
Identification of optimal
CMIP6 GCMs for future typical
meteorological year in major
cities of Indonesia using
multi-criteria decision analysis

Vinayak Bhanage1*, Han Soo Lee1,2, Jonathan Salar Cabrera1,3,
Tetsu Kubota1, Radyan Putra Pradana1,4, Faiz Rohman Fajary1,5

and Hideyo Nimiya6

1Transdisciplinary Science and Engineering Program, Graduate School of Advanced Science and
Engineering, Hiroshima University, Hiroshima, Japan, 2Center for Planetary Health and Innovation
Science (PHIS), The IDEC Institute, Hiroshima University, Hiroshima, Japan, 3Faculty of Computing, Data
Sciences, Engineering and Technology, Davao Oriental State University, Mati, Philippines, 4Center for
Research and Development, Indonesian Agency for Meteorology Climatology and Geophysics (BMKG),
Jakarta, Indonesia, 5Atmospheric Science Research Group, Faculty of Earth Science and Technology,
Institute Technology Bandung, Bandung, Indonesia, 6Graduate School of Science and Engineering,
Kagoshima University, Kagoshima, Japan

Many studies often use a single global climate model (GCM) across multiple cities
to develop future Typical Meteorological Year (TMY), without emphasizing city-
specific selection of GCM. The present investigation employs the Analytical
Hierarchy Process (AHP) to assess city-specific GCMs for generating future
TMY datasets across 29 Indonesian cities. Six GCMs from the coupled model
intercomparison project phase 6 (CMIP6) were evaluated against Modern-Era
Retrospective Analysis for Research Applications (MERRA-2) to assess their
performance in simulating surface air temperature, precipitation, wind speed,
and relative humidity. Six statistical measures were used to recognize the
systematic biases. Further, AHP was applied to integrate these statistical
measures to calculate the city-specific total relative error for each
meteorological parameter. Results of total relative error show that TaiESM, 6-
Model Ensemble (6ME), NorMM, and MPI-HR were best for simulating surface air
temperature, precipitation, wind speed, and relative humidity in most cities,
respectively. TMY recognizes distinctive importance among meteorological
parameters. Thus, it is essential to reflect the parameter-specific importance
while selecting GCMs for future TMY. Hence, AHP was reapplied on total relative
errors accounting for differing weights of each meteorological parameter.
Outcomes show that TaiESM, 6ME, and MPI-HR were found suitable for
generating future TMY datasets in 18, 5, and 3 cities, respectively, while MPI-
LR, NorLM, and NorMM were recommended for Boven Digoel, Medan, and
Bengkulu cities, respectively. Using city-specific GCMs ensures precise and
cost-effective future TMY generation, assisting urban planners and
policymakers in designing environmentally sustainable buildings for
anticipated climatic changes.
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1 Introduction

Climate change is the persistent alteration of global or local
climate conditions over an extended period. Alterations in climate
are mainly identified by measuring the variations in meteorological
factors, including temperature, precipitation, and other parameters
(Gleick, 1986; Zhang et al., 2011). According to the
Intergovernmental Panel on Climate Change (IPCC) fifth
assessment report, from 1951 to 2012, the average global surface
air temperature of the land and ocean has risen by 0.72°C (Stocker,
2014). By the end of the 21st century, it will increase to 1.8°C–4°C
(Field, 2014). This report also applauds substantial greenhouse gas
cuts, advocating for net zero emissions by mid-century to limit
global temperature increase to under 1.5°C. As reported by various
authors, urbanization is anticipated to drive a future rise in urban air
temperatures (Vinayak et al., 2021; 2022; Bhanage et al., 2023a). The
urbanization process also amplifies greenhouse gas (GHG)
emissions, making the urban environment one of the prior
concerns in the present world order (Ambade et al., 2021;
Gautam et al., 2021; Thapliyal et al., 2022). These predictions of
forthcoming changes in the climate bring noteworthy consideration
to the research topics that highlight the paths to cut down on
GHG emissions.

Buildings now contribute 33% of GHG emissions and 40% of
global energy use, projected to rise by 61% by 2,100 (Santamouris,
2016; Teske et al., 2021). To restrict building energy consumption,
the design of a building should pass the building energy
consumption test to check whether the design of a building
meets the criteria of energy savings. Building designs with
accurate meteorological data, specifically Typical Meteorological
Year (TMY) datasets, is essential in this testing. TMY dataset is a
set of meteorological data representing the typical hourly weather
conditions for a specific location over 1 year. These datasets
represent local climate conditions for simulations. However,
future climate changes make historical and present TMYs
inadequate. Thus, creating TMYs considering future climate
possibilities is vital. The most adopted approach for preparing
future TMY datasets is morphing (Dias et al., 2020). The
morphing method mainly relies on delta change in monthly
means of the weather data to illustrate future weather; still,
various studies reveal that weather variability and extreme events
are not replicated by variations in monthly means (Dias et al., 2020).
Apart from that, the morphing method also induces the effects of
climate change independently between variables. Therefore, the
most reliable methodology for constructing the future TMY
dataset is to dynamically downscale the global climate models
(GCMs). Compared to the morphing technique in a dynamical
downscaling of GCMs, it captures a more detailed representation of
physical processes, including atmospheric dynamics, land-surface
interactions, and local feedback mechanisms, contributing to a more
accurate representation of future climate conditions.

The GCMs are numerical models that simulate the global
climate’s preceding, contemporary, and forthcoming conditions
(Alizadeh, 2022). The sixth coupled model intercomparison
project (CMIP6) provides a climatic dataset from more than
30 GCMs developed by various organizations. It is necessary to
assess the proficiency of these GCMs in replicating essential climate
variables by comparing their outputs with observed or reanalysis

data. Depending upon several factors, such as parameterization
schemes, grid size, representation of the earth system, and initial
and boundary conditions, each GCM exhibits different
uncertainties. However, using the climatic data by integrating all
the GCMsmay not always be suitable. The use of many models leads
to increased ambiguities due to low simulation accuracy and process
algorithms of ensemble members. Therefore, to generate the future
TMY from individual GCMs, it is vital to compare each GCM or to
identify the relative performance of each GCM based on different
criteria that suit the TMY generation approach.

