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Jiajin Mountain, where the giant pandas reside, is an essential nature reserve in
China. To comprehend the land use classification of the habitat, this article
proposes a remote sensing interpretation algorithm based on spatial case
reasoning, known as spatial case-based reasoning (SCBR). The algorithm
incorporates specific spatial factors into its framework and does not require
an extensive amount of domain knowledge and eliminates the need for a
complex model training process, making it capable of completing land use
classification in the study area. SCBR comprises a spatial case expression
model and a spatial case similarity reasoning model. The paper conducted
comparative experiments between the proposed algorithm and support vector
machine (SVM), U-Net, vision transformer (ViT), and Trans-Unet, and the results
demonstrate that spatial case-based reasoning produces superior classification
outcomes. The land use classification experiment based on spatial case-based
reasoning at the Jiajinshan giant panda habitat produced satisfactory
experimental results. In the comparative experiments, the overall accuracy of
SCBR classification reached 95%, and the Kappa coefficient reached 90%. The
paper further analyzed the changes in land use classification from 2018 to 2022,
and the average accuracy consistently exceeds 80%. We discovered that the
ecological environment in the region where the giant pandas reside has
experienced significant improvement, particularly in forest protection and
restoration. This study provides a theoretical basis for the ecological
environment protection of the area.
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1 Introduction

As one of China’s nature reserves, the Jiajinshan Giant Panda Reserve is an important
part of China’s giant panda habitat network. It is also aWorld Heritage Site, a national-level
nature reserve, a national key scenic area, and a key biodiversity area. The Chinese
government attaches great importance to the conservation of ecological resources in the
Jiajinshan giant panda habitat. It has already implemented a series of policies, such as
establishing national-level nature reserves; strengthening, monitoring, and management of
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the habitat; and controlling environmental damages caused by
human activities. Land use classification refers to the
classification, division, and statistics of land within a certain area
to understand the types, distribution, and area of land use in that
region, which provides important information about land use types,
distribution, and area. It also provides basic data support for rational
land resource utilization, environmental protection, and sustainable
development. It has important scientific and practical value (Xu
et al., 2022; Zhang et al., 2022). Therefore, conducting land use
classification for the Jiajinshan giant panda habitat is crucial for its
scientific protection and sustainable development.

At present, land use classification based on remote sensing imagery
is a commonly used method (Castelluccio et al., 2017). In particular, it
involves a process of using satellite or aerial image data obtained using
remote sensing technology to classify and identify land cover through
digital image processing and classification algorithms. Common
classification methods include supervised classification (Shi et al.,
2012; Rwanga and Ndambuki, 2017), unsupervised classification
(Riese et al., 2019; Zhang et al., 2021), and semi-supervised
classification (Dalsasso et al., 2021; Xia et al., 2022). Among these,
supervised classification in the field of land use classification of remote
sensing images has always been an active research area. Its development
trajectory has gradually transitioned from traditional methods to
machine learning, and then to deep learning, while emphasizing
technological innovations such as multisource data fusion and semi-
supervised learning. In traditional methods, land use classification
mainly relied on manually designed features, such as texture, color,
and shape. The classificationmethods used includedminimumdistance

classification (Haapanen et al., 2004), support vector machine (SVM;
Ustuner et al., 2015), and decision trees (Pham et al., 2022). These
methods achieved success to a certain extent, but the classification
performance for complex land cover categories and high-dimensional
data was relatively poor. With the rise of machine learning, artificial
intelligence methods have gradually replaced traditional methods.
Significant achievements have been made in land use classification
using structures such as convolutional neural networks (CNN; Liu et al.,
2022) and transformers (Kaselimi et al., 2022). Simultaneously, various
improved deep learning architectures, such asU-Net (Wang et al., 2022)
and ResNet (Wang et al., 2023), have emerged to address different land
use classification problems. These network structures perform well in
handling different scales and complexities of land cover categories.
However, machine learning-based methods have obvious drawbacks,
such as requiring extensive training based on a large number of
annotated samples for an extended period and being prone to
overfitting. This makes AI-based methods still have considerable
room for improvement. Table 1 lists the strengths and weaknesses
of some recent algorithms.

