed weight calculation mechanism
known as the Correlation Coefficient and Standard Deviation
(CCSD) method (Wang and Luo, 2010) is utilized. This
particular technique enables the determination of indicator
weights, underpinned by the collected environmental data,
thereby bestowing a rigorous and quantifiable measure of each
indicator’s contribution to the comprehensive emissions
management schema.

Assumes that carbon emissions management contains T related
indicators Ct (t = 1,. . ., T) and each indicator has S collected data vs,t
(s = 1,. . ., S). Since the collected data is a dimensional representation,
it needs to be dimensionless standardized. According to the different
characteristics of indicators, the specific standardization is as
follows:

es,t �

vs,t −mini�1,...,S vi,t{ }
maxi�1,...,S {vi,t}−mini�1,...,S {vi,t}, ifCt ∈ Ωbenefit

maxi�1,...,S {vi,t}−vs,t
maxi�1,...,S {vi,t}−mini�1,...,S {vi,t}, ifCt ∈ Ωcost

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (1)

where Ωbenefit denotes the set of benefit indicators, whose values are
always the larger the better; Ωcost denotes the set of cost indicators,
whose values are always the smaller the better; es,t denotes the tth
normalized value of the sth indicator.

Based on the S×T normalized values, the correlation coefficient
of the tth indicator, denoted as Rt, can be calculated when assuming
that the weights of T indicators are wt (t = 1,. . ., T). The specific
formula of calculating Rt is as follows:

Rt � ∑S
s�1 es,t − �et( ) ds,t − �dt( )����������������������∑S
s�1 es,t − �et( )2 · ds,t − �dt( )2√ (2)

where ds,t denotes the overall assessment value of the sth
data in the tth indicator when the tth indicator do not
consider in the overall assessment; �et and �dt denote the
mean of normalized values and overall assessment values at
the tth indicator. The specific formula of calculating ds,t, �et and
�dt is as follows:

ds,t �∑S

i�1,i ≠ s
ei,twt (3)

�dt � ∑S
s�1ds,t

S
(4)

�et � ∑S
s�1es,t
S

(5)

Here, it is worth noting that if Rt is close to one, then the tth
indicator has a little influence on carbon emissions management and
it can be assigned a small weight; Otherwise, the weight of the tth
indicator should be large. Additionally, the standard deviation of the

tth indicator, denoted as σt, can be calculated by using the following
formula:

σt �
������������∑S

s�1 es,t − �et( )2
S

√
(6)

According to the T correlation coefficients and T standard
deviations, a revised weight for each indicator, symbolized as �wt,
can be derived utilizing the subsequent formula:

�wt � σt
�����
1 − Rt

√
∑T

k�1σk
������
1 − Rk

√ (7)

Ultimately, given that the T initial weights wt are premised on
the assumption of equality with the T new weights �wt, the weight of
T indicators can be computed utilizing the following optimization
model:

Min  J �∑T
t�1

wt − �wt( )2

s.t.∑T
t�1
wt� 1

wt ≥ 0;t� 1, ...,T (8)

3.2 Indicator information integration

In the context of efficiency evaluation for carbon emissions
management, certain numerical conditions must be met
pertaining to the counts of inputs, outputs, and DMUs. For
instance, the number of DMUs should surpass twice the sum of
the quantity of inputs and outputs, as stipulated by Golany and
Roll (1989). Consequently, the ER approach (Wang et al., 2006),
derived from the Dempster-Shafer theory of evidence and
recognized for its robust capabilities in information fusion, is
deployed for the integration of indicator information. Thus, in
this study, the input related indicators, desirable output related
indicators and the three types of carbon emissions are
integrated by the proposed ER model for carbon emissions
evaluation.

Assuming that carbon emissions management incorporates T
related indicators, denoted asCt (t = 1,. . ., T), each indicator carries a
weight wt (t = 1,. . ., T) derived from Section 2.1 and shares a set of
mutually exclusive and collectively exhaustive evaluation grades,
represented as H = {H1,. . ., HN}. In accordance with the N grades,
the distribution assessment of each indicator, symbolized as S(Ct),
can be defined as follows:

S Ct( ) � Hn, βn,t( ), n� 1, ...,N{ } (9)

In the above equations (Eq. 9), βn,t denotes the belief degree
assigned to the nth grade for the tth indicator and it satisfies:

∑N

n�1βn,t ≤ 1 (10)
βn,t ≥ 0;n� 1, ...,N (11)
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Based on the distributed assessments and T weights, the basic
probability assignments (BPAs) for each indicator can be
calculated by:

mn,t � m Hn( ) � wtβn,t, n� 1, ...,N; t� 1, ...,T (12)
�mH,t � �mt H( )� 1−wt, t� 1, ...,T (13)

~mH,t � ~mt H( ) � wt 1 −∑N

n�1βn,t( ), t� 1, ...,T (14)

where mn,t is the BPA of the nth grade on the tth indicator. ~mH,t is
the uncertain BPA caused by the relative weight of the tth indicator;
~mH,t is the uncertain BPA caused by the incompleteness of the
distributed assessment.

According to the analytical ER algorithm (Chen et al., 2017), the
BPAs of T indicators can be integrated as the BPAs of a new
integrated indicator, namely, indicator information integration.
The corresponding formulas are as follows:

mn � k ∏T

t�1 mn,t + �mH,t + ~mH,t( ) −∏T

t�1 �mH,t + ~mH,t( )[ ], n� 1, ...,N

(15)
~mH � k ∏T

t�1 �mH,t + ~mH,t( ) −∏T

t�1 �mH,t[ ] (16)

�mH � k ∏T

t�1 �mH,t[ ] (17)

k � ∑N

n�1∏T

t�1 mn,t + �mH,t + ~mH,t( ) − N−1( )∏T

t�1 �mH,t + ~mH,t( )[ ]−1
(18)

Thus, the BPAs of the integrated indicator is then transformed
into the distributed assessment S(C) � (Hn, βn), n� 1, ...,N{ }, in
which the belief degree of the nth grade is calculated by:

βn �
mn

1 − �mH
, n� 1, ...,N (19)

Meanwhile, the belief degree of uncertainty is calculated by:

βH � ~mH

1 − �mH
(20)

Finally, efficaciously represent the integrated indicator
information, the distributed assessment should be transmuted
into a numeric value. Therefore, when u(Hn) denotes the utility
of the n-th grade, the utility value of the integrated distributed
assessment is computed using the following equation:

u S C( )( ) �∑N

n�1βnu Hn( ) + u H1( ) + u HN( )
2

βH (21)

4 DEA-Malmquist index-based
efficiency evaluation

In this section, Subsection 4.1 introduces the concept of
efficiency evaluation considering undesirable outputs.
Subsequently, Subsection4.2 proposes the dynamic efficiency
evaluation utilizing the Malmquist index. It is worth noting that
the input related indicators, desirable output related indicators and
the three types of carbon emissions of each DMU in DEA
undesirable output model and DEA-Malmquist index are
integrated based on the Section 3.