In recent years, numerous studies have explored the intricacies
of climatic features in various regions, aiming to predict future
climate scenarios. These investigations involve a meticulous
evaluation of GCMs against observed or reanalysis data. For
example, over Indian subcontinent, the exceptional performance
of an ensemble comprising KIOST-ESM, MRI-ESM2-0, MIROC6,
NESM3, and CanESM5 for maximum temperature and E3SM-1-0,
NESM3, CanESM5, GFDL-CM4, INM-CM5-0, and CMCC-ESM2
for minimum temperature has been reported (Rahman and Pekkat,
2024). In the case of Indonesia, the superiority of the multi-model
ensemble in simulating extreme precipitation events was noted
(Kurniadi et al., 2023). A recent research over Guatemala located
in central American region noted that MRI-ESM-2.0 and IPSL-
CM6A-LR GCMs as the top performer for simulating surface air
temperature and precipitation (Rivera, 2023). Research carried out
in 2023, evaluated the performance 27 GCMs derived from
CMIP6 over Southeast Asian territory, identified TaiESM as a
most exceptional performer (Pimonsree et al., 2023).

While these studies primarily aimed to assess the GCMs’
proficiency in capturing large-scale spatial and temporal climate
patterns, including regional temperature trends and precipitation
variability, it is essential to emphasize that when evaluating GCMs
for constructing future TMY data, a more focus on the local-scale
characteristics of the climate becomes imperative. Thus, it is crucial
to recognize that the approach adopted for regional-scale model
evaluations may not necessarily be suitable for the meticulous
preparation of future TMY datasets.

In past, numerous studies have been conducted to prepare the
future TMY dataset from the GCMs (Haase et al., 2011; Nik, 2016;
Huld et al., 2018; Troup et al., 2019; Yuan et al., 2022). However, to
generate the future TMY, the criteria used to select GCMs differ in
different studies. In 2011, after statistical evaluation of surface air
temperature and precipitation acquired from six GCMs, Chan
(2011) utilized the MIROC6-2-Med to simulate future TMY data
over the entire Hongkong region. In 2022, Doutreloup et al. (2022)
generated the future TMY dataset over Belgium using three climate
models, namely, BCC-CSM2-M, MPI-ESM 1.2, and MIROC6. Jiang
et al. (2019) used the HadCM3 data to generate the future TMY over
eight different cities of the globe. Ji Wei Zhou (2022) used the
Coordinated Regional Downscaling Experiment to estimate the
future reference years over different Canadian cities. Bass et al.
(2018) created a TMY dataset for Maricopa, Arizona, using six
GCMs without evaluating their performance. Similarly,
Manapragada et al. (2022) used the Canadian Earth System
Model to generate future TMY data over Delhi, India without
comparing different GCMs.

However, there are some limitations to these studies especially
while selecting the GCMs for the development of future TMY
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dataset. First, some of the above studies have used a unique GCM to
develop the future TMY dataset over different cities. But, some
studies recently have shown that the performance of GCMs in
simulating the different meteorological variables and phenomena
varies concerning the cities (Bhanage et al., 2023b; VR, 2023).
Second, many of the above-mentioned studies do not evaluate
the performance of GCMs before adopting them for the
development of future TMY dataset. Evaluating the performance
of GCMs helps identify their strengths and weaknesses, allowing for
the selection of models that better capture the local climate
variability, which is essential for TMY dataset generation (Fildes
and Kourentzes, 2011; McSweeney et al., 2015; Ruane and
McDermid, 2017; Chowdhury and Behera, 2019) Third, in
creating TMY data, it is imperative to recognize that different
meteorological parameters have varying levels of importance. Yet,
the studies mentioned above did not consider the respective
significance of these parameters while selecting an appropriate
GCM for future TMY development.

To overcome these limitations, the principal objective of this
study is to develop a new framework for identifying GCMs tailored
to the local climatic characteristics of each of Indonesia’s 29 cities to
generate future TMY datasets. This study’s distinctive feature lies in
its pioneering method for GCM selection, as it recognizes the diverse
levels of significance attributed to individual meteorological and
statistical parameters. Therefore, while identifying the city-wise
optimal GCMs for preparing future TMY data, according to the

author’s knowledge, this study will be a pioneering effort that
considers the AHP-based multi-criteria decision analysis
(MCDA) approach to incorporate and aggregate the subjective
judgments associated with various meteorological and statistical
parameters that allow a more transparent decision process.

The paper is structured into six distinct sections. The first
section explores the research problem’s context, underscoring its
significance, and outlines the study’s objectives. The second
section offers comprehensive information about the study
area. The third section delves into the research design and
methodology employed in the study. The fourth section
presents the study’s outcomes, encompassing data analysis,
statistical insights, and other pertinent information related to
the findings. The fifth section is dedicated to interpreting and
comparing the results with previous studies. Finally, the sixth
section summarizes the key findings, addresses limitations, and
discusses the future scope of the study.

2 Study area

The present study has been conducted over twenty-nine major
cities located in Indonesia (Figure 1). The overall area of Indonesia
extends from the latitudes 11°S and 6°N and longitudes 95°E and
141°E. The elevation of the Indonesian region varies from 0 m to
3,505 m. Indonesia experiences a hot-humid tropical climate. The
surface air temperature in Indonesia stays relatively constant
throughout the year. The country has two seasons: the wet
season, from October to April, and the dry season, from May to
September. Due to its tropical climate, the coastal plains experience
an average surface air temperature of around 28°C.