Case-based reasoning (CBR) (Schank and Abelson, 1977; Aamodt
and Plaza, 1994), as an artificial intelligencemethod for solving complex
problems, has been widely researched and applied. Its basic idea can be
summarized as follows: for the given case (or new problems), CBR can
search for similar cases in a historical case bank and reuse the solutions
of those similar cases in the given case. If the solution through direct
reuse is deemed impractical, modifications to the case solution aremade
based on domain knowledge or alternative approaches, resulting in the
ultimate resolution. Furthermore, the typical cases with direct or revised

TABLE 1 Advantages and disadvantages of various algorithms for remote sensing land use classification.

Algorithm Year Advantages Disadvantages

Minimum distance — Simple and easy to understand Sensitive to outliers, not suitable for complex classes

Support vector machine (Burges,
1998)

1998 Handles high-dimensional data well, strong
generalization

High computational complexity, insensitive to large-scale and
imbalanced data

Decision tree (Quinlan, 1986) 1986 Easy to interpret and captures nonlinear relationships Sensitive to noise, prone to overfitting

Random forest (Breiman, 2001) 2001 Good performance on high-dimensional data,
mitigates overfitting

Long training times and relatively lower interpretability

k-nearest neighbors — Simple and easy to implement Sensitive to noise and outliers and requires tuning of k

Principal component analysis
(Hotelling, 1933)

1933 Effective dimensionality reduction and retains main
information

Ignores some details that may contain important information

Convolutional neural network
(Krizhevsky et al., 2012)

2012 Learns complex feature representations and suitable for
large high-dimensional data

Requires a large amount of labeled data, high computational
resources

U-Net (Ronneberger et al., 2015) 2015 Suitable for semantic segmentation tasks and preserves
high-resolution information

May not perform as well as other methods for small objects and
requires substantial data for training

ResNet (He et al., 2016) 2016 Addresses the vanishing gradient problem and suitable
for deep learning tasks

Long training times and requires substantial computational
resources

Multi-source data fusion — Improves classification accuracy and enhances
robustness

Challenges in handling data inconsistency during fusion and
complex fusion algorithms

Temporal information fusion — Captures temporal variations and enhances
classification accuracy

Higher demands on data acquisition, storage, and research on
handling temporal information

Semi-supervised learning — Reduces labeling costs and improves model
performance

Requires certain levels of model generalization and robustness

Transfer learning (Pan and Yang,
2009)

2009 Adapts to new environments and reduces dependency
on extensive labeled data

Careful selection of models and transfer strategies is necessary
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solutions are added to the case bank to expand its contents. CBR does
not require precise domain models but rather uses historical case
knowledge to deduce solutions for new cases. It has significant
advantages in solving complex and uncertain problems, especially in
domains where specialized knowledge is abstract and difficult to
generalize and express.

In recent years, CBR has been widely researched and applied in
various fields, such as environmental science (Bajo et al., 2010; Lee
et al., 2014; Mounce et al., 2016; Caro et al., 2017), urban
development (Li and Liu, 2006; Liu et al., 2014; Yu and Li,
2018), land use (Shi and Zhu, 2004; Du et al., 2010), geological
engineering (Fyson and Toll, 2008; Dou et al., 2015), mineral
resource evaluation (Chen et al., 2010), oil and gas engineering
(Skalle and Aamodt, 2004; Popa and Wood, 2011; Shokouhi et al.,
2014; Mazhari et al., 2018), and oil and gas resource evaluation
(Chen et al., 2010; Chen et al., 2014), and has achieved good results.
However, from the current research, there are still relatively few

attempts to use CBR for land use classification. In the
aforementioned studies, the reasoning models mainly employs
the classical attribute similarity reasoning, with less emphasis on
spatial similarity reasoning based on spatial features. The few studies
that have explored spatial similarity reasoning are focused on
specific domain problems. While spatial features of different
research objects vary from different domains to problems, and
because of the different features, the spatial similarity reasoning
methods tend to be different. Therefore, for land-use classification,
in addition to the attribute features, it is meaningful to explore the
spatial features and construct corresponding integrated reasoning
models to enhance the effectiveness and accuracy of land use
classification in the Jiajinshan giant panda habitat.