4.1 Efficiency measure with undesirable
outputs

In the realm of carbon emissions management, undesirable
outputs, such as varying degrees of CO2 in a corporate’s carbon
emissions, are inevitable and significantly influence efficiency
evaluation. To approach carbon emissions management in a
more scientifically rigorous manner, this section incorporates a
DEA undesirable output model (Seiford and Zhu, 2002). This
model facilitates the evaluation of carbon emissions management
efficiency considering undesirable outputs. The DEA undesirable
output model, a variant of the DEA models employed for efficiency
evaluation, holds comparative advantages over other DEA models
(Wang et al., 2008; Wang and Wu, 2011; Song et al., 2018). These
include the capability to evaluate efficiency for multiple inputs and
outputs without the necessity for dimensionless data processing and
weight assumption.

Within the framework of the DEA undesirable output model,
assuming the existence of n DMUs with m input indicators, s
desirable output indicators and h undesirable output indicators,
then the input data, desirable output data, and undesirable
output data of n DMUs can be denoted as X, Y and Z,
respectively.

X �

x11 ... x1j ... x1n

... ... ... ... ...
xi1 ... xij ... xin

... ... ... ... ...
xm1 ... xmj ... xmn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
m×n

(22)

Y �

y11 ... y1j ... y1n

... ... ... ... ...
yr1 ... yrj ... yrn

... ... ... ... ...
ys1 ... ysj ... ysn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
s×n

(23)

Z �

z11 ... z1j ... z1n
... ... ... ... ...
zf1 ... zfj ... zfn
... ... ... ... ...
zh1 ... zhj ... zhn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
h×n

(24)

Next, according to the input data X, desirable output data Y and
undesirable output data Z shown in Eqs 22–24, the following
optimization model can be used to evaluate the efficiency of each
DMU with consideration of undesirable outputs and the condition
of constant returns to scale

θ0
* � min θ0

s.t.∑n
j�1
λjxij ≤ θ0xi0; i� 1, ...,m

∑n
j�1
λjyrj ≥yr0; r� 1, ...,s

∑n
j�1
λjbfj ≥ bf0;f� 1, ...,h

λj ≥ 0;j� 1, ...,n (25)
where

bfj� −zfj +maxj�1,...,n {zfj}+minj�1,...,n {zfj} (26)
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Finally, the efficiency value θ*j (j = 1,. . ., n) of n DMUs can be
obtained. When θ*j = 1, it means that the input-output structure of
the jth DMU is effective. Conversely, if these conditions are not met,
it implies that the input-output structure of the jth DMU
necessitates further enhancement.

Additionally, in circumstances where an increase or decrease in
inputs or outputs leads to a proportional change in the outputs or inputs,
i.e., a phenomenon termed variable returns to scale, is also an extra
constraint needs to be integrated into the optimization model outlined in
Eq. (25). This adjustment enables the evaluation of eachDMU’s efficiency
considering undesirable outputs under variable returns to scale.∑n

j�1λj� 1 (27)

4.2 DEA-Malmquist index for efficiency
evaluation

The efficiencies derived from Section 4.1 are static in nature and
often fail to encapsulate the evolution of comprehensive efficiency
and technical efficiency. To effectively implement carbon emissions
management, it is essential to consider dynamic efficiencies. To this
end, theMalmquist index (Fare et al., 1992) is incorporated to enrich
the efficiency evaluation of carbon emissions management.

In the course of dynamic efficiency evaluation, let’s assume that
the input data, desirable output data, and undesirable output data for
the tth period are denoted as X t, Yt and Z t, respectively. The
Malmquist index formula, which tracks changes from the tth period
to the t+1th period, is defined as follows:

M Xt+1, Yt+1, Zt+1, Xt, Yt, Zt( ) � Dt
c Xt+1, Yt+1, Zt+1( )
Dt

c Xt, Yt, Zt( ) ×
Dt+1

c Xt+1, Yt+1, Zt+1( )
Dt+1

c Xt, Yt, Zt( )[ ]1/2

(28)

In the above equations (Eq. (28)), Dt
c and Dt+1

c denote the distance
function estimated with the tth period and the t+1th period under the
condition of constant returns to scale, respectively, and their values can be
obtained by using the optimizationmodel shown in Eq. 25 to evaluate the
efficiency of the DMUs constructed byXt, Yt and Zt, orXt+1, Yt+1 and Zt+1.
Additionally, M > 1 indicates that the comprehensive efficiency level of
carbon emissions management is improved; M = 1 indicates that the
comprehensive efficiency level of carbon emissionsmanagement remains
unchanged; M < 1 indicates that the level of carbon emissions
management efficiency decreases. According to (Golany and Roll,
1989), Eq. 28 can be decomposed into the following two components:

TFPC Xt+1, Yt+1, Zt+1, Xt, Yt, Zt( )
� Dt+1

c Xt+1, Yt+1, Zt+1( )
Dt

c Xt, Yt, Zt( ) ×
Dt

c Xt, Yt, Zt( )
Dt+1

c Xt, Yt, Zt( ) ×
Dt

c Xt+1, Yt+1, Zt+1( )
Dt+1

c Xt+1, Yt+1, Zt+1( )[ ]1/2

� EC × TC (29)
In the above equations (Eq. (29)), EC and TC represent the

efficiency change and the technical change respectively. An EC value
greater than 1 signifies an improvement in the efficiency of carbon
emissions management; an EC value equal to 1 indicates that the
efficiency of carbon emissions management remains unchanged;
and an EC value less than 1 suggests a reduction in the efficiency of
carbon emissions management.

