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Spatially explicit, near real time information on surface water dynamics is critical
for understanding changes in water resources, and for long-term water security
planning. The distribution of surface water across the African continent since
1984 and updated as every new Landsat scene becomes available is presented
here, and validated for the continent for the first time. We applied the Water
Observations from Space (WOfS) algorithm, developed and well-tested in
Australia, to every Landsat scene acquired over Africa since the mid 1980s to
provide spatial information on surface water dynamics over the past 30+ years.
We assessed the accuracy of WOfS using aerial and satellite imagery. Four
regional geospatial organisations, coordinated through the Digital Earth Africa
Product Development Task Team, conducted the validation campaign and
provided both the regional expertise and experience required for a
continental-scale validation effort. We assessed whether the point was wet,
dry, or cloud covered, for each of the 12 months in 2018, resulting in
34,800 labelled observations. As waterbodies larger than 100 km2 are easy to
identify with Landsat resolution data and can thus boost accuracy, these were
masked out. The resulting overall accuracy of the water classification was 82%.
WOfS in Africa is expected to be used byministries and departments of agriculture
and water across the continent, by international organisations, academia, and the
private sector. A large-scale collaborative effort, which included regional and
technical skills spanning two continents was required to create a service that is
regionally accurate and is both hosted on, and implemented operationally from,
the African continent.
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1 Introduction

In the coming century, Africa is projected to see an increase in
precipitation variability with both wetter and drier extremes (Gan
et al., 2016; Nicholson, 2017; Barry et al., 2018), resulting in an
increase in the length and severity of agricultural and ecological
droughts as well as the frequency and intensity of floods (Milly et al.,
2005; de Wit and Stankiewicz, 2006; Gan et al., 2016). High water
stress is currently estimated to affect around 250 million people in
Africa (World Metereological Organization, 2021); further changes
to the hydro-climate will exacerbate water security issues (Boko
et al., 2007; Leal Filho et al., 2021).

The 2030 Agenda for Sustainable Development adopted in
2015 called on governments and stakeholders to ensure the
availability and sustainable management of water and sanitation
for all (United Nations, 2015). Within the 17 Sustainable
Development Goals (SDGs), Goal six includes, but importantly
also goes beyond, drinking water, sanitation, and hygiene, to
address the quality and sustainable use of water resources, as well
as the protection and restoration of water-related ecosystems. The
African Ministers’ Council on Water (AMCOW) whose mission is
to provide political leadership, policy direction and advocacy in the
provision, use and management of water resources for sustainable
social and economic development and maintenance of African
ecosystems, works towards a vision of an Africa where there is
equitable and sustainable use and management of water resources
for poverty alleviation, socio-economic development, regional co-
operation and the environment (AMCOW Initiative, 2023). But a
recent assessment found that four out of five African countries are
unlikely to have sustainably managed water resources by 2030
(World Metereological Organization, 2021). Strategies to support
water resources management decisions require up-to-date
information as well as long-term archival data on surface
water dynamics.

Digital Earth Africa (DE Africa) addresses these data needs
by processing openly accessible and freely available satellite
data to produce demand driven, decision-ready products and
services. Guided by a Governing Board co-chaired and
represented by African ministers, advised by a Technical
Advisory Committee (TAC) with the majority of its members
based in Africa, and working closely with the AfriGEO
community enables the program to respond to the
information needs, challenges, and priorities, of partners
across the African continent. In 2022, DE Africa transitioned
out of an establishment phase into a distributed network of
implementing partners across Africa with a program
management office in South Africa (SANSA).

Development of operational data and services prioritised by the
DE Africa governing bodies in response to end user demand, are
created using cloud-native data processing tools from the archive of
satellite data captured over Africa since 1984. Powered by Open
Data Cube (ODC) technology, (Dhu et al., 2017; Lewis et al., 2017;
Killough, 2018)], the platform, which runs on AmazonWeb Services
(AWS), currently archives over 3.5 petabytes of data including
satellite imagery from the Landsat Collection 2 Level-2 in Cape
Town, South Africa. The architecture implements AWS Elastic
Kubernetes Service to enable the use of thousands of parallel
processes on hundreds of servers enabling transferability and

scalability of workflows exploiting decades of satellite images
across the continent.

