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Introduction: Cities located in lower income countries are global flood risk
hotspots. Assessment and management of these risks forms a key part of
global climate adaptation efforts. City scale flood risk assessments necessitate
flood hazard information, which is challenging to obtain in these localities
because of data quality/scarcity issues, and the complex multi-source nature
of urban flood dynamics. A growing array of global datasets provide an attractive
means of closing these data gaps, but their suitability for this context remains
relatively unknown.

Methods:Here, we test the use of relevant global terrain, rainfall, and flood hazard
data products in a flood hazard and exposure assessment framework covering
Addis Ababa, Ethiopia. To conduct the tests, we first developed a city scale rain-
on-grid hydrodynamic flood model based on local data and used the model
results to identify buildings exposed to flooding. We then observed how the
results of this flood exposure assessment changed when each of the global
datasets are used in turn to drive the hydrodynamic model in place of its local
counterpart.

Results and discussion: Results are evaluated in terms of both the total number
of exposed buildings, and the spatial distribution of exposure across Addis Ababa.
Our results show that of the datasets tested, the FABDEM global terrain and the
PXR global rainfall data products provide themost promise for use at the city scale
in lower income countries.
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1 Introduction

Flood risk is an acute and growing problem in the cities of the global south. Often,
hydraulic infrastructure and its maintenance is inadequate in these population centres
(Lumbroso, 2020), and people living in these environments are more vulnerable to floods
(Rentschler et al., 2022). The rapid and poorly regulated urbanisation occurring in these
cities is increasing runoff on account of land use changes, and is also resulting in a greater
number of people settling and properties being constructed in flood prone areas (e.g.,
Egbinola et al., 2017). Furthermore, the increasing occurrence of extreme rainfall intensities
associated with climate change is elevating flood hazard in many places (Martel et al., 2021).
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Flood risk assessments often rely on hydrodynamic models to
map hazard, understand flood impacts, and explore interventions to
mitigate risks (Lamb et al., 2009; Cai et al., 2019; Molinari et al.,
2019). However, modelling flood hazard at the city scale is
challenging, in part because of the need to consider multiple
sources of flooding often present in cities. Urban infrastructure
also presents a key challenge; data on the many fine scale features
that exert strong controls on flow hydraulics is often scant, and
representing their geometric and operational characteristics at scale
is often unfeasible. One solution to the challenge of representing
multiple sources of flooding is to use a direct rain-on-grid modelling
approach where rainfall is applied directly to each grid cell of a 2D
domain (Yu et al., 2016; UK Environment Agency, 2019). Runoff
volumes are computed in each cell and are routed dynamically over
the model terrain. Direct rain-on-grid modelling has been applied
for over a decade now but has becomemore prevalent in recent years
largely due to advances in computational power (Ryan et al., 2022),
and is still regarded as relatively new compared to traditional
approaches that model hydrology and hydraulics separately.
Direct rain-on-grid modelling enables fluvial, pluvial, and tidal
(where applicable) sources of flooding to be represented in an
efficient manner. These models are primarily driven by
topography and rainfall data, and as such these data form the
critical inputs into the model. However, the global south suffers
from a scarcity of these data, with local digital elevation models
(DEMs) and rainfall data often being unavailable or limited in their
coverage (van de Giesen et al., 2014; Hawker et al., 2018). These data
gaps are increasingly being filled with global datasets.

The term global datasets refers to datasets with global or near
global spatial coverage, which are partly or wholly derived from
remotely sensed observations from Earth observation satellites.
Global datasets have been used for some time now to study flood
risk at large scales (Komi et al., 2017; Lindersson et al., 2020), as
exemplified by the establishment of global flood models (GFMs) over
the last decade or so. GFMs harness several global datasets to model
and map flood hazard globally (Ward et al., 2015; Bernhofen et al.,
2018). Similarly, satellite imagery is now being harnessed to construct
historical flood extent maps with global coverage (Tellman et al.,
2021). Such global hazard maps provide a consistent modelling
approach and data, enabling objective flood risk management
decisions to be made by those operating across multiple countries
(Trigg et al., 2016). As global datasets and their derivative hazardmaps
improve in resolution and accuracy, they are increasingly being used
in data scarce situations and at smaller (sub-national) scales including
the city scale. One well documented example is the emergency
response to Cyclones Idai and Kenneth in Mozambique in 2019,
which used global flood extent maps from Fathom and the high
resolution settlement layer to predict flood exposure at the district
scale (Emerton et al., 2020). Global data such as terrain or
precipitation are also being used by complementing them with
local data at the sub-basin scale (Haile et al., 2016); the city scale
(Sayers and Partners, 2019; McClean et al., 2020); and the
infrastructure scale (Golder Associates, 2021). At these local scales,
the spatial resolution and accuracy of global datasets is relatively low,
and their use in assessing flood risk poses important questions about
the efficacy of doing so. Research into this is ongoing (see for example,:
Domeneghetti, 2016; Ekeu-wei and Blackburn, 2018; Schumann et al.,
2018; Courty et al., 2019; Fleischmann et al., 2019; Kettner et al., 2019;

Li et al., 2022); and needs to continue as new global datasets emerge
and see use in a wide range of scales and situations.