When the efficiency evaluation of carbon emissions
management is assumed to be variable returns to scale, ECc can
be further decomposed into the following two components:

EC � Dt+1
c Xt+1, Yt+1, Zt+1( )
Dt

c Xt, Yt, Zt( )

� Dt+1
v Xt+1 , Yt+1 , Zt+1( )
Dt

v Xt, Yt, Zt( ) ×
Dt

v Xt, Yt, Zt( )
Dt

c Xt, Yt, Zt( ) ×
Dt+1

c Xt+1 , Yt+1 , Zt+1( )
Dt+1

v Xt+1 , Yt+1 , Zt+1( )( )
� PTEC × SEC (30)

In the above equations (Eq. (30)), PTEC and SEC denote the
pure technical efficiency change and the scale efficiency change; Dt

v

and Dt+1
v denote the distance function estimated with the tth period

and the t+1th period under the variable of constant returns to scale,
respectively, and their values can be obtained by using the
optimization model shown in Eq. 25 together with Eq. 27 to
evaluate the efficiency of the DMUs constructed by Xt, Yt and Zt,
or Xt+1, Yt+1 and Zt+1.

5 Framework of efficiency evaluation
model for carbon emissions
management

Building on the ER-based indicator information integration
delineated in Section 3, and the DEA-Malmquist index-based
efficiency evaluation illustrated in Section 4, this section proposes
a framework for a carbon emissions management efficiency
evaluation model. The main process of this model is depicted in
Figure 1.

From Figure 1, the detailed steps for carbon emissions
management efficiency evaluation include:

Step 1: ER-based indicator information integration for desirable and
undesirable output indicators. Suppose that there are s desirable
output indicators and h undesirable output indicators and their
data are collected from n corporates and T years, namely, yt

r,j

(t = 1,. . .,T; j= 1,. . ., n; r = 1,. . ., s) and ztf,j (f = 1,. . ., h). Hence,
based on the indicator weight calculation shown in Section
2.1 and the indicator formation integration shown in Section
2.2, all these data of s desirable output indicators and h
undesirable output indicators should be integrated into T ×
n new data yt

j and ztj.
Step 2: DEA-Malmquist index-based efficiency evaluation based on the

integrated desirable and undesirable output data. Suppose that
there are m input indicators and their data collected from n
corporates and T years are xt

i,j (i = 1,. . ., m). Hence, based on
T × n integrated desirable and undesirable output data, the
corresponding data matrix used for efficiency evaluation can be
generated and denoted asX(t) � (xt

i,j)m×n,Y
(t) � (yt

j)1×n, and
Z(t) � (ztj)1×n. Furthermore, efficiency, TFPC, EC, PTEC, and
SEC can be calculated based on the efficiencymeasure shown in
Section 3.1 and the efficiency evaluation shown in Section 3.2.

6 Case study

This section of the study focuses on the preprocessing of carbon
emissions management data obtained from a sample of 17 Chinese
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corporates, spanning the timeframe of 2019–2021. With the
approaching implementation of the “dual-carbon target,” the
capital market in China is concurrently experiencing an upsurge
in carbon investment. To meet this demand, China has taken
preliminary steps to establish a green financial system.
Accordingly, this article, taking into account the unique
characteristics of the Chinese market and companies, has
gathered company-level carbon emission data that aligns with the
Chinese investment environment. The data sources utilized
encompass revenue breakdown data, carbon emission disclosure
data, and pollutant emission data. Revenue breakdown data
primarily originates from company annual reports and issuance
disclosures, carbon emission disclosure data is derived from
corporate social responsibility reports, and pollutant emission
data is sourced from the National Pollutant Discharge Permit
Management Information Platform. The database coverage
encompasses A-shares, Hong Kong stocks, Chinese concept
stocks, and bond-issuing enterprises, encompassing the time
period from 2019 to 2021. Considering the availability of carbon
emission data and the associated indicators, and after employing
appropriate techniques to address missing data and indicators, this
article ultimately derived a comprehensive dataset and indicator set
relating to carbon emissions for the 17 selected corporates.

Detailed information about these corporates is provided in
Table 1. Following the specific procedures outlined in Section 4,
the efficiency of carbon emissions management and its
corresponding technical change efficiency are analyzed, leveraging
integrated indicators. Finally, the strategies to enhance carbon
emissions management are also proposed.

6.1 Data resource and variable
determination

This study adheres to a well-established framework for
corporate carbon emissions indicators, as outlined by Ye et al.
(2019a, 2019b). In line with this framework, both undesirable

and desirable outputs are considered as significant indicators for
carbon emissions management. Building on existing literature, the
desirable outputs selected for evaluation include main business
income, market capitalization, rate of return on equity, and
earnings per share. On the other hand, the evaluation of the
efficiency of carbon emissions management focuses on three
categories of undesirable outputs, specifically direct carbon
emissions, process carbon emissions, and final product carbon
emissions.

The input indicators in this study are classified into three
distinct categories: labor input, asset investment, and capital
input. Labor input is quantified through various metrics, such as
the number of employees, average employee salary, rate of salary per
share, and salary growth. Asset investment is assessed based on the
total assets and net assets per share of the corporations under
examination. Capital input, on the other hand, is determined by
analyzing the capital expenditure and the ratio of income tax to total
profit. It is worth noting that among the 17 corporates selected for
analysis, significant disparities exist in terms of both input and
output indicators for carbon emission control. Consequently, these
variations indirectly imply disparities in carbon emissions and the
fiscal advantages of individual corporations.

It is imperative to acknowledge that all the indicators mentioned
above, including their historical data, can be derived from various
sources. The revenue breakdown data can be primarily obtained
from corporate annual reports and issuance disclosures, while
carbon emission disclosure data can be acquired from corporate
social responsibility reports. As for pollutant emission data, it can be
sourced from the National Pollution Discharge License
Management Information Platform of China. A comprehensive
analysis of the integrated desirable output and undesirable
output, derived from the indicator information integration based
on the ER approach, alongside the three types of inputs, is presented
in Table 2.

To delineate the comprehensive details of both integrated
desirable and undesirable outputs, the average values of these
outputs across 17 corporations in China for each year are

FIGURE 1
Framework of carbon emissions management efficiency evaluation.
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visually presented in Figure 2. Notably, Figure 2 highlights
conspicuous disparities in the desirable and undesirable outputs
among different corporations in the same year. However, it is
observed that annual variations in both desirable and undesirable
outputs among these corporations are relatively modest. Analysis of
the publicly available data pertaining to these 17 corporations
reveals no discernible transformations in their production and
energy technologies from 2019 to 2021. Consequently, it becomes
challenging to effectively discern short-term changes in carbon
emissions for these enterprises at present.

