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Minerals, metallurgy, and other production activities will cause a large number of
heavy metal elements to leak into the natural environment. A large number of heavy
metal elements have been found in the farmland soil, where the adsorption of plants
enhances the enrichment. Here, we have selected a region with three terraces to
conduct a whole-area soil sample collection and satellite hyperspectral data
processing study to explore the role of terrain in this enrichment process. Five
spectral transformation methods and four feature enhancement algorithms were
designed, and the content extractionmodel was established to quantitatively retrieve
eight heavy metal elements. The results indicates that the three terraces are the
source state, transition state, and stable state of heavy metals respectively with the
decrease of elevation; The correlation coefficient of various heavy metal elements
exceeds 0.92, and the enrichment pattern is consistent although slope and aspect
have no significant correlation with the enrichment of heavy metal elements; Local
Cd exceeds 30.00%, Hg exceeds 10 times, and As exceeds 48.30% according to the
indicator provisions of Chinese national standard (GB 15618-2018). Such knowledge
extends our understanding of the abundance, migration, and enrichment of heavy
metals from the perspective of topography, which is crucial for pollution assessment
and soil remediation.
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1 Introduction

Heavy metal elements caused by mineral exploitation in mountainous areas flow from
high altitude regions to low altitude regions and accumulate in densely populated valley
plains (Shin et al., 2020; Cai et al., 2022). Unfortunately, this transportation process will
pollute all farmland soil (Zhou et al., 2021). The enrichment of heavy metal elements,
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through the adsorption of biological roots, is finally partially
absorbed by the human body, leading to public health problems
(Banerjee et al., 2017; Agyeman et al., 2022; Wang et al., 2022). The
traditional monitoring method is to carry out soil sampling (Guo
et al., 2021), laboratory testing (Hou et al., 2019), and interpolation
analysis technology on a yearly basis (Cai et al., 2022). The difficulty
lies in the huge cost and timeliness cannot meet the public demand
(Liu et al., 2017; Chen et al., 2022).

The combination of spectroscopy and chemometrics can be used as
a practical, fast, low-cost and quantitative method (Liu et al., 2021). The
general process of traditional soil heavymetal hyperspectral monitoring
includes collecting representative soil samples to ensure sample quantity
and quality, performing pretreatments such as drying, grinding, and
sieving to obtain samples suitable for acquiring hyperspectral remote
sensing data (Mezned et al., 2022). Obtaining the soil sample’s
reflectance spectral data using a hyperspectral remote sensing
instrument. Preprocessing the acquired spectral data, including
atmospheric correction, radiometric correction, and comparison of
ground object similarity (Harmel et al., 2012; Agyeman et al., 2022).
Extracting the characteristic wavelength bands of soil heavy metal
elements from the processed spectral data. Establishing the
relationship between characteristic wavelength bands and soil heavy
metal element content to obtain a quantitative inversion model (Ben-
Dor et al., 2006; Tong et al., 2010). Performing hyperspectral inversion
of soil heavy metal element content. Using the established quantitative
inversion model, converting spectral data into spatial distribution maps
of soil heavy metal element content (Ben Dor et al., 2022; Cai et al.,
2022). A series of new discoveries have beenmade in soil zinc and nickel
concentration distribution (Guo et al., 2021), heavy metal cations (Shin
et al., 2020), soil Cr and Ni concentrations (Han L et al., 2022), soil
mercury pollution (Han et al., 2021), clay minerals (Zhou et al., 2021),
and toxic minerals (Dkhala et al., 2020). Heavy metals in soil generally
belong to trace level, and it is difficult to find characteristic bands (Li
et al., 2021; Zhang B. et al., 2022; Cai et al., 2022). Although several
spectrum segments of heavy metals have been obtained, their
universality is difficult to be recognized (Guo et al., 2021). A large
number of spectral preprocessing methods have been used to improve
the amount of spectral information and the accuracy of the model
(Chen et al., 2019; Bian et al., 2021; Zhang B. et al., 2022).

The content of soil heavy metals usually decreases with the
increase of terrain elevation, especially in areas with large differences
in elevation such as mountainous regions, because heavy metals in
the soil usually deposit to low-altitude areas with the flow of water
and other substances (Saidi et al., 2022). Hydrological conditions
also have some influence on the transport and accumulation of soil
heavy metals, such as extreme weather events like heavy rains which
can lead to an increase in soil heavy metal content (Mendes et al.,
2022; Zhao et al., 2022). Excessive use of mining, smelting, and
chemical fertilizers releases toxic pollutants such as Zn, Pb, or Cd
into the soil, thus poisoning the soil and further harming the growth
of crops (Xue et al., 2020; Li B. et al., 2022). Snowmelting, frozen soil
melting, and rainfall can transport soil matter to low-lying areas (Ou
et al., 2021). In addition, the effect of terrain makes it very difficult
for traditional sampling methods to determine the source and
transportation route of pollutants (Guo et al., 2021; Ou et al.,
2021). Heavy metals are exported from pollution sources,
transported by water systems from streams near mountains, and
absorbed and enriched by the land through which they pass, forming