In comparison, the internal highland regions have a mean of
26°C, and the higher highland regions have temperatures around
23°C. The country’s relative humidity is very high and fluctuates
between 70% and 90%. Indonesia experiences ample annual
precipitation ranging from the driest regions of around 500 mm
to more than 3,000 mm in the wettest regions (Kurniadi et al., 2023).
It highlights the spatial heterogeneity in the precipitation over
Indonesia. Given the spatial variabilities in temperature and
precipitation across Indonesia, it is crucial to identify GCMs
specific to each city for generating future TMY datasets.

3 Materials and methods

3.1 Data

The CMIP6 program includes historical (1850-2014)
simulations based on observations and external forcings such as
volcanic eruptions, solar variability, changes in GHGs, and aerosol
concentrations (Eyring et al., 2016). In the CMIP6 stage, the
scenarios of representative pathways (RCPs) i.e., RCP 2.6,
RCP4.5, RCP 6.8 and RCP 8.5 of the CMIP5 have been apprised
to shared socioeconomic pathways (SSPs) i.e., SSP1-2.6, SSP2-4.5,
SSP4-6.0, and SSP5-8.5 respectively (Arnell et al., 2019; Gidden et al.,
2019; Shiru and Chung, 2021). These SSP scenarios provide a
framework for climate change research by describing plausible
alternative futures of human development and greenhouse gas

FIGURE 1
Study Area representing (A)Climatic zones of Indonesia based on
Koppen -Geiger classification and (B) spatial variation in the elevation
and the location of 29 major cities in Indonesia.
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emissions. Each SSP scenario represents a different narrative about
future socioeconomic conditions and policies. The SSPs encompass
five different potentials: (a) a scenario characterized by growth and
equality with a focus on sustainability (SSP1); (b) a condition where
trends closely align with historical patterns (SSP2); (c) a world
noticeable by resurgent nationalism and fragmentation (SSP3); (d) a
scenario of intensifying global inequality; and (e) a state of rapid and
unrestrained growth in both energy consumption and economic
output (SSP5) (Shiru and Chung, 2021). The major goal of the
CMIP6 program is to enhance the accuracy and reliability of climate
models by incorporating improvements in emissions scenarios,
land-use representation, physical process modeling, and model
parameterization. This comprehensive approach allows for a
more robust exploration of future climate conditions (Eyring
et al., 2016). In the ongoing research, six historical GCMs were
chosen to evaluate surface air temperature, precipitation, wind
speed, and relative humidity. These GCMs were selected from
the CMIP6 dataset, spanning the time frame from 1980 to 2014.
The study utilizes MCDA-based statistical methods to perform a
comparative evaluation between the chosen GCMs and
reanalysis datasets.

The evaluation period from 1980 to 2014 was chosen because (i)
the period of 1980–2014 serves as a reference period for climate
agreement as it covers a large period of the recent past, (ii) the
growing GHGs and anthropogenic influences marked this period of
1980 onwards, and (iii) as compared to earlier period (<1980), very
few large-scale disturbances and the number of volcanic eruptions
have increased between post-1980 period (Doocy et al., 2013). For
this evaluation, 6 GCMs were selected based on the following
criteria: (i) The GCMs must comprise the historical dataset of
surface air temperature, precipitation, relative humidity, and
wind speed from 1980 to 2014, (ii) the identical model should
incorporate the climatological data from 2015 to 2,100 under SSP
5–8.5 scenario at 6 hourly interludes, and (iii) the model must have a
forcing data from the r1i1p1f1 (first realization). Selection of the first
realization ensures a fair and unbiased comparison across all GCMs,
while the selection of the SSP 5–8.5 scenario is motivated by the
chance it provides to gain insights into the potential extreme impacts
of climate change. Detailed information on chosen GCMs is
provided in Table 1.

Subsequently, to assess the integrated performance, the selected
GCMs, multi-model ensemble dataset (6ME), was calculated using
Eq. 1 where i = different shortlisted GCMs.

6ME( ) � 1
n
∑n

i�1GCMi (1)

Further, this data has been compared with the monthly
surface air temperature, precipitation, and relative humidity
data obtained from the Modern-Era Retrospective Analysis for
Research Applications (MERRA), Version 2 (Bosilovich, 2015).
This dataset is established by incorporating ground-satellite
observations and numerical model data. The spatial resolution
of the MERRA2 dataset is 0.50 × 0.65. The flow of methodology is
illustrated in Figure 2. After the acquisition of the MERRA-2 and
selected CMIP6 GCMs, they were regridded to 1 × 1. This
regridding process was performed to align the spatial
resolution of the GCMs with the dataset, ensuring a consistent

TABLE 1 Description of selected GCM data.

Sr.No. GCM-ID Abbreviation Spatial resolution Period Institution

1 NorESM2 MM NORMM 1 × 1 Jan 1980–December 2014 Norwegian-Climate Centre, Norway

2 NorESM2 LM NORLM 2.5 × 2.5 Jan 1980–December 2014 Norwegian-Climate Centre, Norway

3 MPIESM 1–2 HR MPI-HR 1 × 1 Jan 1980–December 2014 Max Planck Institute of Meteorology, Germany

4 MPI-ESM 1–2 LR MPI-LR 2.5 × 2.5 Jan 1980–December 2014 Max Planck Institute of Meteorology, Germany

5 RCEC. TaiESM 1 × 1 Jan 1980–December 2014 Research Centre for Environmental Changes, Taiwan,
China

TaiESM1

6 AWI-CM-
1-1 MR

AWI 1 × 1 Jan 1980–December 2014 The Alfred Wegener Institute, Germany

FIGURE 2
General flow of methodology adopted for identifying city-
specific suitable GCMs for generating the future TMY dataset.
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spatial framework for comparison. Furthermore, city-wise
statistical analysis has been conducted to evaluate the
performance of surface air temperature, relative humidity,
precipitation, and wind speed derived from the MERRA-2 and
CMIP6 GCMs, including the 6ME.