Consequently, this article aims to assess the carbon emissions
of various corporations through a lens focused on the production
process. The research outcomes depicted in Figure 3 demonstrate
that, in the case of the majority of corporations, both direct
carbon emissions and carbon emissions stemming from the
production process far surpass those resulting from final
products. Notably, many corporations exhibit the highest
carbon emissions during the production process, which
underscores the strong correlation between this stage of
operations and the prevailing deficiency in the adoption of
clean technology innovations within the production
technologies employed by Chinese corporations.

6.2 Analysis of carbon emissions
management efficiency

In an effort to examine the variations in carbon emissions
management efficiency across different corporations and to

identify the underlying factors driving such efficiency
fluctuations, this study employs a proposed model to calculate
the annual changes in carbon emissions management efficiency
for each individual corporation.

By leveraging a comprehensive dataset obtained over a 3-year
period encompassing 17 corporations in China, this paper
computes the relative efficiency of each corporation’s carbon
emissions management. These corresponding efficiencies are
visually presented in a clear and comprehensive manner in
Figure 4.

Upon evaluating the efficiency of carbon emissions
management from 2019 to 2021, it becomes evident that only
one corporation has achieved the optimal level of carbon
emissions management, as reflected by an efficiency value of
1. Conversely, the remaining 16 corporations consistently fail to
attain the threshold of relative efficiency during any given year.
The majority of these corporations exhibit management
efficiency scores that persistently fall below 0.8, with some
corporations even demonstrating a discernible downward
trend in efficiency values across the considered period.

From the standpoint of returns to scale, Figure 5 illustrates that
the carbon emissions management income of each corporation
exhibited an upward trend from 2019 to 2021. This pattern
suggests that there is still significant room for improving
management efficiency through increasing input factors.
However, a subset of corporations experienced diminishing
returns to scale, indicating that excessive investments in carbon
emissions management resulted in redundant outputs. For these
corporations, optimizing input resources becomes a key concern.
Furthermore, on a broader scale, the carbon emissions management
efficiency among the 17 examined corporations varies significantly,
highlighting disparities in management capabilities. Consequently,
the carbon emissions management efficiency of individual
corporations has not effectively improved over time. These
findings underscore the importance of rational allocation of
input-output structures and the development of effective carbon
emissions management policies as crucial factors in addressing
current challenges in carbon emissions management in China.

To highlight the disparities in the efficiency of carbon
emissions management, Figure 6 presents the average
efficiency across three types of carbon emissions
management from 2019 to 2021 for 17 corporates in China.
Through an encompassing analysis, it becomes evident that the
carbon emissions management efficiency in 2019 surpasses
that of subsequent years, with 2021 registering the lowest
efficiency.

TABLE 2 Statistic analysis of input-output indicators.

Indicator Average Std. Min Max

Integrated desirable output 1994 907 250 3,729

Integrated undesirable output 1381369 393424 765995 1996742

Labor input 158546 45138 70899 246192

Asset investment 42304 25564 127 84481

Capital input 99 42 4 195

TABLE 1 The information of the 17 selected corporates.

Selected corporates Ticker symbol

China Vanke Co., Ltd. 000002.SZ

China International Marine Containers Group Co., Ltd. 000039.SZ

GF Securities Co., Ltd. 000776.SZ

China Merchants Shekou Industrial Zone Holdings Co., Ltd. 001979.SZ

Sichuan Keelung Pharmaceutical Co., Ltd. 002422.SZ

Bank of Zhengzhou Co., Ltd. 002936.SZ

Bank of Qingdao Co., Ltd. 002948.SZ

CITIC Securities Co., Ltd. 600030.SH

CSSC Offshore & Marine Engineering Group Co., Ltd. 600685.SH

Chongqing Rural Commercial Bank Co., Ltd. 601077.SH

Guotai Junan Securities Co., Ltd. 601211.SH

New China Life Insurance Co., Ltd. 601336.SH

Great Wall Motor Co., Ltd. 601633.SH

Shanghai Electric Group Co., Ltd. 601727.SH

Yangtze Optical Fibre & Cable Joint Stock Co., Ltd. 601869.SH

China Zheshang Bank Co., Ltd. 601916.SH

China Construction Bank Corporation 601939.SH
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In addition to the impact of economic and resource endowment
shifts over the years, substantial discrepancies are observed in the
pure technical efficiency of carbon emissions management across
different years for these 17 corporates. This is largely attributable to
variations in the level of economic development and policy changes.

The pure technical efficiency and scale efficiency in 2019 and
2020 are notably higher than those in 2021 across the
17 corporates. This underscores the significant challenge of
balancing economic development with sustainable environmental
protection within the industrial production processes in China.

FIGURE 2
Integrated desirable and undesirable output from 2019 to 2021.

FIGURE 3
Different Scopes of Carbon Emissions of 17 corporates in 2021.

FIGURE 4
Comprehensive efficiency of different corporates from 2019 to 2021.
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6.3 Time changes of carbon emissions
management efficiency

In the subsequent section, this study delves into the temporal
dynamics of carbon emissions management efficiency. Figure 6
presents the results obtained from the assessment of efficiency
using the DEA-Malmquist index. Subsequently, Figure 7
demonstrates the variables EC, PTEC, EC, and TFPC, all
indicating a decline in the efficiency of carbon emissions
management.

A close examination of these figures reveals a discernible
downward trajectory in the overall efficiency of carbon emissions
management among the 17 included corporations over time.
Despite notable fluctuations, the prevailing trend unequivocally
points towards a decrease in efficiency. Considering the rapid
expansion of these 17 corporations, the issue of carbon emissions
necessitates continued attention and heightened significance.

Subsequently, Figure 8 illustrates the variations in carbon
emissions management efficiency across different corporates. A
perusal of Figure 8 reveals that the efficiency of carbon emissions
management in themajority of corporates lacks stability. Despite the
numerous shortcomings in China’s current carbon emissions

management, there is a conspicuous absence of institutional
standardization in the carbon emissions management process.
This lack of standardization impedes industrial coordination and
the stability of carbon emissions management.