This study aims to evaluate the suitability of relevant global
datasets for mapping flood hazard in support of city-scale flood
risk assessments in data scarce, low to middle income contexts.
Specifically, we use global rainfall and terrain data to drive a
flood hazard model then test the resulting hazard maps in a city-
wide flood exposure assessment. We also test a GFM hazard map
product in the exposure assessment. To conduct the tests, we
first developed a city-scale rain-on-grid hydrodynamic flood
model based on local data and used the model results to identify
buildings exposed to flooding. We then observed how the results
of this flood exposure assessment change when each of the
global datasets are used in turn to drive the hydrodynamic
model in place of the local dataset, and when the GFM flood
hazard product is used instead of our flood hazard model
output. Results are evaluated in terms of both the total
number of exposed buildings, and the spatial distribution of
exposure across the study area. Sensitivity analyses were also
run on the key hydrodynamic model parameters that are
uncertain, to place the results of the global dataset tests into
the context of the uncertainties that are inherent in flood
hazard modelling.

We test two global terrain datasets: the FABDEM (Forest And
Buildings removed Copernicus DEM) (Hawker et al., 2022) and
the MERIT (Multi-Error-Removed Improved-Terrain) DEM
(Yamazaki et al., 2017). The FABDEM–derived from the
Copernicus Global 30 m DEM (Copernicus, 2021)—is the first
global digital elevation model (DEM) with forests and buildings
removed at a 30 m resolution. It has been shown to be more
accurate than other global DEMs, has a higher resolution than
most global DEMs, and is therefore expected to improve flood
hazard and risk estimates in data scarce areas that were previously
reliant on other global DEMs (Hawker et al., 2022). However, little
research has been done to assess its performance when used to
model flood hazard or assess risk. The MERIT DEM–derived from
the Shuttle Radar Topography Mission (SRTM) v3 (Farr et al.,
2007) below N60°—has seen extensive use in flood hazard
modelling at various scales and has been well tested (Chen
et al., 2018; Tavares da Costa et al., 2019; Uuemaa et al., 2020).
Following its release it was generally accepted as being the most
appropriate freely available global bare Earth DEM product to use
in flood hazard modelling (Hawker et al., 2018; Minderhoud et al.,
2019; Rentschler et al., 2022). We experiment with it here as it
provides important context for evaluating the FABDEM and other
global datasets. We did not consider the ALOS PALSAR RTCDEM
product because the source elevation data for this product is SRTM
(or the USGS National Elevation Dataset where available), and the
12.5 m resolution of this DEM does not reflect the underlying
resolution of the source elevation data (Alaska Satellite
Facility, 2015).

The rainfall dataset we test is the global rainfall intensity
duration frequency (IDF) dataset known as Parametrized
eXtreme Rain (PXR), produced by Courty et al. (2019b). This
Global IDF dataset is derived from the European Centre for
Medium-Range Weather Forecasts Fifth Generation Re-Analysis
(ERA5) (Hersbach et al., 2020). ERA5 is a gridded dataset
constructed from the assimilation of historical weather
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predictions with observational data. It has global coverage, a 0.25°

(approximately 31 km) spatial resolution, and covers the period
from 1950 until present with a 1-h temporal resolution. ERA5 has
been shown to outperform other rainfall reanalysis products
(McClean et al., 2021) and may represent the preferential source
of precipitation data for estimating flood hazard in many data scare
situations. Several GFMs use climate reanalysis products as their
source of rainfall data (Trigg et al., 2021), and whilst the relatively
coarse resolution of ERA5 limits its ability to characterise localised
rainfall processes such as convective storms (Reder et al., 2022), it
has been shown to provide useful flood risk information when
applied at the catchment and city scales (see Cantoni et al., 2022;
Mercogliano et al., 2022). Whilst the direct use of ERA5 to simulate
historical flood events has been explored, the PXR IDF dataset has
not, despite its potential utility in flood hazard and risk assessment.

A fourth dataset we test is a GFM flood extent map product.
GFMs came into existence over a decade ago with a primary
purpose of helping our understanding of the global distribution
of flood risk. They have since undergone several iterations of
development, and some GFMs are now considered to be
potentially useful as national scale flood maps (Bernhofen et al.,
2022). Whilst GFMs do not provide the level of detail of the
national scale flood maps typically available in high income
countries, they have shown some value when used to assess
flood risk within individual countries down to the district scale
(Emerton et al., 2020) or across refugee camps (Bernhofen et al.,
2023). Testing GFMs at the sub-national scale has been limited
however. Here, we test flood extent maps produced by the Fathom
2.0 GFM (Sampson et al., 2015; Fathom, 2019), which at the time of
writing is generally considered to be amongst the most locally
relevant of the GFMs due to its relatively high 1 arc second spatial
resolution and its relatively small minimum river size of 50 km2

upstream drainage area (Trigg et al., 2021).
Our test case is Addis Ababa–the capital city of Ethiopia. Addis