3.2 Statistical performance metrics

Several statistical performance metrics are generally utilized to
evaluate the accuracy and reliability of the GCMs. Here, for each
city, by comparing theMERRA-2 and GCMs, including the 6ME, six
statistical metrics were calculated to analyze surface air temperature,
precipitation, relative humidity, and wind speed as follows (see also
Table 2 for their formula):

The correlation coefficient (CC) depicts the strength of the
association among the comparative dynamics of two variables; the
values of the CC range from −1 to 1. The values closer to 0 (1 or −1)
show the weaker (stronger) association between the two variables.

Standard deviation (SD) elucidates the dataset’s variation or
dispersion. A lower standard deviation indicates that the values in
the data are closer to the mean of the dataset. In contrast, higher
standard deviation values imply that the dataset’s values spread wider.

Mean annual (MA) can calculate the sum of each mean annual
divided by the total number of years. It is mainly used to estimate the
shifts in the average annual values of each meteorological variable
over the 29 cities.

Mean bias error (MBE) is the positive or negative difference
between the dataset acquired from the reference and CMIP6 GCMs.
MBE outcomes reveal whether the GCM simulations are warm or
cold-biased compared with the reference data.

Mean seasonal cycle amplitude (SA) mainly highlights the
difference between extremely hot and cold months that can be
used to assess the gravity of alterations in surface air temperature,
precipitation, wind speed, and relative humidity over the 29 cities
considered for this study.

Root mean square error (RMSE) commonly measures the
disparity between values simulated/predicted by a GCM and the
reference. In other words, RMSE measures the error between

simulated/predicted and reference datasets. The lower (higher)
values of RMSE indicate the smaller (greater) error from the
simulated/modeled values.

3.3 Relative weights by the analytical
hierarchy process (AHP)

The quantitative assessment for the suitable GCMs for the
generation of future TMY depends on multiple criteria, such as
surface air temperature, precipitation, wind speed, and relative
humidity. Also, statistical measures such as bias in SA, MBE, RMSE,
CC, and bias in SD were used to generate the total relative error. This
study employed the AHPmethod twice to ascertain the relative weights
assigned to individual statistical measures and the total relative error
calculated for each meteorological parameter.

Subsequently, the relative importance of each statistical measure
(total relative error of every meteorological parameter) was established
by administering questionnaires to a panel of 10 (8) experts. Detailed
information regarding each questionnaire can be found in the
Supplementary Material S1. The first step of the AHP process is the
generation of the pairwise comparisonmatrix, where each criterion was
compared to another using the Saaty Scale (Saaty, 1980) (see Table 3). In
this study, the scale ranges between 1 and 5 based on the number of
norms used to generate the total relative error and 1 and 4 for each
meteorological parameter that can generate future TMY. The second
step includes dividing each value in the matrix (Cij) by the sum of
columns in the pairwise comparison matrix to produce the normalized
value (Xij), as shown in Eq. 2.

Xij � Cij /∑n
i�1
Cij (2)

The third step is to generate the weight (Wij) of each criterion,
which is calculated by dividing the normalized value (Xij) by the total
number of criteria (n), as shown in Eq. 3.

Wij � ∑n
i�1
Xij/n (3)

TABLE 2 Details of six statistical measures.

Statistical measure Formula

Correlation Coefficient ∑(Oi− �O)(M− �M)������
Σ(Oi− �O)2

√ �������
Σ(Mi− �M)2

√

Standard Deviation
���������∑n

i�1(Mi−�u)2
n

√

Mean Annual ∑N

y�1Ty
N

Mean Bias Error 1
n∑ (Mi) − (Oi)

Mean Seasonal Cycle Amplitude (Mmax) − (Mmin)

Root Mean Square Error
���������∑n

i�1(Mi−Oi)2
√

n

Note:Mi = Model estimated values, Oi = Observed Values, n = Total no. of values in dataset, = The mean of the population (observed or Model),Mmax = mean warmest/wettest/windiest/most

humid month of model for years 1980–2014, Mmin = mean coldest/driest/least windy/least humid month of model for years 1980–2014, Ty = Annual surface air temperature/precipitation/

relative humidity/wind speed of the year y, N = Total no. of years.
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The last part of the AHP process is generating the consistency
ratio (CR). The CR is used to determine whether each criterion’s
weight is acceptable. It is acceptable if theCR value is less than or equal
to 10% (0.10); otherwise, it is unacceptable. There are three sub-
procedures to generate the CR. The first is to calculate the consistency
measure (CM). CM can be calculated by multiplying the pairwise
matrix with the weight (Wij) and dividing the result by the weighted
sum with the criterion weight. The consistency index (CI) is then
calculated using Eq. 4, where the λmax is the average of theCMs. Lastly,
the CR is derived using Eq. 5, where the relative index (RI) value is
shown in Table 4.

CI � λmax – n( ) / n – 1( ) (4)
CR � CI/RI (5)

3.4 City-specific ranking of the GCMs

For all the GCMs, the city-specific total relative error was
calculated for each meteorological parameter. It was calculated by
combining the five statistical measures computed in the above
section. It reflects various attributes of model performance, such
as biases, CC, and temporal changes. This thorough assessment
enables a more extensive examination of GCMs. Calculating the
total relative error to individual models based on performance
enables an apparent evaluation and recognizes GCMs
demonstrating comparatively better or poorer performance. The
details of the methodology employed for the calculation of total
relative error are as follows:

To determine the total relative error of the GCMs, we have
incorporated all statistical metrics and assigned varying
weights to each metric, which were obtained through the
AHP. For a given model i and metric j, we first defined an
error EI,j as