Furthermore, a comparative analysis conducted between the
SEC and EC reveals that the integration of Pure Technical
Efficiency Change (PTEC) into the framework yields enhanced
efficiency and greater stability in the realm of carbon emissions
management. In fact, the inclusion of PTEC facilitates a more
intricate examination of the technical processes involved in the
management of carbon emissions, enabling a more targeted
identification of areas for improvement, such as resource
optimization or the adoption of innovative technologies.
Moreover, this approach not only augments the efficiency value
but also imparts increased stability to the carbon emissions
management efficiency. Stability, within this context, denotes
the ability to consistently maintain high levels of efficiency over
time. This aspect is of utmost importance in the realm of carbon
emissions management, as a stable efficiency level signifies a
corporation’s capacity to consistently and effectively handle its
carbon emissions, thereby making noteworthy contributions
towards sustainable development objectives.

FIGURE 5
Number of corporates in different returns to scale from 2019 to
2021.

FIGURE 6
Efficiency distribution of different regions in China.

FIGURE 7
Carbon emissions management efficiency change from 2019 to
2021.
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6.4 Improvement strategy of regional
carbon emissions management efficiency

In this section, this paper analyzes the comprehensive efficiency
of carbon emissions management of 17 corporates in China from
2019 to 2021, which forms 51 analysis samples, and then analyzes
the input and output indicators of the samples that fail to reach the
effective efficiency according to these data, and obtains the number
of provinces with unreasonable input-output indicators, which
provides reference for the design of carbon emissions
management efficiency improvement scheme, as shown in
Figure 9. From the perspective of input redundancy, the situation
of investment redundancy in environmental pollution control is
more serious, which indicates that there are unreasonable
investment resources and excessive investment in the
implementation process of carbon emissions management in
these corporates production process. The redundancy degree of
the three input indicators is basically similar, and the number of
provinces occupied by the three excessive investments is relatively
large. However, from the perspective of output from 2019 to 2021, it
can be found that the output is not reasonable.

Simultaneously, to dissect the structural disparities in regional
carbon emissions management inputs and outputs, this study uses
the carbon emissions management efficiency assessment for each
corporate in 2021 as a representative example. Additionally, an
adjustment scheme for each region’s input-output structure is
proposed, the results of which are outlined in Table 3.

Table 3 offers a clear illustration that the crux of enhancing the
efficiency of carbon emissions management is addressing the issues
of input redundancy and the insufficiency of desirable output.
Among the corporates, a scant few do not necessitate any
adjustments to their inputs and outputs in 2021. The majority,
however, must prioritize reducing input in carbon emissions
management and tackle the issue of excessive emission of
undesirable output.

With regard to the redundancy of the three input
indicators—labor, capital, and environmental pollution control
investment—labor input redundancy emerges as the most
significant issue. The data suggest that one corporate’s labor
input needs to be reduced by a considerable amount, specifically
25,566 units. This startling figure underscores the critical need for

corporates to reassess their use of labor in the context of carbon
emissions management.

This redundancy can often be attributed to an overabundance of
input and the excessive consumption of resources, which is a
symptom of sub-optimal planning and execution in the
corporates’ production processes. Such an imbalance in the input
structure can lead to substantial wastage of resources, both human
and material. This is particularly concerning in a world where
resource conservation and efficient usage are paramount to
sustainable development and environmental protection.

Furthermore, this escalation in input, particularly in relation to
environmental pollution control investment, does not correspond to
a commensurate decrease in pollution levels. This disconnect
implies that despite increased efforts and resources being directed
towards managing carbon emissions, the desired results—in this
case, reduced pollution—are not being achieved. This situation leads
to a serious redundancy of pollution emissions.

In essence, the current state of affairs indicates a pressing need
for these corporates to revisit their strategies and operational
processes. The goal should be to optimize their use of labor and
other resources, and ensure that investments in environmental
pollution control are effective in actually reducing pollution. This
could involve a range of measures, from implementing more
efficient technologies to restructuring labor practices, all aimed at
improving the overall efficiency of carbon emissions management.

6.5 Robust analysis

To validate the efficiency of the carbon emission governance
evaluation results presented in this article, Figure 10 illustrates the
varying ranges of carbon emissions management efficiency. This
delineation takes into account the inclusion of carbon emissions at
distinct stages as undesirable outputs. By examining the research
findings, notable discrepancies in the efficiency values, predicated on
different carbon emission measurements, become apparent. This
further substantiates the influence of the diverse indicators proposed
in this article on the outcomes of efficiency evaluations. As a result,
conducting assessments of carbon emission governance based on
indicator integration becomes crucial to prevent any potential loss of
pertinent information.

FIGURE 8
Carbon emissions management efficiency change in different corporates.
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Furthermore, to validate the thumb principle of the DEA
model and assess the indispensability of indicator fusion,
Figure 11 demonstrates the efficiency evaluation outcomes
obtained through indicator integration. The graphic represents
that carbon emission efficiency values for all corporations
predominantly cluster around 1 without indicator integration.
Nonetheless, a distinct divergence in efficiency values
emerges after employing indicator integration, leading to a
heightened level of differentiation. This enhanced
differentiation is advantageous for decision-makers conducting
efficiency evaluations and analysis, as it provides a more nuanced
understanding of the performance variations among the
corporations.

7 Conclusion and implications

Based on the carbon emissions management data from 2019 to
2021, the efficiency evaluation of carbon emissions management in
17 corporates of China was performed on the basis of indicator
information integration by the ER approach with weight calculation
method and DEA-Malmquist index. Additionally, the efficiency of

different corporate-level carbon emissions management was further
evaluated from the three scopes of efficiency evaluation and dynamic
efficiency change. The main conclusions are summarized as follows:

Firstly, the analysis of carbon emissions management in
various corporations in China revealed a lower level of
comprehensive efficiency in this aspect. The examination of
data further indicated that the comprehensive efficiency of
carbon emissions management in these corporations has not
witnessed significant improvement and remains unstable. The
fluctuations in comprehensive efficiency are closely correlated
with changes in pure technical efficiency, thereby suggesting a
strong relationship between them. Furthermore, the analysis of
scale benefits reveals an ongoing existence of an unsustainable
input-output structure within each corporation, primarily
stemming from inadequate investments in carbon emissions
management, resulting in insufficient output.

Secondly, when examining the input-output structure, it
becomes evident that redundancy exists within the majority of
corporations, particularly in terms of labor input in carbon
emissions management. Moreover, an analysis of the output
reveals that the structure of desirable output is predominantly
reasonable, but there exists significant redundancy in undesirable

FIGURE 9
Number of corporates with redundant input and insufficient output.
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output. Besides optimizing input allocation, it is crucial to
implement measures aimed at effectively reducing the emission
of undesirable pollution output while ensuring a reasonable
output structure.