Ababa experiences many of the flood risk problems and challenges
typically faced by the cities of the global south. Flooding here in
August 2006 is regarded as the most severe in Ethiopian history,
killing an estimated 647 people and leaving around 200,000 people
homeless (De Risi et al., 2020). The population of Addis Ababa is
around 5 million people, a number that is growing by around 3.8%
annually largely on account of rural to urban migration (Shouler
et al., 2021; Dusseau et al., 2023). The city is exposed to both fluvial
and pluvial floods, and climate change projections show that flood
hazard will increase in the future due to more frequent extreme
rainfall (Birhanu et al., 2016; USAID, 2017). Urban expansion onto
floodplains combined with sub-standard drainage systems and
waste management practices is increasing the level of flood
exposure here, and many properties in the city are highly
vulnerable to floods because of the poor quality of their
construction (World Bank, 2015). The frequency with which
people and properties are exposed to flooding in Addis Ababa
is also high; this is typical of cities in lower income countries that
have little or no formal flood defences (Rentschler et al., 2022) and
makes Addis Ababa a suitable test case for global datasets in lower
income contexts. Addis Ababa experiences a warm and temperate
climate with two rainy seasons: the primary one (Kiremt) falls from
June to September; and a secondary one (Belg) occurs from mid-
February to April (Bekele et al., 2022). The average annual rainfall

is 1184mm; roughly equal to that in the Scottish city of Glasgow.
Temperatures are on average 16°C, and average maximum and
minimum temperatures are 22.9 and 10.2°C respectively (Shouler
et al., 2021).

2 Materials and methods

2.1 Flood hazard model development

The 2D flood hazard modelling was carried out using the
United States Hydrologic Engineering Center’s River Analysis
System (HEC-RAS) software, Version 6 (Brunner, 2020b). Our
2D model domain covers the entire Akaki River catchment
upstream of the Aba Samuel Reservoir (Figure 1); the city of
Addis Ababa is situated entirely within this catchment. The water
surface elevation of the Aba Samuel Reservoir forms the
downstream boundary condition of the model. We adopted the
diffusion wave solver in HEC-RAS and used the 2D sub-grid
capability in HEC-RAS. As such, in our model we use a 5 m
resolution DEM whilst adopting a variable model resolution of
50 m for river channels and floodplains and 200 m elsewhere.
The DEM was obtained from the Ethiopian Geospatial
Information Institute, and was generated from aerial
photogrammetry using a ground sampling distance of 25 cm. The
DEM has a reported vertical accuracy of 50 cm (Bekele et al., 2022).
We removed off-terrain features including vegetation, buildings,
bridges, and other anthropogenic objects from the DEM using the
WhiteboxTools remove off-terrain objects tool (Lindsay, 2018).
Other inputs to the reference model include the 10 m resolution
WorldCover product developed from Sentinel satellite imagery
(Zanaga et al., 2021), which we use to define the spatial
distribution of hydraulic roughness. Manning’s n roughness
coefficient values were assigned to the various WorldCover land
cover types based on average values given in Brunner (2020a).
WorldCover was also used in conjunction with a 250 m
resolution map of Hydrologic Soil Groups (HYSOGs250 m)
(Ross et al., 2018) to define the spatial distribution of the US soil
conservation service (SCS) curve number values (CN), this being the
model’s infiltration rate parameter. CN values were obtained from
TR-55 (USDA, 1986). These model inputs are depicted in Figure 1
and summarised in Table 1.

Stormwater runoff within the Akaki catchment is managed to
some degree by local drainage systems not captured by the DEM.
When modelling urban flood hazard at large scales, instead of
explicitly modelling these drainage systems it is common to
represent them in a simplified manner by applying a drainage
removal rate (DRR) to the model (e.g., Scottish Environment
Protection Agency, 2018; Xing et al., 2022). DRRs essentially
remove rainfall depths from the model at a rate equal to the level
of service provided by the drainage system. DRR values were
determined using the approach detailed in van Leuwen et al.
(2019) who cite Horrit et al. (2009), which was developed for
large scale flood hazard mapping undertaken in the
United Kingdom. The approach utilises a modified version of the
Rational Method and its application here is set out in the
Supplementary Material. We calculated DRR values of 8.6 mm/h
and 1.8 mm/h for urban and rural areas respectively. These DRR
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values incorporate the assumption that the urban drainage systems
will partially block and operate at 50% of their assumed hydraulic
capacity. It is known that blockage of drainage systems due to
inadequate waste management practices plays a significant role in
urban flooding in Addis Ababa (Birhanu et al., 2016; Adugna
et al., 2019).