a complete transmission chain (Banerjee et al., 2017). Different
crops will absorb different types of heavy metals, and the roots and
straws further form new enrichment forms (Xue et al., 2020; Li Y.
et al., 2022). The content of soil heavy metals varies in different
geological environments, for example, the content of soil heavy
metals is usually higher in geological environments such as igneous
rocks and metamorphic rocks than in sedimentary rocks (Brossard
et al., 2016; Wan et al., 2021). Overall, the content of soil heavy
metals is closely related to factors such as terrain, hydrological
conditions, and geological background, and a comprehensive
consideration of these factors is needed to accurately assess the
pollution status of soil heavy metals.

The application of hyperspectral remote sensing technology in
the extraction of heavy metals from soil is a highly researched area,
however, there are still some limitations and shortcomings in
practical applications. Firstly, although hyperspectral remote
sensing technology can capture more spectral information of
objects, the information obtained in the extraction of soil heavy
metals may not necessarily reflect the true content of heavy metals in
the soil. Therefore, it is necessary to process and analyze the spectral
data obtained by hyperspectral remote sensing technology to obtain
more accurate information on heavy metal content. Secondly, the
widely used methods of hyperspectral remote sensing technology in
the field of soil heavy metal extraction all have certain limitations.
For example, these methods require a large amount of sample data
for training and are susceptible to the influence of data noise, leading
to inaccurate identification results. Finally, despite the rapid and
non-destructive detection advantages of hyperspectral remote
sensing technology, there are still some difficulties in practical
applications. For example, the cost of spectrometers is relatively
high, the operation is complex, and requires professional personnel
for operation and analysis.

Although hyperspectral remote sensing technology has
tremendous potential in the field of soil heavy metal extraction,
there are still limitations and shortcomings in practical applications.
The next step in research needs to further improve the analysis
methods of hyperspectral remote sensing technology and combine
them with other methods to enhance the accuracy and reliability of
soil heavy metal extraction. At the same time, it is necessary to
reduce instrument costs, improve data processing efficiency, and
enable hyperspectral remote sensing technology to be widely applied
in the monitoring of soil heavy metal pollution and environmental
assessment, providing a scientific basis for the management of
soil pollution.

To understand the relationship between soil heavy metals and
terraces, here, we collected soil samples from a county and
hyperspectral satellite data for a day with good weather
conditions. Eight typical heavy metal elements were
quantitatively extracted through data preprocessing, algorithm
implementation, precision evaluation, mapping, and analysis (Liu
et al., 2017; Han L et al., 2022; Mezned et al., 2022). The strength of
heavy metal content along the three terraces and the distribution
patterns of heavy metal content in soil along the topography were
studied by introducing slope, aspect, and pH data (Chen et al., 2019;
Agyeman et al., 2022; Cai et al., 2022; Giniyatullin et al., 2022). The
types of heavy metals exceeding the standard in the study area are
obtained under the provisions of the Chinese national standard GB
15618-2018. The above knowledge broadens the understanding of
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heavy metal transport and enrichment, and is essential for the
assessment and soil remediation.

2 Materials and methods

2.1 The study area

Fenghuang County, Xiangxi Tujia and Miao Autonomous
Prefecture, Hunan Province is selected as the study area

(109°18′E~109°48′E, 27°44′N~28°19′N) (Figure 1). The study
area has undulating terrain, with main landforms including
mountains, valleys, and hills. The area is crisscrossed by
mountain ranges, with major peaks such as Jietian Peak and
Wuling Peak. Multiple rivers flow through the area, including the
Tuo River and Simeng River. Additionally, Fenghuang County
also has some relatively gentle hilly areas. The soil types are
diverse, with mountain soils mainly composed of weathered
rocks forming yellow-brown soil, rich in minerals and organic
matter, suitable for vegetation growth. Sandy soils are mainly

FIGURE 1
The distribution of the study area and sampling points. (A) The geographical distribution of the research area and sampling points; (B) Geographic
site of the study area; (C) Synchronously determine GPS coordinates when collecting soil samples. Then take the soil within a 1 m range and send it to the
laboratory for analysis and analysis.
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distributed in the valley areas, with a higher content of sand
particles and good drainage. Huang soils are widely distributed,
with thick soil layers and high fertility, suitable for cultivation
and agricultural development (Xue et al., 2020). The total area is
about 1,760 km2, and the terrain is divided into three terraces
(Agyeman et al., 2022). The eastern part is a valley and hilly area
with an altitude of less than 500 m, the middle part is a middle
and low mountain area with an altitude of 500–800 m, and the
western part is a middle mountain area with an altitude of more
than 800 m (Figure 2). There has been a tradition of mineral
mining since ancient times, with phosphate ore, manganese ore,
vanadium ore, iron ore, and coal mining as the main mining. The
waste liquid generated in the process of mineral development
flows into the soil through physical and chemical processes due to
the special tertiary terrace, resulting in potential heavy metal
pollution risk (Lu et al., 2019; Chen et al., 2022).