Thirdly, in order to accurately assess the changes in
comprehensive efficiency and pure technical efficiency of carbon
emissions management over various time periods, the findings
indicate notable distinctions between these two metrics. However,
despite these variations, neither the overall efficiency nor the pure
technical efficiency demonstrate a significant upward trend within
these corporations in China. In other words, the positive impact of
the current input-output structure and technical factors on the

comprehensive efficiency of carbon emissions management has
not yielded significant results over time.

Drawing upon the aforementioned conclusions, the study’s
outcomes constitute a significant asset for scholars, corporations,
and policymakers alike, as they strive collectively towards enhancing
carbon emissions management, advancing sustainable development,
and addressing the challenges posed by climate change. The
identified imperative for critically reassessing and adapting
current strategies becomes self-evident, with the overarching
objective of optimizing efficiency, fostering sustainable growth,
and making substantial contributions to broader endeavors aimed
at mitigating climate change:

FIGURE 10
Different scopes of carbon emissions management efficiency.

TABLE 3 Values of input-output adjustments in different corporates.

Emissions management input Emissions management output

Labor Asset Capital Desirable output Undesirable output

000002.SZ 0 −25319 0 0 −331746

000039.SZ 0 −37168 0 0 −323349

000776.SZ 0 0 0 0 0

001979.SZ 0 0 0 0 0

002422.SZ 0 0 0 0 0

002936.SZ 0 0 0 0 −548900

002948.SZ 0 0 0 0 −135925

600030.SH 0 0 0 285 0

600685.SH −10321 0 0 67 0

601077.SH −25566 0 0 627 0

601211.SH −3,278 0 0 524 0

601336.SH 0 0 0 0 −565659

601633.SH −7,829 0 0 0 −210513

601727.SH 0 0 0 0 0

601869.SH 0 0 0 0 0

601916.SH 0 −4,072 −14 0 0

601939.SH 0 −5,459 0 0 −66238
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(1) From an academic standpoint, these findings shed light on
the intricate dynamics among the input-output structure,
technical efficiency, and comprehensive efficiency in the
domain of carbon emissions management. This enriches
the existing scholarly knowledge base and enables scholars
to enhance their comprehension of carbon emissions
management, particularly within the unique economic
landscape of China. To deepen this understanding, future
research can explore these relationships in greater detail,
employing sophisticated econometric techniques or
conducting longitudinal studies to track and analyze these
patterns over an extended timeframe.

(2) From the policy perspective, these findings provide
corporations and policymakers with valuable insights to
identify areas for improvement and formulate more
impactful strategies for carbon emissions management.
The noticeable absence of a significant upward trend in
both overall and pure technical efficiency signifies ample
opportunities for enhancement in these domains. Potential
avenues to pursue this enhancement could involve leveraging
cutting-edge technologies, optimizing operational processes,
or allocating resources to capacity development initiatives.
By capitalizing on these opportunities, policymakers and
corporations can effectively address the challenges posed
by carbon emissions and make substantial strides towards
achieving sustainability objectives.

(3) From the corporations perspective, the study also emphasizes
the significance of maintaining a balanced input-output
structure, presenting explicit guidance in this regard. An
overemphasis on investment, particularly in labor, may lead
to the inefficient utilization of resources and suboptimal
outcomes. Conversely, underinvestment may result in
insufficient output. Consequently, corporations must strive
for an optimal equilibrium, ensuring the efficient allocation
of resources while aligning output with sustainability goals. The
identified redundancy in undesirable output serves as a clear
indication for the implementation of stricter pollution control
measures. This may involve the adoption of more advanced
pollution control technologies, improvements in waste

management practices, or the enforcement of more stringent
internal policies pertaining to pollution control. Such measures
would contribute towards achieving greater environmental
stewardship and sustainable business practices.

This study is limited by the fact that data on corporate carbon
emissions is available only for a relatively short time span.
Consequently, the analysis primarily focuses on the efficiency of
corporate carbon emissions in the past 3 years. However, future
research could expand to encompass long-term assessments of
carbon emission efficiency and the exploration of carbon
emission prediction studies.

Data availability statement

The datasets presented in this article are not readily available
because the owner of the data repository expressly prohibits the
dissemination of the data beyond the authors. Unauthorized
distribution, transmission, or any form of circulation of the data is
strictly forbidden under the terms of the data repository agreement.
Requests to access the datasets should be directed to for further
inquiries, please get in touch with S-RH (Email: sirui.han@polyu.
edu.hk). S-RH will be pleased to provide additional information or
clarification as necessary.

Author contributions

F-FY: Conceptualization, Formal Analysis, Writing–original
draft. S-RH: Investigation, Methodology, Validation,
Writing–original draft, Writing–review and editing. H-TL:
Supervision, Validation, Writing–review and editing.

Funding

The author(s) declare financial support was received
for the research, authorship, and/or publication of this article.

FIGURE 11
Different scopes of carbon emissions management efficiency.

Frontiers in Environmental Science frontiersin.org14

Ye et al. 10.3389/fenvs.2023.1301091

http://sirui.han@polyu.edu.hk
http://sirui.han@polyu.edu.hk
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1301091


This research was supported by the National Natural Science
Foundation of China (Nos 72301071 and 72001043), the
Natural Science Foundation of Fujian Province of China (Nos
2022J01178, and 2020J05122), Hong Kong SustainTech
Foundation, PolyU Project of Strategic Importance (No.
P0039723), PolyU AF Competitive Grants (No. P0046075), and
PolyU Start-up Fund for RAPs under the Strategic Hiring Scheme
(No. P0044542).