2.2 Flood hazard model validation

As a hydrodynamic model validation exercise, a flood event
captured by satellite imagery on 6 September 2017 was simulated
and the modelled flood extent compared with observations. The
historical event model simulation was driven by spatially and

temporally varied precipitation data from ERA5. Model initial
conditions were prescribed in the form of a water surface
elevation (WSE) grid covering the 2D domain. The WSE values
used for the initial conditions were generated from a preliminary
model run that simulated the average daily flow observed (gauged)
on the Big Akaki River during the wet season months of August and
September. These initial conditions represent three reservoirs in the
upstream part of the catchment (Gefersa, Legedadi, and Dire) as full,
thus assuming they provide no flood attenuation, an assumption
corroborated in a discussion we held with the reservoir operators
from the Addis Ababa Water and Sewerage Authority (AAWSA,
personal communication, 2023).

Satellite imagery capturing the lower Akaki river inundating was
acquired at approximately 07:30 UCT on 6 September 2017 by the

FIGURE 1
Hydrodynamicmodel details: (A) Location plan with backgroundmapping and river centrelines fromOpenStreetMap (OpenStreetMap contributors,
2022); (B) Worldcover (Zanaga et al., 2021) input land cover data used to define spatial distribution of hydraulic roughness and infiltration rates; (C)
Hydrologic soil groups from HYSOGs (Ross et al., 2018) used to define spatial distribution of infiltration rates; (D) Unstructured model mesh overlaying
input terrain data.
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TABLE 1 Summary of datasets used in this study.

Dataset Resolution Type Source

ESA WorldCover global land use map 10 m GeoTIFF https://esa-worldcover.org/en Zanaga et al. (2021)

HYSOGs Global Hydrologic Soil Groups 250 m GeoTIFF https://doi.org/10.3334/ORNLDAAC/1566 Ross et al. (2018)

Sentinel 2 Optical satellite imagery 10 m GeoTIFF https://dataspace.copernicus.eu/explore-data/data-collections/sentinel-data/
sentinel-2

DEM covering the Akaki catchment 5 m GeoTIFF Provided by the Ethiopian Geospatial Institute

FABDEM 30 m GeoTIFF https://doi.org/10.5523/bris.25wfy0f9ukoge2gs7a5mqpq2j7 Hawker et al. (2022)

MERIT DEM 90 m GeoTIFF http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM Yamazaki et al. (2017)

ERA5 precipitation time series 31 km; 1 h Netcdf https://cds.climate.copernicus.eu/#!/home Hersbach et al. (2020)

IDF curves for Addis Ababa N/A Equation and
parameters

https://doi.org/10.3390/hydrology5020028 De Paola et al. (2018)

Parametrized eXtreme Rain global IDF
curves

31 km Netcdf https://zenodo.org/records/3351812 Courty et al. (2019b)

Fathom 2.0 Global Flood model flood depth
grid

90 m GeoTIFF https://www.fathom.global/product/global-flood-map/ Sampson et al. (2015);
Fathom. (2019)

Google Open Buildings Dataset Version 1 0.5 m CSV https://sites.research.google/open-buildings/#download Sirko et al. (2021))

FIGURE 2
Sentinel 2 image of lower Akaki river flooding on 6 September 2017, downloaded from US Geological Survey Earth Explorer website: https://
earthexplorer.usgs.gov/. Calculated MNDWI extent overlaid on top of satellite image.
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Sentinel 2 optical instrument. We processed the optical imagery by
calculating the modified normalised difference water index
(MNDWI), which enhances the visibility of open water whilst
diminishing built-up area features (Xu, 2006). The result is
shown in Figure 2. We then analysed the differences between the
modelled and observed flood extents by calculating three
performance metrics, details of which are given in the results
section. Subsequent comparison of the observed flood extent and
modelled statistical floods showed that the observed flood was a
relatively minor one (smaller extents than the 1-in-5 years modelled
flood extent).

2.3 Flood exposure assessments

Once the model was validated, we used it to estimate the number
of properties in Addis Ababa that are exposed to the 1-in-5 and 1-in-
100 years rainfall events. These statistical rainfall events were chosen
to test both low and high-frequency flood events, and were derived
from rainfall IDF information for Addis Ababa derived from in situ
rain gauge data (De Paola et al., 2018). The temporal storm profile
was generated using a 24 h duration HEC-HMS frequency-based
hypothetical storm (Scharffenberg et al., 2018). The rainfall events

were applied uniformly across the model domain, and the same
initial conditions as those used for the historical event simulations
were prescribed. The flood extents resulting from these statistical
rainfall event simulations were then intersected with the Google
Open Buildings Dataset Version 1 (Sirko et al., 2021) to identify all
exposed buildings. This dataset contains building footprints from
50 cm satellite imagery, covering the entire African continent, and
provides a confidence score to indicate how likely each feature is a
building (this score was not used in our assessment process). South
Asia, South-East Asia, Latin America and the Caribbean have also
since been added to the latest version (V3) of Google Open
Buildings. Finally, the spatial distribution of exposure across the
study area is mapped by using a heatmap renderer to convert the
exposed building points to a 100 m resolution exposure density
raster. The entire flood exposure assessment process is depicted
in Figure 3.