Ei,j � Xobs,j−Xi,j

∣∣∣∣ ∣∣∣∣ (6)

where Xobs and Xi are the observed and simulated ensemble mean
metrics, respectively, and the application of Eq. 6 included

correlations (where Xobs necessarily equaled 1). Furthermore,
relative error EI,j

* is defined as

EI,j
* � Ei,j − min Ei,j( )

max Ei,j( ) − min Ei,j( ) (7)

Then, for the calculation of total relative error, a weighted sum
has been carried out concerning relative error estimated across allm
metrics in Eq. 8

EI,tot
* � ∑m

J�1Wj p EI,j
* (8)

to get the total relative error EI,tot
* per model. Wj is the weight of

each statistical metric j derived by using the AHP method. The
values obtained for EI,tot

* are unitless. Finally, the models are
ranked by their respective total relative error. Lower (higher)
values of the E*

I,tot represents the higher (lower) suitability of the
GCMs for an individual meteorological parameter over a
specific city.

In the past, it was noted that the relative importance of
meteorological parameters varies in the development of TMY
datasets (Cebecauer and Suri, 2015; Li et al., 2021). Based on the
methodology mentioned in earlier sections, weights for each
climatic parameter were established for generating future TMY
datasets (Wtmy). Further, to determine city-specific rankings of
GCMs for future TMY creation, EI,tot

* Values were calculated for
each meteorological parameter, and GCM for each city was
combined with the corresponding. Wtmy using Eq. 9. The
outcomes of Eq. 9 yields unitless ranking scores depicted by
(E*

I,rank), enabling the determination of city-specific suitability of
GCM for the future development of TMY. The resulting non-
dimensional values, closer to 0 (1), indicate higher (lower)
suitability of a GCM for developing future TMY datasets for a
specific city.

E*
I,rank � ∑m

J�1Wtmy pEI,total
* (9)

4 Results

4.1 City-wise GCM performance

In statistical assessment for surface air temperature,
precipitation, relative humidity, and wind speed, simulated

TABLE 3 Saaty Scale of relative importance and its corresponding description.

Scale Judgment Description

1 Equal importance Two criteria contribute equal importance

3 Moderate The judgment slightly favors one over the other

5 Strong The judgment strongly favors one over the other

7 Very strong The judgment very strongly favors one over the other

9 Extremely important The judgment highly favors one over the other

2,4,6,8 Intermediate values When compromise needed

TABLE 4 Random index matrix per number of criteria in decision-making.

Number of criteria 2 3 4 5

RI 0.00 0.58 0.90 1.12
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monthly climatic data derived from 6 GCMs and one ensemble were
compared with the MERRA-2 reanalysis data (1980-2014). Using
different statistical measurements offers unique insights and helps
evaluate different aspects of each GCM, allowing for a more
robust analysis.

4.1.1 Surface air temperature
Figure3A–F represents the six statistical measures calculated for

the surface air temperature over 29 cities of Indonesia. Here, MA

surface air temperature obtained from the MERRA-2 and GCMs,
including the 6ME, spans 290–302 K (Figure 3A). Based on the
reanalysis data, Sumenep (Wamena) City recorded the highest
(lowest) mean annual surface air temperature among all cities. In
the case of Sumenep (Wamena) City, the magnitude of MA surface
air temperature derived with MPI-LR (MPI-HR) exhibited close
similarity when compared with the reanalysis dataset. The MBE of
surface air temperature calculated from six GCM and 6ME varied
between −3–5 K (Figure 3B). Considering the 6ME, out of 29 cities,

FIGURE 3
City-wise variation of different statistical metrics computed for surface air temperature across 29 cities in Indonesia (A) MA, (B) MBE, (C) CC, (D)
RMSE, (E) SA, and (F) SD.
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20 (9) cities show warm (cold) biases in mean annual surface air
temperature. Among the 29 cities analyzed using the 6ME, 20 exhibit
warm biases in mean annual surface air temperature, while 9 display
cold biases. However, for other GCMs, biases vary depending on
their specific tendencies. Regarding mean bias error, among
29 cities, 6ME was deemed suitable for 2 cities.

On the other hand, TaiESM exhibited exceptionally well over
11 cities in Indonesia. Figure 3C illustrates the variation in CC
estimated for surface air temperature across different cities. The

values of CC range from 0.3 to 0.85. Regarding CC, the performance
of the 6ME was dominant in 20 cities. Further, the RMSE values
computed by comparing each GCM and reanalysis dataset are
illustrated in Figure 3D. For all the cities, the RMSE values range
from 0.4 to 5.4 K. Considering the RMSE, 6ME (TaiESM)
performance was better than that of 13 (9) cities. Figure 3E
illustrates the city-wise alterations in SA. The SA derived from
six GCMs, including 6ME, fluctuates between 1.97 and 8.67 K.
Compared with the MERRA-2 dataset, other GCMs tend to

FIGURE 4
City-wise variation of different statistical metrics computed for precipitation across 29 cities in Indonesia (A)MA, (B)MBE, (C) CC, (D) RMSE, (E) SA,
and (F) SD.
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underestimate the values of the SA. The SD estimated from six
GCMs, 6ME, and reanalysis datasets falls within a range of
0.26–1.95 K (Figure 3F). Compared to MERRA-2, the SD values
obtained from other GCMs and 6ME are generally lower.

4.1.2 Precipitation
Figure 4A represents the city-specificMA for precipitation derived

from 6ME, 6 GCMs, and reanalysis data. MA precipitation obtained
from all the sources lies within a range of 1,230–3,008 mm. Further,
MBE was calculated for average annual precipitation (Figure 4B).

According to evaluations based on mean bias error, MPI-HR was
the top-performing model among all the GCMs.

MBE for mean annual precipitation fluctuates
from −1,000–2,500 mm/year. A correlation-based analysis was
conducted for the monthly averaged precipitation data derived
from the GCMs, 6ME, and MERRA-2 datasets from 1980 to
2014. Figure 4C demonstrates the city-specific CC. Subsequently,
the values of the CC vary between −0.14 and 0.77.