Soil samples were collected at equidistant intervals of 2 km in
the study area. And a total of 421 soil samples were obtained within
a period of 1 month. Soil samples from the depth of 0–10 cm on the
ground surface is collected at each point according to the longitude
and latitude (Han B et al., 2022). They are sealed into polyethylene
bags after removing plant roots, leaves, and stones with a mesh of
0.01 m. Send the collected soil samples to the Wuhan Mineral
Resources Supervision and Testing Center of the Ministry of Land
and Resources of China for physical and chemical analysis (Ben
Dor et al., 2022). The contents of eight heavy metals such as
cadmium, mercury, arsenic, lead, chromium, copper, nickel, and
zinc were obtained. Among them, Cd, Pb, Cu, and Zn are measured
by inductively coupled plasma mass spectrometry; Hg and As are
determined by hydride generation-atomic fluorescence
spectrometry; Cr is determined by X-ray fluorescence
spectrometry; Ni was determined by inductively coupled plasma
atomic emission spectrometry. A total of 421 samples were
collected and divided into a modeling set and a validation set
in a 7:3 ratio (Xue et al., 2020; Zhang B. et al., 2022; Mezned et al.,
2022) (Table 1).

2.2 Hyperspectral data acquisition and
processing

OHS is the only commercial hyperspectral satellite in China that
has completed the launch and networking. The spatial resolution is
10m, and the imaging range is 150 km × 2,500 km. The spectral
resolution in the wavelength range of 400 nm–1,000 nm is 2.5 nm.
This satellite data contains 32 spectral bands with a spatial resolution
of 10 m [36]. Each group of satellite data contains a metadata file
that records information such as payload, center point longitude and
latitude, data acquisition time, satellite observation angle, solar
altitude angle, etc., for subsequent data preprocessing (Zhang B.
et al., 2022; Bouzidi et al., 2022). Data in 13 September 2022 were
used in the study.

The process of data processing is divided into four steps:
radiation correction, atmospheric correction, orthophoto

FIGURE 2
The study is divided into three terraces, which are valley hilly
zone, middle and low mountain zone, and middle mountain zone
from east to west.

TABLE 1 Eight heavy metal content values were obtained for each soil sample, including the minimum, maximum, mean, and standard deviation values
(Figure 1A).

Serial number Value Class Heavy metal element

Cd Hg As Pb Cr Cu Ni Zn

1 Minimum Modeling set 0.16 0.05 1.61 18.80 47.10 18.80 18.80 55.50

Validation Set 0.11 0.04 1.63 20.50 52.70 18.70 20.10 55.60

2 Maximum Modeling set 2.55 83.9 58.40 264.00 159.00 143.00 75.70 582.00

Validation Set 2.65 1.68 42.00 79.40 178.00 75.30 59.10 188.00

3 Average Modeling set 0.51 0.74 16.60 46.50 77.50 34.80 37.80 113.00

Validation Set 0.37 0.21 10.90 32.80 69.90 28.90 31.80 85.30

4 Standard deviation Modeling set 0.30 4.56 8.72 24.90 14.20 10.50 7.67 47.50

Validation Set 0.27 0.25 7.21 10.30 14.60 7.19 7.19 22.40

Note: The unit is mg kg−1.

Each soil sample is taken from 1 m × A 1 m plot (Figure 1C). The sample weight is 1 kg, which can meet the basic requirements for heavy metal element analysis and validation.
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FIGURE 3
Algorithm flowchart from data acquisition to model selection.

TABLE 2 The spectral transformation method selected in the study.

Serial number Transformation method Process formulas

1 Original spectrum Xi � Ri

2 Logarithm Xi � Ln (Ri)

3 Exponential Xi � eRi

4 Homogenization Xi � (Ri − Rmin)/(Rmax − Rmin)

5 First-order differential Xi � Ri′

Note: Xi is the processed spectral reflectivity; Ri is the spectral reflectivity; i is the band variable; Rmin is the minimum reflectivity; Rmax is the maximum reflectivity; and Ci is the envelope curve

value.