Therefore, this paper proposes a land use remote sensing
interpretation algorithm based on spatial case-based reasoning
(S-CBR). In particular, it comprises the construction of a spatial
case expression model and a spatial case similarity reasoning model.
Based on this, comparative experiments were conducted with
ablative analysis and land use classification experiments in the
Jiajinshan giant panda habitat. Further discussions analyze the
changes in land use classification from 2018 to 2022 over a 5-
year period. This provides decision support for relevant departments
in protection planning, rational resource utilization, monitoring of
land use changes, and even scientific research and education in
the region.

The remaining structure of the article is as follows: Section 2
provides a detailed introduction to the study area; Section 3
elaborates on the proposed spatial case reasoning algorithm;
Section 4 expounds on the experimental results of the algorithm
and related discussions; and Section 5 provides the conclusion of
this paper.

2 Study area

The Jiajinshan giant panda habitat is located in the Jiajin
Mountain region at the junction of Wenchuan County, Li
County, and Songpan County in Aba Tibetan and Qiang
Autonomous Prefecture, Sichuan Province, China (Figure 1). It
includes the Jiajinshan Nature Reserve, Shapinggou Nature
Reserve in Barkam County, Ma’anshan Nature Reserve in

TABLE 2 Data types and their acquisition sources.

Category Processing result Source

Topography Slope Google Earth Engine (https://developers.google.com/earth-engine)

Aspect

Isoheight

Meteorology Isotherm Google Earth Engine (https://developers.google.com/earth-engine)

Isohyet

Iso-evaporation lines

Hydrological Water network distribution OpenStreeMap (https://www.openstreetmap.org/)

Imagery Sentinel-2 satellite remote sensing data Google Earth Engine (https://developers.google.com/earth-engine)

MODIS NDVI MODIS NDWI time series data

FIGURE 1
Topographic map and location of the study area.
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Xiaojin County, and Baishuigou Nature Reserve in Wenchuan
County. It has an alpine sub-frigid humid climate, with an annual
average temperature ranging from −2°C to 12°C. The region
receives abundant rainfall, with an annual precipitation of
approximately 800–1,200 mm, mainly concentrated from May
to October. Due to high altitude, the climate in the Jiajinshan
giant panda habitat changes dramatically, with large temperature

differences between day and night, and the temperature at night
can drop to below −20°C. The Jiajinshan giant panda habitat is
located in the mountain area with complex terrain, numerous
rivers, and a forest coverage rate of over 70%. The region has
undulating topography, with mountain peaks over 3,000 m, and
the highest peak exceeding 5,000 m. The area is crisscrossed by
many rivers, including the Barkam River, Qingyi River, Songpan
River, and Dadu River. These rivers have abundant water resources
and are mostly tributaries of the Yangtze River. Due to its unique
geographical location and climatic conditions, the Jiajinshan giant
panda habitat possesses rich natural resources, including many
rare wildlife and plants. Endangered species such as giant pandas,
golden monkeys, and snow leopards live and reproduce here.
Therefore, research on land classification in this area is of great
significance to the protection of China’s ecological environment
and biodiversity.

TABLE 3 Allocation of weights for each feature.

Feature name Sub-feature Value

Attribute feature Spectral 0.384 0.24

NDVI 0.253

Temperature 0.161

Precipitation 0.086

Evaporation 0.013

Slope 0.086

Aspect 0.017

Spatial feature Isoheight 0.097 0.52

Isotherm 0.236

Isohyet 0.186

Isothyme 0.481

Peak area 0.5

Auxiliary feature Coupling value of growth rate 0.5 0.24

FIGURE 4
Spatial case-based reasoning process.

FIGURE 2
MODIS NDVI time series curve. (A) Different land use types tend
to have different time series curves. (B)Different land use types tend to
have different peak areas.