An analysis associated with CC indicates that the 6ME
performed exceptionally well across 22 cities. Figure 4D displays

FIGURE 5
City-wise variation of different statistical metrics computed for relative humidity across 29 cities in Indonesia (A)MA, (B)MBE, (C) CC, (D) RMSE, (E)
SA, and (F) SD.
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the RMSE range computed for mean monthly precipitation, ranging
from 3 to 8 mm/day. Among the various GCMs, the 6ME exhibits
the lowermost RMSE across all 21 cities, outperforming other
models like TaiESM (MPI-HR) and AWI, demonstrating the
smallest RMSE values for 3 and 2 cities, respectively.

In the case of precipitation, the SA ranges between 10 and
30 mm/day are depicted for each city (Figure 4E). Figure 4E
depicts that for SA, NorMM demonstrated the best performance
over seven cities, followed by the MPI-HR (6 cities) and AWI

(5 cities). Across all the cities, the SD estimated from all the
sources lies between 2 and 7 mm/day (Figure 4F). Subsequently,
the trend of the SD obtained from both TaiESM and the 6ME
closely resembles the actual SD trend observed in the
reanalysis datasets.

4.1.3 Relative humidity
Figure 5A indicates the MA relative humidity. Across

29 cities, the average annual relative humidity estimated from

FIGURE 6
City-wise variation of different statistical metrics computed for for wind speed over 29 different cities of Indonesia during 1980–2014 (A) MA, (B)
MBE, (C) CC, (D) RMSE, (E) SA, and (F) SD.
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all sources ranges from 70% to 92%. The MA relative humidity,
resulting from six GCMs, including the 6ME, exhibits a stronger
association with the MA relative humidity derived from
MERRA-2 data.

Figure 5B illustrates the MBE in average annual relative
humidity fluctuates between −21.58% and 7.69%. For each city,
Figure 5C represents the outcomes of the correlation analysis
conducted between the simulated and MERRA-2 datasets of
monthly relative humidity. It shows that the CC varies
from −0.22 to 0.84. Based on the correlation analysis, the 6ME
was identified as the best performer for 19 cities.

Figures 5D, E represent the values of RMSE and SA, respectively.
The RMSE breadth is from 3.52% to 21.54%, while the SA varies
from 6% to 52.37%.

Figure 5F depicts the city-wise tendencies in the SD estimated
from all the data sources. Among all the GCMs, The SD produced by
NorMM, NorLM, and MPI-HR was found to be appropriate for six
cities each.

4.1.4 Wind speed
Figure 6A demonstrates the variation in MA wind speed

calculated using multiple GCMs, 6-ME, and a reanalysis
dataset. For 29 cities, it varies from 0.44 m/s to 6.66 m/s.
Figure 6B represents the MBE associated with the MA wind
speed derived from 6ME and GCMs fluctuating
between −1.25 m/s to 4.98 m/s. Figure 6C provides the
outcomes of correlation analysis—further, the values of CC
range from −0.38 to 0.72. Analysis of the CC indicates that
among all cities, the performance of the 6ME was superior to
16 cities, followed by the MPI-HR, which was found to be suitable
over seven cities. Figure 6D shows the city-wise alterations in the
RMSE. The RMSE values span between 0.26 m/s to 5.22 m/s.
Based on the RMSE, MPI-HR was the performing GCM over
14 major cities in Indonesia. The fluctuations in seasonal cycle
amplitude of the mean monthly wind speed data are presented in
Figure 6E. Considering the SA, the performance of AWI is
exceptionally well over the five cities, whereas 6ME was found
to be unfit for any location. In the case of SD, for all the cities,
values vary from 0.08 m/s to 2.07 m/s (Figure 6F). Further, it has
been observed that all the GCMs replicate the city-wise trend of
standard deviation derived from the MERRA-2 dataset.

4.2 Total relative error

Across 29 cities, the total relative error was calculated for
four meteorological parameters. It was calculated using the AHP
method with different statistical measures. To obtain the weights
for different statistical measures, an online survey was
conducted in which more than four expert member opinions
were considered through a survey sheet. Detailed information
about the survey outline can be found in Supplementary
Material S1. The survey outcomes are depicted in Table 5
with a CR value of 0.071. According to expert opinions, the
RMSE and CC are the most important, followed by bias SD, bias
in SA, and MBE, which are the least important. The total relative
error is computed using the weights. The total relative error
measures the closeness of simulated data to the reanalysis data.
The total relative error values near zero indicate the good
performance of the GCMs. For surface air temperature, the
total relative error values for all the GCMs, including the
6ME, vary between 0.1 and 0.8 across 29 major cities of
Indonesia (Figure 7A).

The simulated surface air temperature obtained from TaiESM
was determined to have the lowest total relative error among
13 cities, making it the top-performing model. Following closely
behind, the MPI-LR GCM exhibited superior performance over
seven cities. In Wamena City, MPI-HR was identified as the model
with the lowest total relative error (0.054) for surface air
temperature.

On the contrary, NorMM exhibited the poorest performance,
rendering it unsuitable for any individual city due to its
unsatisfactory results. The city-wise total relative error for
precipitation is shown in Figure 7B, and the 6ME performed
exceptionally well for precipitation across 15 cities. The following
6ME, TaiESM, MPI-HR, and NorMM were found to be appropriate
models for precipitation in 9, 4, and 1 city, respectively. However,
the worst performers for precipitation were found to be AWI, MPI-
LR, and NorLM.

The statistical evaluation of total relative error for relative
humidity revealed that NorMM, MPI-HR, 6ME, TaiESM, AWI,
and the NorLM demonstrated their suitability across 6, 6, 5, 5, 2, and
2 cities in Indonesia, respectively (Figure 7C).