The DE Africa Water Observations from Space (WOfS) service,
presented here, exploits this infrastructure. Based on an algorithm
developed to provide a nationally consistent service for
understanding surface water dynamics in Australia (Mueller
et al., 2016), WOfS uses the entire Landsat satellite archive over
Africa to obtain multiple surface water observations each month
across decades of data. WOfS was developed on the Digital Earth
Australia ODC and is used in Australia to support a wide variety of
applications such as water allocation management by governments
(Krause et al., 2021), identification of waterbodies for wildfire
management, flood inundation modelling (Huang et al., 2019),
floodplain monitoring (Hou et al., 2019), wetland monitoring
(Dunn et al., 2023), wildlife management (Perry et al., 2021), and
groundwater exploration (Hoare et al., 2016).

Development of complex algorithms for dynamic mapping over
large areas requires the use of training data that captures the
variability of features across space and time (Halabisky et al.,
2018). Transferring and extending algorithms trained in one
location to a new location with a different range of temporal and
spatial variability across target features can result in poor results
(Orynbaikyzy et al., 2022). However, given the similarity in the
spectral response of water in different landscapes, and the use of
consistent analysis-ready Landsat satellite data, it is possible to
extend the WOfS algorithm to the African context without
needing to re-train it from the beginning. Applying WOfS to the
continent of Africa would allow for an initial deployment of a
surface water map service without the need for a lengthy research
and development phase. However, while the two continents have
some similar climate and geographies, there are many differences
and a rigorous accuracy assessment requires local and regional
knowledge and expertise. As DE Africa is guided by the principle
of fostering national and regional co-production to develop
ownership of both the DE Africa program and all products and
services, the WOfS validation process was undertaken by the DE
Africa Product Development Task Team (PDTT). By leveraging the
expertise of the PDTT we are able to test the transferability of the
WOfS algorithm to map the distribution of surface water across the
African continent to develop a new continental service starting from
1984 and updated as every new Landsat scene becomes available.

2 Materials and methods

2.1 Product development task team

The Product Development Task Team (PDTT) is a working
group of Digital Earth Africa composed of program partner
members representing several African regional and national
geospatial organisations. The PDTT works together to identify
shared needs and data gaps for African countries and selects,
designs, plans, develops, and validates DE Africa’s continental-
scale services and products. The PDTT also provides support in
the use and application of DE Africa data products by stakeholders
and end users across their broader institutional networks. At the
time this project was carried out, the PDTT consisted of the
following organisations: L’Observatoire du Sahara et du Sahel
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(OSS, Tunisia), Regional Centre for Mapping of Resources for
Development (RCMRD, Kenya), African Regional Institute for
Geospatial Science and Technology (AFRIGIST, Nigeria), and
AGRHYMET (Niger), which collectively represented the interests
of 43 African countries.

2.2 Study area

The geographical coverage of the data is the African
continent, including surrounding islands. Africa exhibits a
remarkable range of climate zones, each characterized by
distinct weather patterns and ecological conditions (FAO,
2021). The Food and Agriculture Organization of the United
Nations (FAO) and the International Institute for Applied
Systems Analysis (IIASA) developed a geospatial framework
known as agro-ecological zones (AEZ) that enhance
understanding and management of the diverse agricultural
potential and limitations within a given region (FAO, 2021).
These zones are specific geographic areas delineated based on a
combination of climate, soil conditions, and other environmental
factors that influence agricultural productivity and suitability.
Similar to Xiong et al. (2017) in the production of the Global
Food Security Support Analysis Data (GFSAD) crop mask we used
simplified AEZ to assess regional accuracy by combining smaller
AEZs and snapping boundaries to country borders resulting in
seven different zones (Table 1).