Acknowledgments

The authors gratefully acknowledge research support from
Hao Wu.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Ali, M., Abbas, B., Mohammad-Bagher, F., Ahmad, S., and Yahia, Z. M. (2022). A new
model for the use of renewable electricity to reduce carbon dioxide emissions. Energy
238, 121602. doi:10.1016/j.energy.2021.121602

Chen, L., Wang, Y. M., Lai, F. J., and Feng, F. (2017). An investment analysis for
China’s sustainable development based on inverse data envelopment analysis. J. Clean.
Prod. 142, 1638–1649. doi:10.1016/j.jclepro.2016.11.129

Cheng, Z., Li, L., Liu, J., and Zhang, H. (2018). Total-factor carbon emission efficiency
of China’s provincial industrial sector and its dynamic evolution. Renew. Sustain.
Energy Rev. 94, 330–339. doi:10.1016/j.rser.2018.06.015

Cheng, Z. H., Li, L. S., and Liu, J. (2017). The emissions reduction effect and technical
progress effect of environmental regulation policy tools. J. Clean. Prod. 149, 191–205.
doi:10.1016/j.jclepro.2017.02.105

Costa-Campi, M. T., Garcia-Quevedo, J., and Martínez-Ros, E. (2017). What are the
determinants of investment in environmental R and D? Energy Policy 104, 455–465.
doi:10.1016/j.enpol.2017.01.024

Fare, R., Grosskopf, S., Lindgren, B., and Roos, P. (1992). Productivity change in
Swedish pharmacies 1980–1989: a nonparametric Malmquist approach. J. Prod.
Analysis 3, 85–102. doi:10.1007/BF00158770

Golany, B. A., and Roll, Y. (1989). An application procedure for DEA. Omega 17 (3),
237–250. doi:10.1016/0305-0483(89)90029-7

Hang, Y., Wang, Q. W., Zhou, D. Q., and Zhang, L. (2019). Factors influencing the
progress in decoupling economic growth from carbon dioxide emissions in China’s
manufacturing industry. Resour. Conservation& Recycl. 146, 77–88. doi:10.1016/j.
resconrec.2019.03.034

Hong, J., Feng, B., Wu, Y. R., andWang, L. B. (2016). Do government grants promote
innovation efficiency in China’s high-tech industries? Technol. Innov. 57, 4–13. doi:10.
1016/j.technovation.2016.06.001

Liang, W., Gan, T., and Zhang, W. (2019). Dynamic evolution of characteristics
and decomposition of factorsinfluencing industrial carbon dioxide emissions in
China: 1991–2015. Struct. Change Econ. Dyn. 49, 93–106. doi:10.1016/j.strueco.
2018.09.009

Lin, B. Q., and Agyeman, S. D. (2020). Assessing Sub-Saharan Africa’s low carbon
development through thedynamics of energy-related carbon dioxide emissions. J. Clean.
Prod. 274, 122676. doi:10.1016/j.jclepro.2020.122676

Makkonen, T., and Repka, S. (2016). The innovation inducement impact of
environmental regulations on maritime transport: a literature review. Int.
J. Innovation Sustain. Dev. 10, 69–80. doi:10.1504/IJISD.2016.073413

Meng, F., Su, B., Thomson, E., Zhou, D., and Zhou, P. (2016). Measuring China’s
regional energy and carbon emission efficiency with DEAmodels: a survey.Appl. Energy
183, 1–21. doi:10.1016/j.apenergy.2016.08.158

Qu, S., Xu, Y., Ji, Y., Feng, C., Wei, J., and Jiang, S. (2022). Data-driven robust data
envelopment analysis for evaluating the carbon emissions efficiency of provinces in
China. Sustainability 14, 13318. doi:10.3390/su142013318

Ramón, F., Begoña, F., and Adelaida, L. B. (2016). A three-stage DEA model
to evaluate learning-teaching technical efficiency: key performance indicators
and contextual variables. Expert Syst. Appl. 48, 89–99. doi:10.1016/j.eswa.2015.
11.022

Samuel, A., and Christian, N. (2019). Reducing carbon dioxide emissions; Does
renewable energy matter? Sci. Total Environ. 693, 133288. doi:10.1016/j.scitotenv.
2019.07.094

Samuel, O. D., Okwu, M. O., Amosun, S. T., Verma, T. N., and Afolalu, S. A. (2019).
Production of fatty acid ethyl esters from rubber seed oil in hydrodynamic cavitation
reactor: study of reaction parameters and some fuel properties. Industrial Crops Prod.
141, 111658. doi:10.1016/j.indcrop.2019.111658

Seiford, L. M., and Zhu, J. (2002). Modeling undesirable factors in efficiency
evaluation. Eur. J. Operational Res. 142, 16–20. doi:10.1016/S0377-2217(01)
00293-4

Sheng, Y., Wu, Y. R., Shi, X. P., and Zhang, D. D. (2015). Energy trade efficiency and
its determinants: a Malmquist index approach. Energy Econ. 50, 306–314. doi:10.1016/j.
eneco.2015.05.019

Song, M. L., Peng, J., Wang, J. L., and Dong, L. (2018). Better resource management:
an improved resource and environmental efficiency evaluation approach that
considers undesirable outputs. Resour. Conservation Recycl. 128, 197–205. doi:10.
1016/j.resconrec.2016.08.015

Tailon, M., Alisson, C. B., Francisca, M. S., and Adriano, M. S. (2021). Fossil fuels
consumption and carbon dioxide emissions in G7 countries: empirical evidence from
ARDL bounds testing approach. Environ. Pollut. 291, 118093. doi:10.1016/j.envpol.
2021.118093

Wang, E. X., and Wu, C. Y. (2011). Spatial-temporal differences of provincial eco-
efficiency in China based on supper efficiency DEA model. Chin. J. Manag. 3, 443–450.
doi:10.3969/j.issn.1672-884X.2011.03.018

Wang, S. J., andMa, Y. Y. (2018). Influencing factors and regional discrepancies of the
efficiency of carbon dioxide emissions in Jiangsu, China. Ecol. Indic. 90, 460–468. doi:10.
1016/j.ecolind.2018.03.033

Wang, Y. M., Liu, J., and Taha, M. S. (2008). An integrated AHP–DEA methodology
for bridge risk assessment. Comput. Industrial Eng. 54, 513–525. doi:10.1016/j.cie.2007.
09.002

Wang, Y. M., and Luo, Y. (2010). Integration of correlations with standard deviations
for determining attribute weights in multiple attribute decision making.Math. Comput.
Model. 51, 1–12. doi:10.1016/j.mcm.2009.07.016

Wang, Y. M., Yang, J. B., and Xu, D. L. (2006). Environmental impact assessment
using the evidential reasoning approach. Eur. J. Operational Res. 174 (3), 1885–1913.
doi:10.1016/j.ejor.2004.09.059

Wen, L., and Shao, H. Y. (2019). Influencing factors of the carbon dioxide emissions
in China’s commercialdepartment: a non-parametric additive regression model. Sci.
Total Environ. 668, 1–12. doi:10.1016/j.scitotenv.2019.02.412