2.4 Model tests: Global datasets and
parameter sensitivity

To test the global terrain and rainfall datasets, we repeated the
flood hazard modelling and exposure assessment described in the

FIGURE 3
Flow chart showing the flood hazard and exposure assessment process used in this study.
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previous sub-section but sequentially replaced one of the reference
model (RM) inputs with a global dataset. To run the hydrodynamic
model with each of the global DEMs, each DEMwas first augmented
with river channel bathymetry information. Bathymetry is generally
absent from global DEMs and when they are used in floodmodelling
it is common to add bathymetry to account for the important role
that channels play in flood hydraulics (Sampson et al., 2015; Neal
et al., 2021). In data scarce contexts the bathymetry usually needs to
be estimated in the absence of observations. We followed this
practice to test the global DEMs in this context in a credible
manner. To augment the MERIT DEM and FABDEM with
bathymetry, we estimate bathymetry by applying hydraulic
geometry (HG) theory combined with Manning’s equation. HG
theory relates channel width and depth to bank full discharge using
power law relationships (Leopold and Maddock, 1953; Gleason,
2015), and has been used extensively to estimate bathymetry in data
scarce situations (Neal et al., 2012; Schumann et al., 2013; Yamazaki
et al., 2013; Fleischmann et al., 2019). HG is often supplemented
with some basic open channel flow hydraulic analysis to calculate
channel depth. In many cases this involves applying Manning’s
equation and assuming uniform flow conditions (e.g., Sampson
et al., 2015), and we adopt this approach here. All channels with
an upstream drainage area of 10 km2 or above are added, based on
previous research suggesting that 30 m resolution global DEMs can
define river channels with upstream areas as small as this (Annis
et al., 2019; Bernhofen et al., 2021). Details of the procedure used are
given in the Supplementary Material.

To run the hydrodynamic model with the PXR IDF dataset we
replaced the gauge-based rainfall depths with depths from the PXR
IDF curves. The storm temporal profile was then generated in the
same way as described previously. The GFM test was conducted by
combining the Fathom 2.0 fluvial and pluvial flood depth grids and
converting the resulting depth grid into a flood extent map, which
was then used to estimate flood exposure in lieu of our
hydrodynamic model results.

In addition to the four global dataset tests, we also conducted five
sensitivity tests on the RM. This involved re-running the RM using
upper and lower bound values of key model parameters that are
uncertain or subjective, and seeing how sensitive the flood exposure
results are to this ambiguity. The parameters tested include the SCS
CN values used to compute runoff; the DRR used to model urban
drainage; Manning’s n hydraulic roughness values; the minimum
exposure depth threshold value; and the choice of method used to
downscale results from the computational grid resolution to the
DEM resolution. CN values were varied by ± 20%, reflecting the
range in minimum and maximum textbook values for a given land
cover type (USDA, 1986). The DRR value was reduced to 0 and
increased to 25 mm/h in urban areas, representing assumptions of
100% blockage and a level of service (LoS) of 1-in-10 years (Keaney
and Jaegerfelt Mouritsen, (2015) provide accounts of some big cities
in middle income countries upgrading drainage systems to this LoS
in recent years). Manning’s n was varied by ± 30% as this is the
typical degree of variation between minimum and maximum
textbook values for a given surface (e.g., Arcement and
Schneider, 1984). A review of reported minimum inundation
exposure depth threshold values yielded values between zero (UK
Environment Agency, 2019), to 200 mm (BMT Group Ltd, 2019),
hence we adopt this range. Finally, we use two methods of

downscaling from the computational grid resolution to the DEM
resolution: 1) interpolating the sloping water surface within
computational grid cells using values at 2D cell corners only; 2)
interpolating the sloping water surface using values at cell corners
and face centres, and weighting water surface elevations by face
depths so that deep faces have more effect than shallow faces.
Method 2) produces considerably smaller flooded areas than
method 1). Either of these methods can be used in HEC-RAS.

3 Results

3.1 Flood hazard model validation

The results of the model validation exercise for flood extent are
shown in Figure 4. The flooded area subjected to validation was
constrained to the area downstream of the urban area of Addis
Ababa where clouds were absent and, to avoid issues known to occur
when extracting inundation extents of minor flood events from
satellite imagery in urban areas (Tanim et al., 2022). We also
removed an area immediately upstream of the Aba Samuel
reservoir from the validation, as initial model sensitivity tests
showed flooding in this area was sensitive to the modelled
downstream boundary condition. Furthermore, we excluded
minor tributaries entering the main rivers along the validation
reaches because the resolution of the satellite images is too coarse
to detect inundation along these small tributaries.