FIGURE 3
MODIS NDVI growth rate fitting curve. Different land use types
tend to have different growth rate fitting curves.
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3 Research methods

3.1 Data acquisition and processing

In this paper, multi-sources and multi-temporal data were used
as the basis for land use classification in the Jiajinshan giant panda
habitat. All the data were obtained from Google Earth Engine and
OpenStreetMap, more specifically, including Sentinel-2 satellite
remote sensing data, MODIS normalized difference vegetation
index (NDVI), MODIS NDWI time series data, digital elevation
model (DEM) data, and hydrological and meteorological data. The
specific data contents are given in Table 2.

The multiple-source data have various formats, and usually, the
resolution and coordinate systems are inconsistent, making them

difficult to use directly. To accurately and correctly identify land use
types, tools such as ArcMap and ENVI were used to process the raw
data. For DEM, hydrological and meteorological data, basic
elements such as slope, aspect, isoheight, distribution of water
network, isotherm, isohyet, and isothyme, and other calculations
were performed. Additionally, the size of the grid cells will greatly
affect the calculation amount and precision of the model.
Considering the calculation amount after dividing the cells and
whether the attributes of the grid cells can effectively reflect the real
features of the area and in combination with the available resolution
of multi-source and multi-temporal data, the research proposed to
use a regular grid cell at a size of 30 m × 30 m as the minimum unit
for land use classification, regarding each cell as homogeneity.

3.2 Construction of a spatial case
expression model

In case reasoning, each grid cell represents a case, where cases
with known land use categories are called known cases, and cases
that are unknown and awaiting classification are called unknown
cases. Unlike traditional case reasoning, which only uses attribute
features to construct case expression models, the proposed spatial
case reasoning model in this paper adopts an integrated approach
that incorporates attribute features, spatial features, and auxiliary
features in the construction of spatial case expression models.

3.2.1 Attribute features
Attribute features are extracted from multiple data sources,

including topography and imagery data. The Sentinel-2 satellite
imagery comprises 13 bands ranging from 440 nm to 2,090 nm. The
spectral information can reflect land cover types and biological
growth from different perspectives, providing an important basis for
land use classification. MODIS NDVI data contain NDVI values for
each grid cell during 23 periods within a year. They directly reflect
the changes in surface vegetation and water resources during
different periods of the year, making a strong factor for
identifying land use types. Additionally, factors such as

TABLE 4 Results of the ablation experiment.

Class O-CBR A-CBR S-CBR

Recall Precision F1 Recall Precision F1 Recall Precision F1

Water bodies 0.6702 0.6299 0.6078 0.7424 0.7488 0.7274 0.8540 0.8441 0.8532

Forests 0.6517 0.7012 0.7028 0.7484 0.7134 0.7494 0.8756 0.8091 0.8522

Grasslands 0.6567 0.6864 0.6062 0.7530 0.7467 0.7686 0.8369 0.8440 0.8904

Wetlands 0.7296 0.5538 0.6144 0.7372 0.7706 0.7367 0.8391 0.8526 0.8713

Cultivated lands 0.6580 0.6480 0.6141 0.7879 0.7407 0.7608 0.8092 0.8445 0.8420

Shrub lands 0.6692 0.6621 0.7228 0.7534 0.7669 0.7336 0.8548 0.8518 0.8253

Building lands 0.5928 0.6839 0.6757 0.7697 0.7402 0.7840 0.8541 0.8794 0.8637

Bare lands 0.6221 0.6650 0.6766 0.7479 0.7741 0.7602 0.8911 0.8391 0.8584

Snowfields 0.6131 0.6154 0.6078 0.7118 0.7538 0.7317 0.8315 0.8742 0.8227

Clouds 0.6366 0.6543 0.6718 0.7484 0.7447 0.7477 0.8537 0.8612 0.8211

TABLE 5 Results of the comparative experiments in 2020. Bolded entries
indicate the optimal results.