Spectral transformation can provide better data understanding, information extraction, and data processing effects in spectral analysis and remote sensing applications, helping to reveal

information on surface features, environmental changes, and target recognition.
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FIGURE 4
Mapping results of 9 soil components calculated from hyperspectral data. (A) The distribution of Cd is generally lower than 0.50 mg/kg, showing
scattered distribution in the valley; (B) The distribution of Hg is lower than 1.50 mg/kg as a whole, and it is star-shaped in the study area; (C) The average
value of As is 7.23 mg/kg, which is characterized by north-south distribution and significant high in individual regions; (D) The average value of Pb is
28.68 mg/kg, and there is a significant correlation between its distribution and terraces; (E) The content of Cr is lower than 80 mg/kg in most areas,
but it is significantly higher in the valley; (F) The average content of Cu is 16.98 mg/kg, and its distribution is also closely related to terrace; (G) The average
content of Ni is 18.38 mg/kg, and there is also a certain correlation between distribution and terraces; (H) The average content of Zn is 75.92 mg/kg, and
the content of the first terrace is significantly higher.

Frontiers in Environmental Science frontiersin.org06

Tang et al. 10.3389/fenvs.2024.1291917

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1291917


correction, and study area clipping (Meng et al., 2021). Firstly,
radiation correction. By using pre collected sensor response
functions for calibration, the radiation distortion caused by the
characteristics of the sensor itself is removed (Wang et al., 2022).
Secondly, by utilizing the FLAASH algorithm and using an
atmospheric transport model, the impact of the atmosphere on
the image is estimated and corrected, and this impact is removed
(Agyeman et al., 2022). Thirdly, use elevation data to generate a
digital surface model, and then register satellite images with DSM to
achieve ortho-correction. This method can consider the height

FIGURE 5
Statistical results of heavy metals in different terraces. (A) The
highest Cu content is distributed outside the first terrace, while the
average content of the other seven heavy metal elements is highest in
the third terrace; (B) The maximum values of As and Cr appear in
the second terrace, while the maximum values of the other six heavy
metals appear in the first terrace at higher altitudes; (C) The maximum
STD values of Hg and As appear in the third terrace, while the
maximum STD values of the other six heavy metals appear in the

(Continued )

FIGURE 5 (Continued)

second terrace at higher altitudes; (D) The total content of As
element is the highest in the second terrace, while the other seven
elements have the highest content in the first terrace at
higher altitudes.

FIGURE 6
Response of heavy metals to topography. (A) Larger slopemainly
occurs in the valley area due to the cutting effect of water system; the
slope fluctuates violently; (B) The study area presents a south-north
and east-west intersection trend, and southward and westward
directions become the main existence mode of slope direction.
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difference of ground objects and improve the spatial positioning
accuracy of the image (Agyeman et al., 2022). Fourthly, Fourthly, use
vector boundaries and spatial analysis algorithms to crop the image
into parts that intersect or are included within the boundaries
(Wang et al., 2018). Finally, the reflectance data of satellite
remote sensing images in the study area were obtained (Meng
et al., 2021).

2.3 Algorithms

A set of algorithm processes was designed to better establish the
relationship between spectrum and content. Firstly, the spectral data
underwent five types of transformations to highlight the spectral
characteristics. Secondly, the data was divided into a modeling set
and a validation set, and the content of the modeling set was used to
establish a partial least squares model with the spectral values.

Thirdly, the modeling results were evaluated using the calculated
values of NMI, MI, MIC, and Pearson, and the relatively optimal
model was selected. Fourthly, the optimal model was applied to the
validation dataset, and the predicted values were evaluated against
the laboratory values using the indicators R2 to determine the
effectiveness of the model (Figure 3).

Five spectral data transformation methods were selected,
including original spectrum, logarithmic spectrum, exponential
spectrum, homogenization spectrum, and first derivative
spectrum (Xue et al., 2020; Tan et al., 2021; Li B. et al., 2022).
The original spectrum is not processed, and the pixel spectrum is
directly taken for modeling; Logarithmic spectrum is a discrete way
to make the spectrum close to normal distribution (Xu et al., 2022);
Exponential spectrum can improve the value of low reflectivity and
restrain the value of high reflectivity; The homogenization spectrum
can remove the systematic error generated in the preprocessing
process; The first derivative spectrum can amplify the mutation

TABLE 3 Response relationship between heavy metals, slope, and aspect.

Slope Aspect Cd Hg As Pb Cr Cu Ni Zn

Slope / 0.05 0.05 0.07 −0.02 −0.01 0.00 0.00 0.00 0.01

Aspect 0.05 / 0.01 −0.05 −0.01 −0.02 0.00 0.00 0.00 0.00

Cd 0.05 0.01 / 0.68 0.92 0.95 0.98 0.98 0.98 0.97

Hg 0.07 −0.05 0.68 / 0.63 0.64 0.63 0.62 0.63 0.65

As −0.02 −0.01 0.92 0.63 / 0.94 0.95 0.92 0.94 0.94

Pb −0.01 −0.02 0.95 0.64 0.94 / 0.96 0.94 0.97 0.99

Cr 0.00 0.00 0.98 0.63 0.95 0.96 / 0.99 1.00 0.97

Cu 0.00 0.00 0.98 0.62 0.92 0.94 0.99 / 0.99 0.95

Ni 0.00 0.00 0.98 0.63 0.94 0.97 1.00 0.99 / 0.98

Zn 0.01 0.00 0.97 0.65 0.94 0.99 0.97 0.95 0.98 /

There is no significant correlation between slope and aspect, which is determined by geological conditions. Moreover, there is no statistical correlation between slope and aspect with all heavy

metal elements. The correlation coefficient of other seven heavy metals is greater than 0.90 in addition to Hg. The special physical properties of Hg lead to this phenomenon, and the general

correlation coefficient is about 0.62.