Generally, there is good agreement between the model and
observations, particularly on the Big Akaki river, demonstrating
that the model is producing a reasonable reconstruction of the flood
inundation dynamics. The modelled flood extents show little bias
(just 4% underprediction), give an 81% hit rate (proportion of the
observed flood captured by the model), and the critical success index
(CSI)—the fraction of the combined modelled and observed flood
extent that is correct–is 73%. There are some notable differences in
the inundation patterns on the Little Akaki; misrepresentation of
terrain and river infrastructure in the model is likely to be part of the
reason for this. The remotely sensed inundation patterns are also not
error free and will contribute to the disagreement in inundation
patterns to some extent. We explored improving model
performance by calibrating the friction and infiltration
parameters, but doing so did not result in any meaningful
improvement in model performance: whilst it reduced the bias, it
also reduced the CSI score by a commensurate amount.

3.2 Model test results: Global datasets and
parameter sensitivity

The exposure building estimates resulting from the Global
dataset tests are shown in Figure 5, along with the model
sensitivity tests results. Additional hydraulic results including
flood extent and depth statistics are provided in Section 5 of the
Supplementary Material. The RM produces building exposure
estimates of 44,544 and 77,320 for the 1-in-5 and 1-in-100 years
return period flood events, respectively. When any one of the global
datasets is introduced into the flood hazard modelling process, the
exposure estimates increase. The magnitude of this increase varies
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for each test and tends to be greater for the 1-in-5 than the 1-in-
100 years event in relative terms (the global flood hazard model test
being a notable exception). The percentage increases in exposure
relative to the RM, for the 1-in-5 and 1-in-100 years events are,
respectively: 25% and 24% for the FAB DEM test; 135% and 75% for
the MERIT DEM test; 50% and 38% for the global IDF test; and 25%
and 156% for the GFM test.

Of the five sensitivity tests, the 1-in-5 years CN parameter test
results vary by a maximum of 38% relative to the RM exposure,
which is the largest deviation of all tests. The CN values are the
product of the HYSOGs and Worldcover global datasets. Whilst we
are not testing these specific datasets in this study, the CN sensitivity
test results indicate a need to do so. The HYSOGs data in particular
has a relatively coarse 250 m spatial resolution and would benefit
from being tested given others are now using at this scale (e.g.,
3SPROSPECT, 2021; Rivosecchi and Singh, 2023). The 1-in-5 years
results of the DRR, minimum depth threshold, and downscaling
method tests all deviate from the RM by up to 28%, whilst the
hydraulic roughness test runs vary by no more than 13%. When

compared to the 1-in-5 years results, 1-in-100 years sensitivity test
results consistently show less variation relative to the RM, but they
are similar in their absolute magnitude. Some of these uncertainties
are mitigated where models are calibrated and the parameters can be
adjusted to reduce the difference between model results and
observations. However, drainage removal rate, minimum flood
depth threshold, and the downscaling method are not calibration
parameters and modellers should take note of how much the model
results can deviate depending on the choices made with these.

Figure 6 shows the heatmap raster maps depicting the spatial
distribution of buildings exposed to the 1-in-5 and 1-in-100 years
events, for the RM results and each of the global dataset tests. The
spatial prioritisation of interventions is a fundamental part of flood
risk management, and it is therefore important to assess the spatial
distribution of exposure as well as the total number of exposed
assets. The RM heatmaps identify a clear exposure hotspot to the
southwest of the city, and a site visit to this area in March
2023 verified that widespread inundation of properties has
occurred in this area. The heatmaps produced from the global

FIGURE 4
Hydrodynamic model validation with optical image observed on 6 September 2017. Background mapping from OpenStreetMap (OpenStreetMap
contributors, 2022).
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dataset tests diverge from the RM heatmap to varying degrees. The
FABDEM increases the exposure to some degree along numerous
river reaches across the domain and as a result is unable to define the
southwestern hotspot for the 1-in-5 years event. The southwestern
hotspot is well defined for the FAB DEM 1-in-100 years scenario.
Using the MERIT DEM increases exposure significantly across the
model domain for both flood events, and it is unable to define the
southwestern hotspot. Global rainfall has no discernible effect on the
distribution of exposure as would be expected given rainfall is
applied uniformly in the model. The GFM heatmap does not
clearly identify the southwestern hotspot for either flood event
because it introduces commensurate degrees of exposure along
several of the watercourses.

4 Discussion

Each dataset overestimates flood exposure to a varying degree.
One would expect this to be the case for the global DEMs, as