2.3 Water observations from space (WOfS)

The Water Observations from Space (WOfS) service for Africa
was created using an algorithm that has been developed and well-
tested in Australia (Mueller et al., 2016). The WOfS algorithm maps
surface water for every pixel in an image using a decision tree
algorithm that considers surface reflectance measurements in
selected spectral bands and a number of normalised difference
indices, such as the Modified Normalised Difference Water Index
(MNDWI) (Xu 2006). This algorithm is applied to the Landsat
Collection two surface reflectance product hosted by DE Africa (DE

Africa, 2022). Cloud and cloud shadow classifications are inherited
from the Landsat Collection two quality assessment band. Ancillary
information derived from observation metadata and the SRTM
digital elevation model is used to flag areas where the
classification is less reliable. Such areas include steep slopes
(greater than 12°), observations with a low solar incidence angle
(less than 10°), and regions shadowed by terrain. The WOfS product
suite includes daily water observations and statistical summaries.
Daily water observations, referred to as Water Observation Feature
Layers (WOFLs), identify water in each satellite scene and are
generated for new Landsat observations as soon as they become
available on the DE Africa platform following satellite acquisition (a
typical latency of 2°days). The frequency of inundation of every pixel
is calculated in two ways: as a single all-time summary, and as annual
summaries, which allow for greater understanding of the dynamic
nature of waterbodies and flooding (Figure 1). Through the DE
Africa cloud based platform on AWS, around one million Landsat
scenes across the entire time series were processed in
under 10 hours.

2.4 Validation methods

2.4.1 Validation sampling design
Given the extensive time period of analysis, as well as the

continental extent, a validation approach needs to provide
insights on both the spatial and temporal accuracy of WOfS. A
stratified random sampling scheme was therefore selected, with
points assessed as “truth” through interpretation of imagery.
Because of the large effort required to create a continental-scale,
multi-temporal reference dataset, we selected a sampling design that
is independent of the WOfS classification so that it can be used to
compare future versions ofWOfS (which may use new algorithms or
other types of satellite images, i.e., Sentinel-2) as well as other
existing maps of surface water.

A key aspect of validation is the creation of a reference dataset,
which in this case would be sensitive to differences between water
classifiers and source imagery (Landsat v. Sentinel-2). Water
classifiers typically produce accurate results when applied to large
open waterbodies, which was not the focus of this map service.
Therefore, we masked out large water features with an area of more
than 100km2 (FAO, 2020) from the sample frame. This, along with
the stratified sampling mechanism, focused validation on areas that
are more challenging to map, such as small waterbodies with
different colours, depths and surrounding environments, and
edges of waterbodies that often contain mixed pixels. The sample
scheme provides a more sensitive comparison of WOfS to other
datasets than a purely random sample. However, it should be noted
that this scheme may diminish accuracy statistics when compared to
validation results obtained using sampling schemes without large
waterbody masking or stratified sampling.

We generated sample points covering the continent including
the main islands using a stratified random sample to select locations
with different water occurrences and waterbody types. First, samples
were stratified by the simplified AEZs. We generated 2,900 sample
points with a minimum of 300 sample points per AEZ.We increased
the number of points to 500 for 4 AEZs that had a higher number of
waterbodies. The number of points per AEZ is as follows; Central =

TABLE 1 List of Agro-Ecological Zones (AEZ) used for this project and the
countries covered for each zone.

AEZ Countries

Eastern Tanzania, Kenya, Uganda, Ethiopia, Rwanda, and Burundi

Western Nigeria, Benin, Togo, Ghana, Côte d’Ivoire, Liberia, Sierra Leone,
Guinea, and Guinea-Bissau

Northern Morocco, Algeria, Tunisia, Libya, and Egypt

Sahel Mauritania, Senegal, Gambia, Mali, Burkina Faso, Niger, Chad,
Sudan, South Sudan, Somalia, and Djibouti

Southern South Africa, Namibia, Botswana, Lesotho, and Eswanti

Central Angola, Democratic Republic of the Congo, Congo, Gabon,
Cameroon, Equatorial Guinea, and Central African Republic

Indian
Ocean

Madagascar, Mauritius, Reunion, and Comoros
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500, Eastern = 500, Western = 500, Southern = 500, Sahel = 300,
Indian Ocean = 300, Northern = 300.