Class name SVM U-Net ViT Trans-
Unet

S-CBR

Water bodies 0.92 0.93 0.92 0.93 0.96

Forests 0.82 0.85 0.84 0.86 0.89

Grasslands 0.77 0.75 0.82 0.84 0.93

Wetlands 0.80 0.83 0.87 0.91 0.95

Cultivated lands 0.83 0.89 0.84 0.92 0.88

Shrub lands 0.82 0.88 0.85 0.91 0.94

Building lands 0.81 0.89 0.86 0.92 0.93

Bare lands 0.80 0.89 0.83 0.91 0.95

Snowfields 0.80 0.87 0.83 0.91 0.94

Clouds 0.84 0.88 0.84 0.92 0.93

AA 0.76 0.79 0.82 0.83 0.84

OA 0.81 0.85 0.89 0.92 0.95

Kappa 0.85 0.87 0.86 0.88 0.90
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temperature, precipitation, evaporation, slope, and aspect indirectly
affect land cover, local climate, and biological distribution, and thus,
they are also essential reference factors for land classification. In
summary, each case in the study comprises 19 factors, including
Sentinel-2 spectral imagery, MODIS NDVI, temperature,
precipitation, evaporation, slope, and aspect as its attribute features.

3.2.2 Spatial features
Spatial features are derived from topographic data,

meteorological data, and hydrological data. After fully
considering the spatial features of various land types, spatial
metric relationships were selected as spatial features.

Spatial metric relationships quantify the distance between two
geographic units. First, isolines with appropriate intervals are
obtained for the four basic data of elevation, temperature,
precipitation, and evaporation. For any grid cell within the study
area, the distances from the center of each grid cell to the isolines of
elevation, temperature, precipitation, evaporation, and the distance
to the water network are calculated as the spatial metric relationship
features of the case.

3.2.3 Auxiliary features
Auxiliary features are designed to supplement case features and

enrich the feature factors of case features. Auxiliary features are
further derived from attribute features or spatial features, and often
have special meanings for case features, so they are not repetitions of
the aforementioned features. The auxiliary features in this study are
obtained from MODIS NDVI time series data and consist of the
peak area (S) and coupling value of the growth rate.

Generally, different land use types exhibit different MODIS
NDVI time series curves, as shown in Figure 2A. The peak area
(S) and coupling value of the growth rate are designed to reflect this
feature. The peak area represents the area enclosed by the time curve

and the x-axis, which is composed of trapezoids formed by discrete
data, as shown in Figure 2B.

The formula is as follows:

S � ∑
n−1

k�1

yk − yk+1
2

Δx. (1)

In Eq. 1, S represents the peak area; n represents the number
of time series; yk represents the NDVI value of the kth time
series; and Δx represents the time interval, which is set as 1 in
the study.

The coupling value of the growth rate is composed of the
slope of the fitted curve during the growth phase of the MODIS
NDVI time series curve and the maximum value of the fitted
curve (Figure 3). This is because different land use types had
different growth rates during the growth phase of the MODIS
NDVI time series curve, and they also have different peak values
(Figure 2A). The coupling value of the growth rate is calculated
as follows:

E � β + max NDVI . (2)

In Eq. 2, β represents the slope of the fitted curve, which is
obtained through the least squares method. maxNDVI represents the
maximum value of the fitted curve.

In summary, the spatial case expression model can be expressed
as follows:

C � (a1, a2, ..., ak; d11, d12, ..., d1m,
d21, d22, ..., d2m, dq1, dq1, ..., dqm,
...S, E, R).

(3)

In Eq. 3, ak represents the attribute feature value; k represents the
number of basic parameters; dqm represents the distance value from
the case to the mth isoline of the qth basic data; S represents the
feature value of the peak area of the case; E represents the coupling

FIGURE 5
Results of comparative experiments on land use classification in the study area using different methods. Subfigures include (A) image; (B) SVM; (C)
U-Net; (E) Trans-Unet; and (F) S-CBR.
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value of growth rate feature value; and R represents the land use
category of the case. For unknown cases, the value of R is left blank.

3.3 Construction of a spatial case similarity
reasoning model

The spatial case similarity reasoning model consists of two parts:
attribute similarity reasoning model and spatial similarity
reasoning model.