reducing the DEM resolution will always produce larger flood
extents, assuming a consistent vertical accuracy (Saksena and
Merwade, 2015). When using FABDEM this overestimation is
relatively small and is well within the hydrodynamic model’s
sensitivity to uncertain parameters. In contrast, the MERIT DEM
produces a much larger overestimation far greater than the model’s
sensitivity, which is broadly in line with the findings of others
(McClean et al., 2020). This result clearly supports the assertion that
FABDEM will significantly improve flood hazard and risk estimates
in data scarce situations. The 1-in-100 years exposure heatmaps
produced using FABDEM also conformmuch closely to the RM and
represent a significant improvement on those produced using the
MERIT DEM. To place these results in context, the RM is based on a
5 m DEM from photogrammetry, which is comparable to DEMs
used in national scale flood maps produced for some higher income
countries (Sayers et al., 2020; Bates et al., 2021). However, the 1-in-
5 years FABDEM heatmaps show a limited improvement over the
MERIT heatmaps and are unable to replicate the spatial patterns of
flood exposure predicted by the RM. The deterioration of the
FABDEM results for high-frequency floods may be because the
inundation associated with high-frequency events is less extensive,
i.e., it is more localised and sensitive to topographic approximations
such as the omission of flood defences and hydraulic structures; as
noted by others (Quinn et al., 2019; Hawker et al., 2020). The
practice of augmenting global DEMS with bathymetry may also play
a role in their poor performance in modelling high-frequency floods.
Estimating bathymetry by assuming uniform flow does not allow for
gradually varied flow conditions such as backwater effects that exist
along natural channel systems, meaning channel depths will be
underestimated and inundation overestimated in these areas. The
tendency to over-predict exposure for more frequent flood events is
a recognised limitation of GFMs and their constituent data. Efforts
to address this are ongoing: Neal et al. (2021) demonstrated that
bathymetry estimation using a gradually varied flow solver instead of
Manning’s equation for uniform flow can remove the bias in
modelled water surface elevation associated with backwater
effects. Zhao et al. (2023) developed a novel machine learning-
based approach for estimating flood defence standards and
demonstrated its utility in improving the representation of flood
defences in large scale flood modelling. Such advances are already
being used in continental scale modelling (Bates et al., 2021), and
they will be adopted in future versions of GFMs. The extent to which
they improve GFM high-frequency flood predictions, particularly in
low income contexts, remains to be seen.

Using the global IDF dataset increased the number of exposed
buildings by a similar magnitude to the more sensitive of the
parameter uncertainty tests (infiltration; minimum exposure depth
threshold value; downscaling method), and can therefore be regarded
as a considerable component of the overall uncertainty of the
hydrodynamic modelling process. However, when these results are
viewed in the context of the wider flood risk assessment process, the
overestimation is relatively small in magnitude. For example, Merz
and Thieken (2009) found that flood risk estimates for a relatively
data-rich western European city had maximum uncertainties of
around −50% and +100%. The vulnerability component of risk
(i.e., the relationship between flood hazard magnitude and flood
receptor susceptibility) is often the dominant source of uncertainty
(Winter 2017; Sarailidis 2023). In lower income countries where data

FIGURE 5
Number of exposed buildings resulting from the RM, global
dataset tests, and model parameter sensitivity tests: (A) 1-in-5 years;
(B) 1-in-100 years.
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on vulnerability relationships is particularly scarce, risk assessment
uncertainties have been shown to exceed a factor of three (Englhardt
et al., 2019; Bernhofen et al., 2022). As noted in the results section, the

rainfall is not spatially varied and therefore it does not significantly
affect the spatial distribution of exposure in our test. The results show
that the global IDF curves are appropriate for assessing city scale flood

FIGURE 6
Heatmaps showing spatial distribution of building exposure to 1-in-5 years (A-E); and 1-in-100 years (F-J) storm events. Heatmap symbology
minimum andmaximum values are set individually for eachmap deliberately, to allow eachmap to define the spatial distribution of exposure as clearly as
possible. Background Map data: Google, Maxar Technologies, Airbus.
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risk. However, as the behaviour of ERA5 is thought to vary across
climatic regions (Gleixner et al., 2020), further testing in other regions
is needed to make these findings globally applicable. Contrary to the
overestimation shown by our results, others have found that
ERA5 tends to underestimate flood hazard and exposure (McClean
et al., 2021). The overestimation seen here may be the result of the
approach used to derive IDF relationships from ERA5, whereby the
IDF extreme value distribution parameters are scaled relative to event
duration (refer to Courty et al., 2019b for further details).

The Fathom 2.0 GFM results show the GFM more than doubles
the 1-in-100 years exposure, which is significant even within the
context of the wider flood risk assessment process. Interestingly the
GFM produces 1-in-5 years exposure estimates that are relatively
close to the RM results. This inconsistent magnitude of variation
between the GFM and the RM across return periods could be due to
differences in the rainfall data used by the two models, or differences
between the two models in their approach used representing urban
drainage. Distinctions in model computational grid size and
geometry, and in the approximations of the shallow water
equations employed by the HEC-RAS model and the Fathom
model will also play some role in these differences. The heatmaps
for both events show that the GFM introduces large amounts of
exposure along several watercourses in the study area, preventing a
clear definition of the southwestern hotspot for either return period.
This undermines its use in any form of city-scale prioritisation
study. The elevated exposure along the smaller channels is likely
because the bathymetry of these river channels has not been added
to the GFM (minimum river size added is 50 km2—see Trigg et al.,
2021). Compared to the MERIT DEM results, the GFM does a better
job of showing the extent of exposure in the hotspot area, which is
interesting given the GFM uses the MERIT DEM.