TABLE 4National standards issued by China in 2018 (GB 15618–2018), Soil environment quality–Risk control standard for soil contamination of agricultural
land.

Serial number Contaminants Heavy metal element

pH≤5.5 5.5<pH≤6.5 6.5<pH≤7.5 pH>7.5

1 Cd 0.30 0.30 0.30 0.60

2 Hg 0.50 0.50 0.60 1.00

3 As 30.00 30.00 25.00 20.00

4 Pb 70.00 90.00 120.00 170.00

5 Cr 150.00 150.00 200.00 250.00

6 Cu 50.00 50.00 100.00 100.00

7 Ni 60.00 70.00 100.00 190.00

8 Zn 200.00 200.00 250.00 300.00

Note: The unit is mg kg−1.

The national standard divides paddy field and dry land. The paper adopts a strict risk screening value since most of the study area belongs to paddy and dry rotation land.
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position of reflectivity and help to find the characteristic
band (Table 2).

The purpose of selecting different spectral data conversion
methods is to extract or emphasize information from different

aspects of spectral data, to better adapt to subsequent data
analysis and modeling needs.

(1) Original spectrum: Without any processing, model directly
using pixel spectra. This method can preserve the
characteristics of the original data and is suitable for data
analysis that does not require additional processing in certain
situations.

(2) Logarithmic spectroscopy: Performing logarithmic
transformation on a spectrum to make it closer to a
normal distribution can aid in the application of certain
statistical methods, such as linear regression.

(3) Exponential spectrum: can increase the value of low
reflectivity and suppress the value of high reflectivity. This
method can adjust the dynamic range of spectral data, making
some details more prominent in visualization and analysis.

(4) Uniformization spectroscopy: This method can remove
systematic errors generated during preprocessing, making
spectral data more accurate and reliable.

(5) First derivative spectroscopy: By calculating the first
derivative of the spectrum, the position of abrupt changes
in reflectance can be magnified, which helps to identify
characteristic bands or edge positions. This method can
extract local variation information from spectral data,
which is helpful for the detection and analysis of
specific features.

PLSR is selected as the modeling algorithm (Li B. et al., 2022;
Mezned et al., 2022; Wang et al., 2022). PLSR (Partial Least Squares
Regression) is a commonly used multivariate statistical modeling
algorithm that has the following advantages in spectral processing.

(1) Solving the problem of multicollinearity: In spectral data,
there is correlation and overlap between different bands,
which may lead to the problem of multicollinearity in
traditional linear regression methods. PLSR can effectively
solve multicollinearity problems and improve the stability
and accuracy of modeling by transforming predictive and
response variables into new composite variables.

(2) Performs well in small sample situations: Spectral data
typically has high dimensionality and relatively small
sample sizes, which can make traditional regression
methods difficult to obtain reliable results. PLSR uses
multiple principal components to represent the variability

FIGURE 7
Distribution and grade of pH value. (A) The soil is weakly acidic as
a whole; (B) The pH value of more than 98% of the area is the second
category, between 5.5 and 6.5.

TABLE 5 Results of heavy metal elements exceeding the standard in the national standard (GB 15618-2018).

Serial number Class Mean content of heavy metal element

Cd Hg As Pb Cr Cu Ni Zn

1 pH≤5.5 0.29 8.53 0.66 57.50 3.49 20.68 44.11 129.53

2 5.5≤pH≤6.5 0.43 0.82 13.76 37.66 72.78 32.31 35.01 95.83

3 6.5≤pH≤7.5 0.52 0.73 15.95 35.26 76.17 35.10 35.92 96.41

4 pH>7.5 1.09 11.27 29.66 15.37 42.20 29.69 29.13 83.31

Note: The unit is mg kg−1.

The content of Cd, Hg, and As exceeds the standard value, which has potential risks to the local ecological environment.
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of the original spectral data, which can better fit the data in
small sample situations and reduce the risk of overfitting.

(3) Considering the characteristics of spectral data: PLSR is based
on the principle of principal component analysis, which
selects principal components to explain the variability of
spectral data to the greatest extent possible. This enables
PLSR to capture key features in spectral data and
effectively utilize these features for modeling and prediction.

(4) Strong interpretability: PLSR can generate weight coefficients
to explain the contribution of different bands to response
variables in spectral data. This makes the PLSR model highly
interpretable, helping researchers understand the relationship
between spectral data and response variables, and further
analyze and interpret them.