Regarding wind speed, the analysis shows that MPI-HR is
suitable for 19 cities and is the best-performing model. As shown
in Figure 7D, NorLM and the 6ME were found to be adequate for
6 and 2 cities, respectively. In addition, regarding wind speed, AWI
and TaiESM were found to be appropriate over the Wamena and
Maluku Tenggara, respectively.

4.3 City-specific ranking

The generation of the future dataset of TMY is practically
very complex, and it is tedious to downscale different
meteorological parameters from different GCMs for a specific
city, especially for non-climate scientists. Therefore, to identify
the suitable city-specific GCM for future TMY generation, we
have used the AHP method again by implementing the weighting

TABLE 5 Normalized matrix with the corresponding weights of each
criterion for the total relative error. The λmax and CI values are 5.32 and
0.07949, respectively.

Criteria C1 C2 C3 C4 C5 Weights

Bias in SA (C1) 0.11 0.09 0.14 0.06 0.21 0.12

MBE (C2) 0.09 0.08 0.14 0.06 0.05 0.08

RMSE (C3) 0.27 0.21 0.35 0.38 0.41 0.33

CC (C4) 0.44 0.33 0.23 0.25 0.16 0.28

Bias in SD (C5) 0.09 0.29 0.14 0.25 0.17 0.19

SUM 1.00 1.00 1.00 1.00 1.00 1.00
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factors associated with different meteorological variables, as
shown in Table 6. According to expert opinion, the most
important factors are temperature and relative humidity,
followed by wind speed and precipitation. The weights of
these weather variables will be used to calculate the
appropriate GCMs in each city.

Figure 8 exhibits the city-wise optimal GCM for the
generation of future TMY. The lower (higher) ranking score
indicates the higher (lower) suitability of the GCM for generating
future TMY data over specific cities. The city-specific ranking
scores for each GCM range from 0.2 to 0.7. For all the cities, the

ranking scores derived from AWI and MPI-LR range from 0.30 to
0.75, whereas ranking scores derived from other GCMs,
including the 6ME, vary from 0.18 to 0.66. According to the
city-specific ranking results, AWI is unsuitable for generating
future TMY datasets for any city. These outcomes also reveal that
among 29 cities, TaiESM (6ME) can be used over 18 (5) cities to
generate the future TMY dataset. GCMs like MPI-LR, NorLM,
and NorMM can be applied to cities such as Boven Digoel,
Medan, and Bengkulu. Moreover, for generating future TMY
data, MPI-HR was identified as appropriate for Wamena, Medan,
and Depati cities. The list of GCMs that are appropriate for

FIGURE 7
Total relative error depicting city-specific differences in the performance of each meteorological parameter (A) surface air temperature, (B)
precipitation, (C) relative humidity, and (D) wind speed.

Frontiers in Environmental Science frontiersin.org12

Bhanage et al. 10.3389/fenvs.2024.1341807

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1341807


generating future TMY data specific to each city is given
in Table 7.

5 Discussion

In the present study, the analysis of statistical measures for each
meteorological variable, obtained by comparing the meteorological
parameters derived from each GCM with reanalysis data, reveals a
substantial variation in the performance of individual GCMs for
each meteorological parameter. Notably, a GCMmay exhibit strong
performance for one statistical measure while showing weaker
performance for another simultaneously. Therefore, expert
judgment was used to allocate the distinct weights to each
statistical measure estimated for each meteorological variable
during the computation of the total relative error. Notably, more
emphasis was placed on normalizing RMSE than any other
statistical measure. A similar higher prominence on normalized
RMSE was also corroborated by Srinivasa Raju and Nagesh Kumar,
(2014) and Jose and Dwarakish, (2022).

The total relative error analysis demonstrates the city-specific
performance of GCMs for various meteorological parameters
(Figure 7D). Among all the GCMs, TaiESM, 6ME, NorMM/MPI-
HR, and MPI-HR exhibit the best performance over a maximum

number of cities in simulating the surface air temperature,
precipitation, relative humidity, and wind speed, respectively.
Additionally, our analysis associated with total relative error
indicates that different GCMs’ performance varies with the cities
and meteorological variables. Similar findings have been reported in
prior studies, corroborating the outcomes of the total relative error
(Firpo et al., 2022; Hemanandhini and Vignesh, 2023). Furthermore,
the outcomes of total relative error, together with the results of the
studies mentioned above, highlight that the performance of GCMs is
inconsistent across cities or meteorological variables. This confirms
that identifying city-specific, suitable GCMs will yield more precise
and location-specific meteorological data. This, in turn, enables the
generation of TMY datasets that can accurately reflect the variability
in local climate.

To date, multiple authors have undertaken evaluations of the
performance of CMIP6 G GCMs within the Indonesian and
South Asian region context (Almazroui et al., 2020; Iqbal
et al., 2021; Liu et al., 2023). These evaluations have primarily
aimed to identify GCMs with high precision in simulating
meteorological parameters. This collective effort has been
instrumental in advancing our understanding of the
capabilities and limitations of these models in capturing the
complex meteorological patterns of Indonesia and other parts
of the South Asian region.

While previous assessments have laid the groundwork by
establishing the overall performance of GCMs, we have honed in
on the practicality of these models by considering the varying
levels of importance assigned to different cities within
Indonesia. This approach allows us to identify GCMs that are
accurate on a broader scale and tailored to the unique needs of
specific cities. Subsequently, the present study takes a significant
step forward by associating the importance of each
meteorological parameter with the total relative error,
pinpointing suitable GCMs for future TMY dataset generation
based on city-specific needs.

The AHP methodology employed for GCM selection in
forthcoming TMY data generation offers significant

TABLE 6 Normalized matrix with the corresponding weights of each
criterion for the meteorological variables. The λmax, CI, and CR values are
4.01, 0.00389, and 0.004, respectively.