Second, within each AEZ, we stratified points using the median
Normalised Difference Water Index (NDWI) (McFeeters, 1996)
calculated using provisional Collection 2 Landsat-8 data from
2013 to 2019 with clouds and cloud shadows masked out. This is
based on the assumption that the median NDWI correlates with
water occurrence frequency. We selected NDWI as opposed to
MNDWI because NDWI was not included in the WOfS
algorithm and we felt it provided a more dependent measure of
water. Even though NDWI is not always reliable, we expect water to
generally have a high NDWI value and dry land to have a lowNDWI
value; therefore permanent water will have a high median NDWI
calculated over time. Sometimes flooded area will have a median
NDWI value betweenmedian NDWImeasured for permanently wet
and permanently dry areas. Cumulative distributions for median
NDWI values and WOfS all-time summary detection frequency
were compared for each AEZ. In order to ensure a distribution of
points across the gradient from permanently flooded to ephemerally
flooded, the sample points were stratified into three classes based on
the NDWI median: Permanently flooded (median NDWI greater
than 0.03, corresponding to approximately >90% detection
frequency), Sometimes flooded: (median NDWI
between −0.03 and 0.03, or between 60%–90% detection
frequency), Rarely flooded (median NDWI less than −0.03, or
< 60% detection frequency). We further stratified the Rarely
flooded sample points into three NDWI value ranges to ensure
that more sample points fell in areas that are more likely to be
confused by any water classifier.

For example, for the Central AEZ the sample point breakdown
of 500 points was as follows.

• Permanently flooded: 150/500 (30% of points, median NDWI
greater than 0.03).

• Sometimes flooded: 150/500 (30% of points, median NDWI
between −0.03 and 0.03).

• Rarely flooded: 200/500 (40% of points further stratified into
three classes):

• 50/500 points (10% of sample points, median NDWI
less than −0.06).

• 50/500 points (10% of sample points, median NDWI
between −0.06 and −0.04).

• 100/500 points (20% of sample points, median NDWI
between −0.04 and −0.03).

We imposed 30 km as a minimum distance between points to
avoid clustering in the same waterbody. A further 100 samples
stratified in the same way were added to the dataset that all analysts
were asked to classify for cross-validation purposes. Points were
assessed monthly for 2018. This provided us with 36,000 potential
observations (3,000 * 12°months), with the expectation that roughly
50% or less would be cloud-free and that the number of cloud-free
observations would vary in the wet and dry seasons.

2.4.2 Validation assessment (response)
We used Collect Earth Online (CEO) an open source, free online

tool initially developed by NASA SERVIR, to label our sample points
(CEO, 2023). For every sample point, analysts used Sentinel-2
images taken within the first 5°days of each month to assess
whether a point was inundated or not. We selected this
approach, rather than using monthly composites, to avoid
potentially ambiguous interpretation of mean monthly values,
and to enable identification of the exact date of the labelled
inundation observation. Analysts were able to view the Sentinel-2
imagery as true color or false color composites as well as several
different spectral indices including NDVI and NDWI. Analysts
marked down all the months where water was detected. They
also marked months where there was no water, the image quality
was low (i.e., cloudy) or the image could not be assessed because it
was hard to determine (e.g., mixed pixel, muddy, sediment).
Mapbox high resolution base maps were available to assist in
image interpretation, but did not have a date associated and so
could not be used for assessment of inundation patterns. In addition,
analysts noted the basic land cover type using the classes modified
from the NASA Globe Observer land cover classification (NASA
Globe Observer, 2023).

FIGURE 1
Example WOfS products for Lake Barrage El Mansour Eddahbi near Ouarzazate, Morocco. For every observation, pixels are classified as water or dry,
as well as if they are covered by cloud, cloud shadow, or terrain shadow (left). An all-time summary and annual summaries are created from the time series
of WOfS calculating the percentage of time a pixel is classified as water, identifying ephemeral and permanent surface water and how it changes
over time.
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To assist image interpretation and to ensure consistency in
labelling across analysts, analysts underwent a group training,
assessed a common training dataset, and followed up with a one-
on-one meeting with the DE Africa Science Team. The original CEO
tool was tested out and improved based on input from the PDTT.
Each analyst assessed a common set of 80 sample points in order to
develop a cross-validation dataset, allowing for an estimation of the
consistency of labelling between analysts. Leveraging the rich
temporal reference dataset, separate accuracy assessments were
performed for all cloud-free observations, and for both the wet
and dry seasons.