Yan, D., Lei, Y., Li, L., and Song, W. (2017). Carbon emission efficiency
and spatial clustering analyses in China’s thermal power industry: evidence
from the provincial level. J. Clean. Prod. 156, 518–527. doi:10.1016/j.jclepro.
2017.04.063

Yang, L. H., Liu, J., Wang, Y. M., and Martínez, L. (2019). New activation weight
calculation and parameter optimization for extended belief rule-based system based
on sensitivity analysis. Knowl. Inf. Syst. 60 (2), 837–878. doi:10.1007/s10115-018-
1211-0

Frontiers in Environmental Science frontiersin.org15

Ye et al. 10.3389/fenvs.2023.1301091

https://doi.org/10.1016/j.energy.2021.121602
https://doi.org/10.1016/j.jclepro.2016.11.129
https://doi.org/10.1016/j.rser.2018.06.015
https://doi.org/10.1016/j.jclepro.2017.02.105
https://doi.org/10.1016/j.enpol.2017.01.024
https://doi.org/10.1007/BF00158770
https://doi.org/10.1016/0305-0483(89)90029-7
https://doi.org/10.1016/j.resconrec.2019.03.034
https://doi.org/10.1016/j.resconrec.2019.03.034
https://doi.org/10.1016/j.technovation.2016.06.001
https://doi.org/10.1016/j.technovation.2016.06.001
https://doi.org/10.1016/j.strueco.2018.09.009
https://doi.org/10.1016/j.strueco.2018.09.009
https://doi.org/10.1016/j.jclepro.2020.122676
https://doi.org/10.1504/IJISD.2016.073413
https://doi.org/10.1016/j.apenergy.2016.08.158
https://doi.org/10.3390/su142013318
https://doi.org/10.1016/j.eswa.2015.11.022
https://doi.org/10.1016/j.eswa.2015.11.022
https://doi.org/10.1016/j.scitotenv.2019.07.094
https://doi.org/10.1016/j.scitotenv.2019.07.094
https://doi.org/10.1016/j.indcrop.2019.111658
https://doi.org/10.1016/S0377-2217(01)00293-4
https://doi.org/10.1016/S0377-2217(01)00293-4
https://doi.org/10.1016/j.eneco.2015.05.019
https://doi.org/10.1016/j.eneco.2015.05.019
https://doi.org/10.1016/j.resconrec.2016.08.015
https://doi.org/10.1016/j.resconrec.2016.08.015
https://doi.org/10.1016/j.envpol.2021.118093
https://doi.org/10.1016/j.envpol.2021.118093
https://doi.org/10.3969/j.issn.1672-884X.2011.03.018
https://doi.org/10.1016/j.ecolind.2018.03.033
https://doi.org/10.1016/j.ecolind.2018.03.033
https://doi.org/10.1016/j.cie.2007.09.002
https://doi.org/10.1016/j.cie.2007.09.002
https://doi.org/10.1016/j.mcm.2009.07.016
https://doi.org/10.1016/j.ejor.2004.09.059
https://doi.org/10.1016/j.scitotenv.2019.02.412
https://doi.org/10.1016/j.jclepro.2017.04.063
https://doi.org/10.1016/j.jclepro.2017.04.063
https://doi.org/10.1007/s10115-018-1211-0
https://doi.org/10.1007/s10115-018-1211-0
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1301091


Ye, F. F., Yang, L. H., and Wang, Y. M. (2019a). A new environmental
governance cost prediction method based on indicator synthesis and
different risk coefficients. J. Clean. Prod. 212, 548–566. doi:10.1016/j.jclepro.
2018.12.029

Ye, F. F., Yang, L. H., and Wang, Y. M. (2019b). Fuzzy rule based system with feature
extraction for environmental governance cost prediction. J. Intelligent Fuzzy Syst. 37,
2337–2349. doi:10.3233/JIFS-182628

Yu, S. W., Gao, S. W., and Sun, H. (2016). A dynamic programming model for
environmental investment decision-making in coal mining. Appl. Energy 166, 273–281.
doi:10.1016/j.apenergy.2015.09.099

Zarezade, M., and Mostafaeipour, A. (2016). Identifying the effective factors on
implementing the solar dryers for Yazd province, Iran. Renew. Sustain. Energy Rev. 57,
765–775. doi:10.1016/j.rser.2015.12.060

Zhang, M., Li, L., and Cheng, Z. (2021b). Research on carbon emission efficiency in
the Chinese construction industry based on a three-stage DEA-Tobit model. Environ.
Sci. Pollut. Res. 28, 51120–51136. doi:10.1007/s11356-021-14298-3

Zhang, X. S., Jiang, Q. Q., Khattak, S. I., Ahmad, M., and Rahman, Z. U. (2021a).
Achieving sustainability and energy efficiency goals: assessing the impact of
hydroelectric and renewable electricity generation on carbon dioxide emission in
China. Energy Policy 155, 112332. doi:10.1016/j.enpol.2021.112332

Frontiers in Environmental Science frontiersin.org16

Ye et al. 10.3389/fenvs.2023.1301091

https://doi.org/10.1016/j.jclepro.2018.12.029
https://doi.org/10.1016/j.jclepro.2018.12.029
https://doi.org/10.3233/JIFS-182628
https://doi.org/10.1016/j.apenergy.2015.09.099
https://doi.org/10.1016/j.rser.2015.12.060
https://doi.org/10.1007/s11356-021-14298-3
https://doi.org/10.1016/j.enpol.2021.112332
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1301091

	Carbon emissions management efficiency evaluation based on indicator information integration and DEA-Malmquist index
	1 Introduction
	2 Literature reviews of carbon emissions management
	3 ER-based indicator information integration
	3.1 Indicator weight calculation
	3.2 Indicator information integration

	4 DEA-Malmquist index-based efficiency evaluation
	4.1 Efficiency measure with undesirable outputs
	4.2 DEA-Malmquist index for efficiency evaluation

	5 Framework of efficiency evaluation model for carbon emissions management
	6 Case study
	6.1 Data resource and variable determination
	6.2 Analysis of carbon emissions management efficiency
	6.3 Time changes of carbon emissions management efficiency
	6.4 Improvement strategy of regional carbon emissions management efficiency
	6.5 Robust analysis

	7 Conclusion and implications
	Data availability statement 
	Author contributions 
	Funding 
	Acknowledgments
	Conflict of interest 
	Publisher’s note
	References