This method is used to find the basic relationship between
reflectivity X and heavy metal content Y, and characterizes
reflectivity into four correlation coefficients such as NMI, MI,
MIC and Pearson.

NMI is a measure of the similarity of two reflectivity, with a
range of [0,1]. The higher the value is, the more similar the two
clustering results are (Huang et al., 2022). The formula is,

NMI Y, C( ) � 2 × I Y;C( )
H Y( ) +H C( )

Where, Y is the true category of data;C is the clustering result;H(Y)
and H(C) are the cross entropy, H(X) � −∑|X|

i�1 P(i)logP(i), where
the log is based on 2; I(Y;C) is the mutual information and
I(Y;C) � H(Y) −H(Y|C).

MI is an information quantity, which is the uncertainty of a
random variable reduced by knowing another random variable
(Wang et al., 2022). If two variables X and Y are limited, and
their respective marginal probability densities and joint probability

densities are p(x), p(y), and p(x, y), then the mutual information
I(X;Y) between them can be defined as,

I X;Y( ) � ∑
x
∑

y
p x, y( )log p x, y( )

p x( )p y( )
Where, the minimum value of I(X;Y) is 0, which means that

there is no overlapping information between the two variables, that
is, completely independent or mutually independent; On the
contrary, the larger the value of I(X;Y), the higher the degree of
interdependence between the two variables, indicating that there is
more common information shared between the two variables.

The MIC coefficient can evaluate different types of association
relationships efficiently to find a wide range of relationship types,
with a value range of [0,1], and has good robustness (Zhou et al.,
2022). The formula is,

MIC X;Y( ) � max
X‖Y| |<B n( )

I X;Y( )
log2 min X| |, Y| |( )( )

Where, the range of MIC(X;Y) values is [0,1], B(n) is the upper
limit value of the grid interval nX×nY, and nX and nY are the number
of samples for X and Y, respectively.

Pearson coefficient is used to measure the linear correlation
degree between two variables X and Y, and its value is
between −1 and 1 (Giniyatullin et al., 2022). The formula is,

r � ∑ xi − �x( ) yi − �y( )������������������∑ xi − �x( )2∑ yi − �y( )2√

Where, �x, �y is the mean of X and Y variable samples respectively,
where X=(x1,x2,. . .,xn) and Y=(y1,y2,. . .,yn) is the sample dataset for
X and Y, n is the number of samples, and r is the calculated Pearson
correlation between the two variables.

The determination coefficient R2 are commonly used evaluation
indicators in hyperspectral quantitative remote sensing to evaluate

FIGURE 8
The transport patterns of heavy metals in terraced areas. Heavy metals migrate from high-altitude terraces to low-altitude terraces, forming STS
models, namely source state, transition state, and stable state.
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the fitting degree and prediction accuracy of models. The coefficient
R2 is used to measure the explanatory power of the model to the
observed data, that is, the proportion of variance that the model can
explain the dependent variable. The value range of R2 is between
0 and 1, and the closer it is to 1, the better the model fits and can
explain more variance; On the contrary, the closer to 0, the worse the
fitting effect of the model and the inability to explain variance. By
comparing the R2 values of different models, it can be determined
which model is more suitable for fitting the data (Liu et al., 2021;
Zhang D. et al., 2022).

3 Results

3.1 The strength of heavy metal content
along the three terraces

The distribution of eight heavy metals presents different laws
according to the calculation results (Wang et al., 2018; Poppiel et al.,
2020; Zhang D. et al., 2022). The distribution of Cd, Hg, and Cr
contents has no significant relationship with terrace; The
distribution of As, Pb, Ni, and Zn contents is positively
correlated with altitude; The content of Cu is negatively
correlated with the altitude (Figure 4).

Heavy metal elements are mainly distributed on the third terrace,
which is consistent with the actual situation of mining (Figure 5A). The
content of Cu is the only highest mean value distributed on the first
terrace. It is speculated that human production and living activities lead
to this phenomenon since there is no copper deposit in the area
(Taghizadeh-Mehrjardi et al., 2021). The maximum content of
heavy metals in each terrace mostly occurs in the first terrace, and
only As and Cr do not follow this rule (Shin et al., 2020). Themaximum
pollution value still appears in the first terrace with high population
density although there is a positive correlation between elevation and
distribution (Figure 5B). The second terrace is in the transition zone
connecting the other two terraces, and most of the content mutations
occur in this area (Figure 5C). The first terrace is significantly higher
than the other two terraces, even several times by calculate the total
content of all heavy metals (Figure 5D). Heavy metals are enriched in
this terrace with the rain, weathering, and erosion, as well as the impact
of human production activities (Wang et al., 2018; Han L et al., 2022).