For all of these accuracy assessments, we removed any points
where there were not clear observations due to cloud cover. Because
Sentinel-2 images from the first 5°days of a month are used to
increase temporal alignment, matching WOfS data are chosen from
a window that’s extended by 5°days on each side. If water is detected
in any images within this window, the WOfS classification is
“water.” We created confusion matrices for the data to allow us
to assess the accuracy and calculated overall accuracy, user and
producer’s accuracy and F1 (Maxwell et al., 2021). We then
examined this information for each AEZ for the wet and dry
seasons. We assigned wet and dry seasons for each AEZ based
on monthly rainfall information and selected clear observations
within 1 month close to the middle of each season, wet and dry. This
ensures the data points chosen represent typical conditions for the
relevant season.

2.4.3 Qualitative assessment
In addition to the quantitative assessment, the PDTT also

conducted a qualitative assessment of the WOfS algorithm
performance across the continent by engaging with their network
of stakeholders in a myriad of different ways. PDTT members
engaged with stakeholders through workshops, phone calls,
emails and WhatsApp messages, explaining the purpose of and
expectations from the exercise. Stakeholders were asked to examine
the WOfS map service on the DE Africa platform and to provide
feedback on areas that they were familiar, assessing whether WOfS
mapped these areas accurately. The PDTT team also asked potential
end users for feedback on the usefulness and potential uses of the
WOfS as a continental, near-real time service. The qualitative
assessment served two purposes, the first was to assess the visual
accuracy and useability of the product, and second was to identify
demand for map service derivatives (e.g., summary products),
training, and analytical tools that could support uptake and use.
In total 44 stakeholders, regional experts, and potential end users
were surveyed.

2.5 Co-production of use cases at national
and local scales

As part of our co-development process we built open-source
workflows (i.e., Jupyter notebooks) for applications at the local and
continental scale and applied them to two use cases. The purpose of
these use cases was to highlight how WOfS can be summarised at
national and continental scales for large-scale assessment and
analysis, as well as finer local scales, including hydrologic basins
or even individual waterbodies.

UsingWOfS, we can calculate water detection frequencies over
any defined time period, then estimate the typical water extent
above a detection threshold. Summarising WOfS at an annual
interval and within each country supports reporting on SDG 6.6.1
(UN water, 2023) change in the extent of water-related ecosystems
over time. The annual water extent timeseries further supports
detection of anomalies. For example, by comparing the water
extent measured in 2020 to the all-time mean for each country,
we can identify countries that had an increase or decrease in
permanent water availability.

3 Results

For each of the 12°months, 3,000 points were assessed. Not all
observations could be labelled as water or not water due to cloud
cover, lack of image acquisitions, or uncertainty due to spatial
resolution and mixed pixels. After removing data points that
could not be labelled, a total number of 11,363 observations in
2,377 locations remained, and were used for the accuracy
assessment. 72.8% of these observations were labelled as water
(8,293) and 27.2% as not water (3,090). It was expected that
cloud cover would limit the number of observations, and that
this would vary between wet and dry seasons as well as between
AEZ regions. The number of valid points generally correlates with
monthly rainfall, a proxy for cloud cover. The PDTT had 93.0%
agreement between analysts for the common training dataset.

3.1 All cloud-free observations

The overall accuracy of WOfS at the continental-scale was
82.1%, with a producer’s accuracy of 79.8% and user’s accuracy
94.7% for the water class (Table 2). To reiterate, this accuracy
assessment is based on the constrained sample design where
large waterbodies were masked out and sampling was focused in
more challenging areas (e.g., edges of waterbodies and small
waterbodies).