The similarity reasoning formula of attribute features and
auxiliary features is as follows:

Sa �
∑
n

i�1
vhi
vui
wi

∑
n

i�1
wi

If
vhi
vui

> 1, v
h
i

vui
� vui
vhi
. (4)

In Eq. 4, i represents a feature item corresponding to an attribute
feature; n represents the total number of attribute features; vi

h

represents the ith attribute feature value of the known-layer case;
vi
u represents the ith attribute feature value of the unknown case; wi

represents the weight of the ith attribute feature; and Sa represents
the attribute feature similarity between the known and
unknown cases.

The similarity reasoning formula of spatial metric relationship is
as follows:

Sd �
∑
n

j�1

dhj
duj
wx

j

∑
n

j�1
wx

j

If
dh
j

du
j

> 1,
dh
j

du
j

� du
j

dh
j

. (5)

FIGURE 6
Land use classification results: (A–E) represent the land use classification results from 2018 to 2022, respectively.

TABLE 6 Total precision of land use classification by year.

Year 2018 2019 2020 2021 2022

Precision 0.8166 0.8219 0.8437 0.8316 0.8521
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In Eq. 5, j represents the index of spatial metric relationships; n
represents the total number of items; dj

h represents the feature value
of jth spatial metric relationship of the known case; dj

u represents the
feature value of the jth spatial metric relation of the unknown case;
wj

x represents the weight of the corresponding metric relationship
feature; and Sd represents the spatial metric relationship similarity
value between the known and unknown cases.

The integrated reasoning formula of spatial similarity and
attribute similarity is as follows:

S � SsWs + SaWa

Ws +Wa
. (6)

In Eq. 6, Ws and Wa represent the weights of spatial similarity
reasoning and attribute similarity reasoning, respectively. Ss and Sa
represent the similarity values of spatial and attribute similarity,
respectively. S represents the similarity of the integrated inference of
spatial similarity and attributes similarity integrated reasoning.

3.4 Model evaluation metrics

In the context of spatial inference models for remote sensing
image analysis, the quality of inference results needs to be measured
using appropriate accuracy evaluation metrics. This paper adopts
two accuracy evaluation metrics: accuracy, commonly referred to as
accuracy or correctness, and evaluation metrics, such as recall,
precision, and F-measure.

The accuracy or correctness metric is the most widely used
accuracy evaluation measure. It is generally expressed as the ratio of
the number of correctly classified samples to the total number of
samples in the validation set, as shown in Eq. 7:

a � c

n
. (7)

In the formula, c represents the number of correctly classified
samples, n represents the total number of validation samples, and
a represents accuracy.

The evaluation metrics of recall, precision, and F-measure are
derived from the fields of machine learning and statistics. Compared
to simple accuracy or correctness metrics, these indicators provide a
more effective and detailed assessment of the results of model
classification. For a specific class to be predicted, this class is
referred to as the positive class, while the rest are considered
negative classes. True positives (TPs) represent the number of
samples in the validation set where the true class is positive and
the predicted result is also positive. False positives (FPs) represent
the number of samples in the validation set where the true class is
negative, but the predicted result is positive. False negatives (FNs)
represent the number of samples in the validation set where the true
class is positive, but the predicted result is negative. True negatives
(TNs) represent the number of samples in the validation set where
the true class is negative, and the predicted class is also negative.

FIGURE 7
Changes in the land use types of the Jiajinshan giant panda
habitat. (A) Changes in the proportion of land use categories in the
habitat of giant pandas in Jiajin Mountain. (B) Changes in the land use
types and areas of the Jiajinshan giant panda habitat.

TABLE 7 Evaluation of land use classification indicators by category (2018–2022).

Year Categories

Water
bodies

Forests Grasslands Wetlands Cultivated
lands

Shrub
lands

Building
lands

Bare
lands

Snowfields

2018 0.8401 0.8028 0.7954 0.8110 0.7954 0.8110 0.8167 0.8012 0.8164

2019 0.8440 0.8229 0.7990 0.7989 0.7996 0.8290 0.8374 0.8189 0.8304

2020 0.8548 0.8414 0.8278 0.8069 0.8529 0.8124 0.8268 0.8176 0.8294

2021 0.8534 0.8281 0.8136 0.8276 0.8413 0.8460 0.8431 0.8442 0.8627

2022 0.8633 0.8457 0.8471 0.8522 0.8608 0.8431 0.8572 0.8370 0.8436
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Thus, the calculation for recall is given by Eq. 8:

R � TP

TP + FN
. (8)

It calculates the proportion of all correctly classified samples to
all samples that should have been predicted as positive class.