3.2 Distribution patterns of heavy metal
content in soil along the topography

Slope and aspect are the most important indicators of terrain
(Agyeman et al., 2022; Cai et al., 2022). The slope of the study area is
between 0°–75° (Figure 6A), and the slope direction is mainly south
and west (Figure 6B). There is no significant correlation between the
two. The former is denudation under river cutting and weathering,
and the latter is fault zone and mineralization caused by geological
activities (Jiji, 2021; Giniyatullin et al., 2022).

The correlation coefficient is only 0.05, which verifies that they
are independent from each other from a mathematical point of view
(Table 3). The aspect and slope have negligible correlation with Cd,
Hg, As, and Pb, but have no correlation with the other four elements.
It reveals that elevation is the only determining factor, independent

of slope and aspect (Demattê et al., 2015; Chen et al., 2022). The
correlation coefficient between Hg and other seven heavy metal
elements is between 0.62–0.68. However, the correlation coefficient
between the other seven heavy metal elements exceeded 0.92,
especially the correlation coefficient of Cr, Cu, and Ni reached
0.98. The effects of mining, transportation, rehabilitation, and
soil erosion have resulted in the enrichment of these heavy metal
elements in the same places (Chen et al., 2022; Giniyatullin et al.,
2022) (Figure 6C). This also explains that part of the local farmland
will be fallow, because the crops planted often exceed the standard of
heavy metals and fail to meet the requirements of safe food (Xue
et al., 2020; Chen et al., 2023).

3.3 Assessment of heavy metal pollution
in soil

The soil risk assessment was conducted according to the
national standard, Soil environment quality—Risk control
standard for soil contamination of agricultural land (GB 15618-
2018) issued by China in 2018 (Table 4). Measure the pH value of the
collected soil samples (Dkhala et al., 2020; Mezned et al., 2022)
(Figure 7A). The pH is divided into four categories, and the area
proportions of the four levels are 0.01%, 98.35%, 1.64%, and 0.00%
respectively (Figure 7B).

Cd is the most serious heavy metal in the soil and the average
content is 0.43 mg kg−1, 0.52 mg kg−1, and 1.09 mg kg−1 respectively,
when the pH exceeds 5.50 which is 30.23%, 42.31%, and 63.30%
higher than the national standard (Bian et al., 2021). The average
content of Hg element in the two grades of pH ≤ 5.50 and pH >
7.50 is 8.53 mg kg−1 and 11.27 mg kg−1, which are 16.06 times and
10.27 times higher than the national standard respectively. As
element exceeded the standard in the range of pH > 7.50, and
the average content was 29.66 mg kg−1, which is 48.30% higher than
the 20.00 mg kg−1 required by the national standard. The other five
heavy metal elements are below the requirements of the national
standard, and are significantly lower than the threshold. There is no
risk of heavy metal pollution (Giniyatullin et al., 2022) (Table 5).

4 Discussion

In recent years, with the strengthening of China’s efforts to
control air pollution and water pollution, these two environmental
factors have initially met the requirements of healthy life [12,16]. In
contrast, the seriousness of soil problems still exists, and there are
not many reliable technical means (Xue et al., 2020; Ou et al., 2021).
There is water, air bubbles, microorganisms, organic matter,
minerals, and other substances in the soil (Han et al., 2021; Ou
et al., 2021; Wang et al., 2021; Zhou et al., 2021). In terms of
mechanism, speculation is based on the interaction principle
between matter and electromagnetic radiation, while in terms of
statistics, prediction models are established using a large amount of
hyperspectral data and data analysis methods. This comprehensive
application can improve the accuracy and reliability of heavy metal
content, and play an important role in environmental protection,
agricultural management, and other fields (Meng et al., 2021; Han B
et al., 2022). The difficulty of the problem is that heavy metal
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elements in soil exist in trace or even micro amount forms (Lu et al.,
2019). Current research shows that it is extremely difficult to
determine the characteristic bands of each heavy metal element
(Xue et al., 2020; Zhou et al., 2021; Zhang D. et al., 2022; Lin et al.,
2022). This is easy to understand, because the content of heavy metal
elements has a characteristic position in the spectrum, and this
farmland can even extract minerals.

There are two ways to solve this problem. Firstly, the content of
heavy metals can be extracted indirectly by determining the
content relationship between heavy metals and other
components with characteristic bands in the soil (Huang et al.,
2022). There is a close relationship between heavy metal elements
and soil moisture (Liu et al., 2017). The study indicates that the
stability of soil aggregate water is gradually enhanced with the
increase of Al, Fe, and Mn oxide content (Shin et al., 2020); There
is a close relationship between Fe and Mn oxides (Zhou et al.,
2021); Fe and Mn oxides will co-precipitate and oxidate with heavy
metal pollutants arsenic, thus reducing the degree of heavy metal
pollution (Zhou et al., 2021); Al can inhibit the decomposition of
soil organic matter through adsorption and inhibition of microbial
activity (Taghizadeh-Mehrjardi et al., 2021). Therefore, the
content of heavy metals can be deduced by extracting the
content of soil water, oxide, and organic matter (Lu et al., 2019;
Wang et al., 2021; Zhou et al., 2021). Secondly, the heavy metal
content and hyperspectral data are trained and learned on a large
scale through machine learning algorithm, and the information is
extracted from the statistical sense (Zhang B. et al., 2022;
Giniyatullin et al., 2022; Lin et al., 2022). A series of
breakthroughs have been made in relevant research although
this method cannot answer the physical and chemical
mechanism of heavy metal elements from the mechanism (Shin
et al., 2020; Li Y. et al., 2022). From the results, the spectral
principle is inversely inferred, and the closed-loop of the research
is realized.