WOfS accuracy varies across each AEZ with the highest overall
accuracy in the Eastern AEZ and lowest in the Indian Ocean AEZ
(Figure 2). WOfS performs well in the Eastern and Northern AEZs
with an overall accuracy of more than 85%. For all AEZs, except the
Western and Indian Ocean AEZs, WOfS achieved overall accuracies
of more than 80%. Relatively low producer’s accuracies, or high
omission errors, were measured in the Western, Southern and
Indian Ocean AEZs. F1 scores for the water classification range
from 0.83 to 0.91 in the AEZs.

TABLE 2 Accuracy assessment for all labelled observations across the
continent. Overall accuracy (OA) was 82.1% and F1 score for water
classification is 0.87.

No water Water Total Producer’s (%)

No Water 2,721 369 3,090 88.1

Water 1,669 6,604 8,273 79.8

Total 4,390 6,973 11,363

User’s (%) 62.0 94.7
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3.2 Seasonal accuracy

The accuracy of the WOfS varied across wet and dry
months for each AEZ. For most AEZs the accuracy improved
in the dry season (Table 3). A different trend was measured for the
Northern AEZ, where the rainfall variation is small across the year.
The lowest accuracy was measured in the wet month in the
Western AEZ, coinciding with the lowest number of clear
observations. It is in general challenging to map water
accurately during high rainfall months in the Western, Central
and Indian Ocean AEZs.

Feedback from the qualitative assessment was very positive
across all surveyed participants. One stakeholder felt that the
service would be a very useful resource not only for researchers
in water resources management, but also for practitioners and
decision makers in the formulation of water resources
management policies. The most common criticism is that the
spatial resolution of WOfS was not adequate for small
waterbodies and for applications and areas where change was
below the spatial resolution on Landsat (30m2).

3.3 Applying WOfS at continental scale

WOfS measures surface water extent and water detection
frequencies that can be used to classify permanent and seasonal
water bodies. Our continental scale application demonstrated how
WOfS can be used to monitor water availability and understand
drought and flooding relative to historical data (Figure 3). We found
that the anomaly pattern measured byWOfS roughly correlates with
the rainfall anomaly estimated for the same period using the
monthly CHIRPS rainfall (Funk et al., 2014). Such analysis can
be applied at different scales to help users understand changes in
surface water extent at a finer detail across the continent.

3.4 Applying WOfS at local scale

The results from the use case with AGRYHMET, demonstrated
howWOfS can be used tomap andmonitor changes in Lake Chad to
help decision-makers understand year-to-year and long-term
changes in surface water area (Figure 4). Floods are recurrent

TABLE 3 Accuracy assessment for the wet and dry seasons of each AEZ (DE Africa, 2022).

AEZ Wet
month

# Of points in
wet month

Overall accuracy in
wet month (%)

Dry
month

# Of points in
dry month

Overall accuracy in
dry month (%)

Northern December 95 84.2 July 89 76.4

Sahel August 66 77.3 February 78 87.2

Western June 45 64.4 December 228 86.0

Eastern April 168 83.3 October 264 86.4

Central October 75 74.7 June 169 86.4

Southern January 156 82.7 July 223 82.1

Indian
Ocean

January 98 72.5 August 193 78.2

FIGURE 2
Accuracy assessment results for each AEZ showing user’s accuracy (left), producer’s accuracy (middle), overall accuracy (right).
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around the Lake and along the rivers that flow into it in the countries
of the Lake Chad Basin Commission (LCBC).