The calculation for precision is given by Eq. 9:

P � TP

TP + FP
. (9)

It calculates the proportion of all correctly classified samples to
all samples predicted as positive class.

Precision and recall are interrelated; ideally, the higher both
values are, the better the classification performance. However, in
general, when precision is high, recall tends to be low and vice versa.
If both are low, the classification performance is considered poor.
Therefore, when both high precision and high recall are desired, the
F-measure metric can be used to measure the trade-off between
them. Its calculation is shown in Eq. 10:

F � α2 + 1( )PR
α2 P + R( ) . (10)

In the formula, P represents the precision value, R represents the
recall value, and when the parameter α = 1, F-measure is commonly
referred to as the F1 evaluation metric, expressed as in Eq. 11

F1 � 2PR
P + R

. (11)

In addition, in the comparative experiments, we employed
overall accuracy (OA), average accuracy (AA), and Cohen’s
kappa coefficient to measure the overall effectiveness of different
methods. OA is a straightforward evaluation metric representing the
proportion of correctly classified samples to the total number of
samples. AA calculates the average accuracy of each class in a multi-
class classification problem, balancing the sample distribution across
different classes. Kappa is a measure of consistency that considers
random classification, addressing the issue of imbalanced sample
distribution affecting OA.

3.5 Experimental design

According to the aforementioned research methods, this study
employs Python as the programming language for algorithm
development. Remote sensing imagery and meteorological,
hydrological, and topographic data from 2018 to 2022 were
collected in the Jiajinshan giant panda habitat. In addition, the
land use of the study area was classified for each year, including
10 categories: water bodies, forests, grasslands, wetlands, cultivated
lands, shrub lands, building lands, bare lands, snowfields, and
clouds. In the experimental project, multiple remote sensing
images of each year were mosaicked with a median composition
method. Through visual interpretation, regions were uniformly
selected as the case bank, while the remaining regions were taken
as unknown cases. In the case bank, 30% of the cases were randomly
chosen as test cases to evaluate the effectiveness of the model.

Before conducting the spatial case reasoning of strata, it is
necessary to determine the internal and mutual weights of

attribute features, spatial features, and auxiliary features. The
weights of each factor can be determined as follows: first, case
reasoning was performed with individual feature sub-items to obtain
the classification precision based solely on that feature sub-item.
After performing case reasoning on all feature sub-items, the
importance ranking of all feature sub-items can be obtained.
Then, the analytic hierarchy process (AHP) is used to determine
the specific weights of each feature sub-item, as shown in Table 3.
The specific process of case-based reasoning used in the experiment
is shown in Figure 4.

4 Results and discussion

4.1 Ablation experiment

To verify the effectiveness of spatial features in the model, we
conducted three sets of controlled experiments based on the dataset
of 2020. These experiments include the ordinary case-based
reasoning (O-CBR) model with only attribute features, case-based
reasoning (A-CBR) model combining attribute and auxiliary
features, and spatial feature-integrated case-based reasoning
model. The experimental results are shown in Table 4.

Among the three CBR methods, the S-CBR method, which
incorporates spatial features, achieved the best performance,
while the O-CBR method, only using attribute features, had the
worst performance. The A-CBR method, which combines attribute
and auxiliary features, achieved moderate classification results. This
indicates that auxiliary features and spatial features play an
important role in remote sensing image segmentation, especially
in land use classification. It also proves that exploring features with
spatial significance is one of the approaches to applying general
artificial intelligence methods to land use classification of remote
sensing images.