In summary, our results caution against assessing flood risk at
the city scale using the Fathom 2.0 GFM or the other GFMs that
have been documented in scientific literature in recent years
(Yamazaki et al., 2011; Winsemius et al., 2013; Rudari et al.,
2015; Sampson et al., 2015; Dottori et al., 2016; Ward et al., 2020;
Zhou et al., 2021). As has been well noted by others (Sampson
et al., 2015; Schumann and Bates, 2018), global DEM quality is
regarded as a key limitation of GFMs. Our FABDEM testing here
suggests that GFMs should improve considerably by using this
DEM over MERIT, and Fathom have recently done this in the
latest upgrade to their GFM version 3.0 (Hawker et al., 2023).
Representing the bathymetry of smaller rivers would also
seemingly improve the prospect of using future GFMs at the
city scale. As GFMs continue to be enhanced with new methods
and datasets, and computational advances enable resolution to be
refined, researchers will need to continue benchmarking these
models and the datasets they are using in an objective manner so
that they can be used appropriately.

Having considered only one set of geographic and climatic
conditions and used only a limited set of local data for validation,
it is important to note that the generalisability of our findings is
somewhat limited. Further research is needed to sample a wide range
of geographic and climatic conditions and utilise a diverse array of
local datasets for validation, which will enhance the generalisability of
findings around global datasets. Nonetheless, for those interested in
broad-scale flood risk assessment in similar low income, data scarce
contexts, there are some practical implications:

• FABDEM provides a viable substitute for local terrain data for
flood hazard modelling and should be used in preference to
SRTM-derived elevation products. However, users should be
mindful that global DEMs will generally tend to overpredict
total flood extent and exposure.

• In the absence of local rainfall data, The PXR IDF dataset can
be useful for prioritisation studies requiring a comparative
assessment of flood exposure across a study area.

• Application of these global datasets and GFMs are best
restricted to more extreme flood events such as the 1-in-
100 years event. If high-frequency floods are to be assessed,
particular caution should be exercised when using global
datasets; for these events it becomes even more important
to verify global hazard information with local observations
and knowledge.

• Based on a workshop held in Addis Ababa in which the results
of this study were presented to interested parties, the flood
exposure maps that resulted from using FABDEM and PXR
IDF data can be of use to practitioners and risk managers.
Specifically, representatives from the Fire and Disaster Risk
Management Commission, the Ethiopian meteorological
institute, and the Ethiopian Construction and Works
Corporation indicated that the exposure maps provided
new insights into the spatial distribution of flood exposure
across the city, and that the information would be useful for
emergency response planning.

• Whilst our findings show that certain global datasets can be
used credibly to assess flood exposure at the city scale, it is
important to reiterate that these findings are specific to low-
income settings where little or no physical flood defence or
river engineering infrastructure exists. It is also worth noting
that the scope of application of global datasets investigated
here excludes more local reach or structure scale assessments;
the design of individual mitigation measures; or the use of
flood depth information for assessment of damages or
mitigation scheme options.

4.1 Conclusions

This study evaluates the suitability of relevant global datasets for
mapping flood hazard in support of city-scale flood risk assessments
in data scarce, low to middle income contexts. Specifically, we test
the use of FABDEM and MERIT DEM, the PXR global rainfall IDF
dataset, and the Fathom 2.0 GFM in assessing flood exposure across
Addis Ababa, Ethiopia. We find that FABDEM clearly outperforms
the MERIT DEM. MERIT overestimated 1-in-100 years exposure by
75%; this figure was just 25% with FAB DEM, which is less deviation
than that arising from the hydrodynamic model sensitivity tests.
FABDEM also did a far better job of mapping the spatial distribution
of exposure and matched closely the local 5 m DEM from
photogrammetry used in the reference model. However, this
finding does not hold for frequent flood events where inundation
is more localised and sensitive to topographic approximations. The
1-in-5 years FABDEM flood exposure map does not match the
reference model well, and is similar to that produced by the
MERIT DEM. We therefore conclude that FABDEM is suitable
for assessing flood risk at the city scale, but only flood risks
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associated with relatively low-frequency floods. The global IDF
dataset also holds promise for assessing city scale flood risk
associated with both low and high-frequency floods. Its use in
place of in situ rainfall data elevated exposure estimates by a
maximum of 50%, which is small relative to the overall
uncertainty associated with the wider flood risk assessment
process (particularly the vulnerability component of risk).
However, more work is needed to generalise these findings by
testing the global datasets in a range of geographic and climatic
conditions and using a more diverse set of local data for validation.
The Fathom 2.0 GFM we tested was unable to define the spatial
distribution of exposure, which precludes its use at the city scale.
However, we anticipate that by making use of FABDEM, the latest
generation of GFMs will provide hazard information associated with
low-frequency flood events that is relevant to city scale assessments
in lower income countries. Further research will be needed to test
new GFMs and other global datasets that continue to emerge to give
users a sense of their limitations.
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