AGRYHMET found the surface water area was three times greater
in 2021 compared to 1986. Not only was there a significant gain in
surface water area, there was a shift in the spatial distribution of water.
AGRYHMET was able to identify and map areas that have remained
wet (1905 km2), wet areas that have changed to dry (1,415 km2), dry
areas that have converted towet areas for (4,389 km2) and finally areas
that have remained dry (20,930 km2). The change in surface water
area is likely due to solid transport in the area which from year to year
carries a significant amount of sand to be laid down at the bottom of
Lake Chad and altered its bathymetry. This is the result of cultivation
practices and climatic changes with an increase in violent winds over
time. Some parts of the lake have become shallower than they were in
the past. The same amount of water that could be contained in a
limited area now covers a larger shallow area increasing the risk of
flooding in the Lake Chad area. AGRYHMET presented the
summarised outputs to the community surrounding Lake Chad,
including the Chad Lake Basin Commission, the governors, the
mayors, the traditional chiefs, and producers’ associations
(agriculture, fishing, livestock) to help understand historic changes
for better land use planning and to identify areas at high risk of
flooding. This co-production process not only helped develop capacity
within the PDTT, but also provided use cases that allowed the PDTT
to engage with their regional stakeholders.

4 Discussion

The WOfS algorithm was able to accurately measure surface
water across the African continent and through time, with only

small variations in accuracy between rainy and dry months and
different AEZs. The results from both the quantitative and
qualitative accuracy assessment efforts provided the necessary
confidence for the DE Africa team to publish the WOfS service
as an operational product, updated on a monthly basis, for
continent-wide use.

4.1 Considerations and limitations

Our validation effort is limited to what can be detected visually
in the Sentinel two imagery. It should be noted that water features
obscured by vegetation canopy, terrain shadows, or are too small to
detect in Sentinel two imagery may have been missed in the
validation labelling process. In addition, the identification of the
presence of water is tied to the timing of the satellite overpass.
Sentinel two imagery was used here for validation, where it matched
a Landsat image acquisition within ± 5°days. There may be instances
where waterbodies have dried or shifted within that time period,
although we expect the impact on accuracy assessment to be
very small.

The WOfS algorithm has several limitations that should be
considered when using the WOfS dataset for a specific application.
The errors associated with WOfS across the African continent were
found to be similar to those noted in Australia, and are largely driven
by issues of spatial resolution (i.e., a 30m2 pixel size) and the
difficulty in detecting areas where a pixel covers both water and
dry surfaces (i.e., mixed pixels) (Mueller et al., 2016). These areas
tend to be on the edges of lakes and wetlands, or over small
waterbodies where there is a mix of water and vegetation within
a single 30m2 pixel. Waterbodies with high levels of sediment or

FIGURE 3
Rainfall (left) and surface water extent (right) anomaly measured for 2020. Surface water extent for a given year includes areas where water is
detected in more than 30% of the observations. This threshold was selected to reduce noise. A reference period of 2000–2020 (inclusive) has been used
to estimate themean and standard deviation of total rainfall and total surface water extent within each country. Standardised Anomaly is calculated as the
difference between the estimate for 2020 and the mean for the reference period, divided by the standard deviation.
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floating vegetation may also be missed as they are spectrally similar
to terrestrial pixels. Through our qualitative assessment we noticed
that WOfS had errors of omission related to narrow stretches of
rivers, especially those with high sediment levels in Western and
Central Africa, which likely contributed to the lower producer’s
accuracy in these regions. While small or narrow features may get
missed in a single observation, they are more likely to get captured at
the annual summaries and the all-time summary. However, because
small or narrow features may get missed in individual observations,
it important to note that frequency of flooding may be
underestimated in any summary products or time series
analysis (Figure 5).

Users who want to map and monitor changes to waterbodies
smaller than a Landsat pixel should consider applying sub-pixel
methods like NDWI (McFeeters, 1996), tasselled cap indices (Fickas

et al., 2016), or spectral mixture analysis (Halabisky et al., 2016) and/
or use satellite images with a finer spatial resolution such as Sentinel-
2, or other very high resolution satellite imagery (Mishra
et al., 2020).

The WOfS product is also limited by the 16-day acquisition
frequency of Landsat and poor historical coverage by Landsat five
over the African continent prior to the year 2000. In some cloudy
regions there may be insufficient cloud-free pixels to adequately
track changes in surface water dynamics. Specific applications
such as flood monitoring may also be limited by the temporal
resolution in the rainy season when there is a higher frequency of
cloud cover.