4.2 Comparison experiments

To validate the advancement of the proposed algorithm, we
conducted comparative experiments based on imagery from the
study area in 2020. The selected algorithms for experimentation
range from traditional statistical learning algorithms to advanced
machine learning algorithms, including SVM (Burges, 1998), U-Net
(Ronneberger et al., 2015), vision transformer (ViT) (Dosovitskiy
et al., 2020), and Trans-Unet (Chen et al., 2021). Among these,
support vector machine represents traditional statistical learning
algorithms, U-Net is a convolutional neural network-based
algorithm, ViT utilizes the transformer structure, and Trans-Unet
combines the CNN and transformer. In the comparative
experiments, we fine-tuned the hyperparameters for some
methods. In particular, for the SVM, we used cross-validation to
set the regularization parameter (C), gamma parameter, and degree
of the polynomial kernel. The kernel function chosen was the default
radial basis function (RBF) kernel. In practical implementation, we
used GridSearchCV from scikit-learn to carry out this process. For
several other deep learning methods, we conducted comparative
experiments by referring to the optimal parameters mentioned in
their respective papers.

Frontiers in Environmental Science frontiersin.org09

Xia et al. 10.3389/fenvs.2024.1298327

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1298327


Table 5 presents the results of the comparative experiments. It
can be observed that the proposed S-CBR algorithm exhibits
optimal experimental results for the majority of categories,
although its performance is less satisfactory for a few
categories. In terms of overall accuracy, S-CBR demonstrates
the best results. This indicates that the proposed algorithm has
advantages in experimental accuracy and is relatively
straightforward in its algorithmic principles.

Figure 5 illustrates the results of the comparative experiments,
and it aligns with the findings given in Table 5.

4.3 Experimental results and discussion of
spatial case-based reasoning

The results of an ablation experiment show that S-CBR achieves
the best land use classification performance of the Jiajinshan giant
panda habitat. Therefore, we chose the S-CBRmethod to classify the
land use of the Jiajinshan giant panda habitat based on remote
sensing images from 2018 to 2022. The classification results are
shown in Figure 6 and Table 6.

The results of the evaluation indicators given in Table 7 show
that the classification precision of land use in the Jiajinshan giant
panda habitat, based on spatial case-based reasoning, is above
80% for various categories. The precision is higher for water
bodies and snowfields while lower for grasslands, wetlands, and
cultivated lands (Table 7).

This may be because water bodies and snowfields have more
distinctive spectral features and are greatly influenced by
topographic images, which play a significant role in the
classification process. On the other hand, the spectral features
of cultivated lands, grasslands, and wetlands are relatively
similar, and from a spatial perspective, their distribution
patterns are not closely related to climate and topographic
factors. Hence, their classification results perform worse. From
the perspective of a 5-year span, the precision of classification
results in 2022 is the highest, while it is the lowest in 2018. This is
because the satellite imagery in 2022 had the lowest cloud
coverage, so the image quality is the best, while the opposite
was true for 2018. This indicates that image quality can affect the
characterization degree of image spectral features on land
objects, thus affecting the quality of classification results.

4.4 Analysis of changes in land use types

Figures 7A, B show the land use changes in the Jiajinshan
giant panda habitat from 2018 to 2022. Over the past 5 years, the
forest land has been the dominant land use type, with its
proportion decreasing first and then increasing. The trend in
grassland area changes is similar to the forest land, but its
proportion has been increasing year by year. The area of the
cultivated land reached its peak in 2020, and since then, it
decreased to some extent. The aforementioned changes in land
use types reflect that the ecological environment of the giant
panda habitat area in Jiajinshan has been improved, especially in
forest protection and restoration.

5 Conclusion

In order to understand the land use classification of the Jiajinshan
giant panda habitat, this paper proposes a land use remote sensing
interpretation algorithm based on spatial case-based reasoning,
including the construction of a spatial case expression model and a
spatial case similarity reasoning model. On this basis, comparative
experiments were conducted through ablation analysis, and the results
showed that the spatial feature-integrated case-based reasoning model
(S-CBR) achieved better classification results. Then, using S-CBR as the
representative algorithm, land use classification experiments were
carried out in the Jiajinshan giant panda habitat. The experimental
results showed that S-CBR had better performance in land use
classification. This paper further analyzed the land use classification
changes from 2018 to 2022 over a 5-year period, and the results can
provide a theoretical basis for the ecological environment protection in
this region.
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