Our research combines the advantages and disadvantages of
the above two methods. The PLSR model with stable information
extraction is selected for TB level modeling and accuracy
verification (Hou et al., 2019; Dkhala et al., 2020; Mezned
et al., 2022). There are three discussion points extended.
Firstly, the content of heavy metal elements in different
terraces has three forms, that are generation, transition, and
stability. Obviously, mineral occurrences in mountainous areas
have become the source of heavy metals, known as the source
state due to the impact of human production and living activities
(Banerjee et al., 2017). Most heavy metal elements converge in the
third terrace with the joint action of weather, climate, and water
and soil, forming a potential risk area of soil heavy metal
elements, called stable state (Shin et al., 2020). The secondary
terrace becomes the pathway of heavy metal elements and forms
the place where heavy metal elements are transported in the soil,
which is called the transition state (Banerjee et al., 2017). This
theory can be named STS model. Therefore, the strategy should
obviously be to control the source state, block the transition state,
and repair the stable state in order to control heavy metal
pollution (Lin et al., 2022).

Additionally, the distribution pattern of heavy metal elements
should be closely related to topography since terrain is an
important factor in heavy metal transport (Han L et al.,

2022). Terrain will lead to changes in water flow, sunshine,
wind direction, and other environmental factors, which will lead
to differences in the content of heavy metals (Liu et al., 2017;
Bian et al., 2021). Thirdly, the prediction and early warning of
local heavy metal exceeding the standard can give a
comprehensive assessment conclusion of the environment
based on the results of hyperspectral extraction of heavy
metal elements (Shin et al., 2020; Tan et al., 2021). It can not
only guide scientific pollution quality and soil remediation, but
also identify potential risk sources and guide the government in
carrying out relevant work (Chen et al., 2012; Bian et al., 2021;
Wang et al., 2021).

It is an effective means to solve the problem of rapid extraction
of regional soil heavy metal information whether the spectrometer
is equipped on satellite (Bian et al., 2021), aircraft (Wang et al.,
2022), UAV (Chen et al., 2022), or handheld (Hou et al., 2019). The
low efficiency and uncontrollable factors of traditional sampling
analysis urgently require the intervention of new technologies
(Banerjee et al., 2017; Guo et al., 2021). Future research on
hyperspectral technology in the field of heavy metal content
should focus on improving the universality of models, breaking
through regional and temporal limitations, and achieving true
practicality. By improving data collection and processing, model
development and optimization, model generalization and transfer
learning, as well as practical application and validation, research
can promote the widespread application of hyperspectral
technology in this field and bring greater value to
environmental protection and agricultural management (Guo
et al., 2021; Taghizadeh-Mehrjardi et al., 2021).

Our research has identified the transport patterns of heavy
metals in terraced areas. The abundance of heavy metals in soil
is limited by terraces; Topography feedbacks affects both the
abundance and spatial distribution of heavy metal content; And
heavy metals migrate from high-altitude terraces to low-altitude
terraces, forming STS models, namely source state, transition state,
and stable state are the highlights of this paper (Figure 8).

5 Conclusion

To our best knowledge, the present study quantifies the
relationship between different geological terraces and the
transport and enrichment of heavy metal elements in soil for the
first time (Shi et al., 2018). In general, our findings have improved
our understanding of the migration and accumulation of heavy
metals in the process of mineral development and residents’ life
from the perspectives of topography, environment, chemistry, etc.
(Lu et al., 2019; Wang et al., 2020; Agyeman et al., 2022). Although
the slope and aspect are not enough to dominate the spatial
distribution of heavy metal elements, different elevations
determine the enrichment of heavy metal elements (Ou et al.,
2021; Taghizadeh-Mehrjardi et al., 2021). We have accurately
assessed the excess of heavy metals in the study area with
reference to relevant national standards in order to assess the
extent of this enrichment (Chen et al., 2012). The above
conclusions were reached, and the time factor was not fully
considered as only one period of data is available (Liu et al.,
2021; Li B. et al., 2022). Further research is needed to assess
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whether the accumulation of heavy metals in the soil changes in time
and how to affect the soil ecosystem function of the terrace.
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