The WOfS algorithm was developed for application to analysis
ready surface reflectance data with physical reflectance values
between 0 and 1. The algorithm is sensitive to inaccuracy in

FIGURE 4
Location (left inset) and spatial extent of the Lake Chad area of interest (upper left); Change in water extent from winter 1986 to winter 2021 (upper
right). For each winter season, water observations from December to February next year are summarised. Pixels with more than 20% of water detection
frequency within a season are labelled as wet, otherwise as dry. Seasonal change of surface water extent from Spring (March to May) 2013 to Spring 2022,
compared to monthly CHIRPS rainfall (bottom). Within each season, surface water extent is calculated including pixels with more than 20% water
detection frequency. While this threshold is somewhat arbitrary we selected it to include more dynamic extent (from fewer observations). Lake Chad has
increased in surface water area with a shift in the spatial distribution of surface water area. Overall, 24% of the areas has shifted fromwet to dry while 76%
are from dry to wet.
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input data and breaks down when negative reflectance values are
used. A significant increase in false negative classifications,
i.e., where water was detected as dry was observed in the results
in situations where aerosol values are estimated to be high in the
Landsat Collection two data. This is likely caused by over-correction
for atmospheric effects, which has a larger impact on low reflectance
values and typically occurs over oceans and large lakes. To avoid
masking out potentially useable data over areas with poor coverage,
we decided to keep these classifications and to flag pixels with

negative reflectance values. Despite this limitation, the validation
results demonstrate that WOfS offers a balanced performance over
all types of water bodies present within the African landscape.

There are other water classifiers available or are being developed.
In principle, we can adopt or develop new open source methods to
improve WOfS in the future and the validation dataset created will
help to benchmark these new methods. We welcome the use of this
dataset by other teams to assess their method. Although we
emphasize that matrices created against this validation dataset

FIGURE 5
Narrow or small waterbodies (A)may be omitted from individual WOfS observations (WOfLs) (B) if they are close to scales near or below a 30m pixel
resolution. These waterbodies are more likely to be detected in the annual (C) or all-time summary (D), but may have inaccurate estimates of flood
frequency. Water is colored light blue in Figure 5B. For a detailed description of the WOfLs classification please reference Figure 1.

FIGURE 6
WOfS can be viewed and accessed through the Digital Earth Africa maps platform https://maps.digitalearth.africa.
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should be used in combination with other validation methods
relevant for specific applications. WOfS is continually being
updated as each Landsat scene becomes available. Annual
summaries for the previous year and the all-time summary are
updated at the start of each year.

4.2 Accessing the methods and dataset

Technical documentation for the WOfS algorithm, product
specifications, and guidance for accessing the data through
different interfaces is provided in the Digital Earth Africa Data
Catalogue (DE Africa, 2022).

WOfS can be explored interactively through the Digital
Earth Africa Maps user interface (Figure 6). For further
analysis the data are freely accessible through the DE
Africa Sandbox; this includes the full WOfS archive with
annual and all-time summaries from 1984 to 2022, as well as
additional DE Africa analytical workflows to query, analyse and
view the data, which can be customized for different user locations
of interest.

5 Conclusion

The Water Observations from Space (WOfS) is a Digital Earth
Africa operational service that translates decades of satellite imagery
into easy-to-consume information on the presence, location and
recurrence of surface water across Africa.

The WOfS algorithm, originally developed for Australia,
has been successfully applied to the full Landsat satellite
archive (since the mid 1980s) for the entire African continent,
and has been validated for different time periods and types of
waterbodies. WOfS enables users to understand the location
and movement of inland (and coastal) water over time. It
shows where water is usually present; where it is seldom
observed; and where inundation of the surface has been
observed by satellite. This allows users across Africa to map,
assess, visualise, and manage surface water resources and
understand trends over time.

Easily accessible and frequently updated information
which is produced consistently across space and time, such
as WOfS, is critical for understanding the past as well as
present distribution of surface water, and in understanding
surface water dynamics and changes to these which are
occurring as a result of climate change. This information is
important for many critical water security issues such as
identifying accessible water sources during dry seasons,
planning for and preventing the impacts from flooding and
drought, and managing the sustainable use of water resources
across scales (site, national, regional).
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