Criteria C1 C2 C3 C4 Weights

Surface Air Temperature (C1) 0.47 0.41 0.48 0.48 0.46

Precipitation (C2) 0.13 0.11 0.11 0.09 0.11

Wind Speed at 10 m (C3) 0.17 0.18 0.18 0.19 0.18

Relative Humidity (C4) 0.23 0.29 0.23 0.24 0.25

SUM 1.00 1.00 1.00 1.00 1.00

FIGURE 8
City-specific ranking of the GCMs used for generating future TMY data.
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advantages:(i) It assesses the relative importance of each
meteorological parameter during GCM selection for TMY data
generation. (ii) the present approach also accounts for regional
climate differences, reflecting the real-world variations in
meteorological conditions across cities in Indonesia. This
approach adds value to future climate modeling efforts by
tailoring GCM selection to the specific needs of each location.
(iii) The research contributes to the practical utility of the future
TMY data generation process by streamlining the inclusion of
necessary meteorological variables from the same GCM. This
simplifies the dynamic downscaling process, making it more
efficient and cost-effective.

6 Conclusion

This study utilized an AHP-based MCDA approach to identify a
city-specific suitable GCM for generating future TMY datasets over
29 Indonesian cities. The evaluation process involved five statistical
measures: correlation coefficient, root mean square error, mean bias
error, standard deviation, and seasonal cycle amplitude. These metrics
collectively assessed the model’s efficacy in-depth, providing a
comprehensive understanding of its accuracy, bias, and capacity to
capture crucial temporal variations. These statistical measures were
calculated for surface air temperature, precipitation, relative humidity,
and wind speed by comparing GCMs with reanalysis data. Different
weights were assigned to the statistical measures based on expert
opinions to determine the performance of each GCM in terms of
total relative error. These weights were integrated to compute the city-
specific performance of each GCM and every meteorological variable.
The total relative error outcomes provided an understanding of the
appropriate GCM for each meteorological parameter at each location.
Next, the weights for individual meteorological parameters required to
estimate TMYwere calculated based on the expert’s opinion. Then, total
relative errors were integrated to identify the city-specific suitable GCM
for TMY generation, considering the respective weights. The major
findings of this study are.

(i) GCM suitability outcomes derived for the individual
meteorological variables and future TMY generation show
that regionally best performing GCM need not be good at the
city scale.

(ii) In terms of relative error estimated for individualmeteorological
variables indicate that among all the GCMs, TaiESM, 6Model-
Ensemble, NorMM/MPI-HR, and MPI-HR exhibit the best
performance over a maximum number of cities in simulating
the surface air temperature, precipitation, relative humidity, and
wind speed, respectively.

(iii) The evaluation of GCMs for the generation of the future TMY
dataset shows that among 29 cities, TaiESM (6ME) can be used
over 18 (5) cities to generate the future TMY dataset. GCMs like
MPI-LR, NorLM, and NorMM can be applied to cities such as
Boven Digoel, Medan, and Bengkulu. Moreover, for generating
future TMY data, MPI-HR was identified as appropriate for
Wamena, Medan, and Depati cities.

(iv) The assessment also shows TaiESM as a repeatedly suitable
GCM for generating future TMY datasets across multiple
cities. This finding suggests the model’s robustness and
reliability in capturing the meteorological characteristics
required for TMY generation.

(v) The AWI model was identified as the poorest-performing
among all the GCMs, proving unsuitable for any of the cities
under consideration.

This study did not comprehensively assess all potential aspects of
CMIP6 GCM performance in simulating the climate of Indonesian
cities. Instead, it focused on key climatic parameters essential for
generating TMY data. Additionally, due to the unavailability of
long-term ground observation data, the performance of all the
GCMs was evaluated against reanalysis data in this study. Despite
these limitations, the findings of this research present several
advantages. Initially, it assists in identifying GCMs tailored to

TABLE 7 List of optimal GCMs for generating the city-specific future TMY
data.

City Suitable GCM

Jambi TAIESM

Palembang 6ME

Pontianak 6ME

Balikpapan 6ME

Aceh TAIESM

Bengkulu NORLM

Medan NORMM

Citeko TAIESM

Depati MPI-HR

Pongtiku 6ME

Wamena MPI-HR

Tangerang TAIESM

Bogor TAIESM

Minahasa TAIESM

Semarang TAIESM

Lombok TAIESM

Jayapura MPIHR

Kupang TAIESM

Sumba TAIESM

Sumbawa TAIESM

Surabaya TAIESM

Sumenep 6ME

Ketapang TAIESM

Kota TAIESM

Indragiri Hulu TAIESM

Jakarta TAIESM

Palu TAIESM

Maluku TAIESM

Boven Digoel MPI-LR
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specific cities that excel in representing local meteorological conditions.
This enables a focused allocation of resources for the most suitable
GCMs, streamlining the downscaling process and enhancing efficiency.
This targeted strategy reduces overall time and costs and contributes to
a more precise and cost-effective future TMY generation. Secondly, the
study enhances the production of accurate and reliable results by
guiding the selection of GCMs closely aligned with the specific
characteristics of the local climate. Thirdly, it optimizes resource
allocation by directing researchers towards downscaling GCMs
better suited to the intricacies of local conditions.

AHP is a promising method for identifying suitable GCM to
generate future TMY datasets. However, it does have a limitation due
to the subjectivity involved in choosing the weights of each
meteorological variable based on expert judgments (Cabrera and Lee,
2020). Fortunately, this limitation can be addressed by the consistency
ratio threshold specified by Saaty (1980). In this study, each response was
carefully assessed. Responses with inconsistent results (i.e., the CR >
10%) were not included in the final evaluation, reducing the number of
acceptable respondents. Having fewer respondents might not capture a
broader perspective. While having many respondents in AHP is not
strictly required, having more respondents can help capture a broader
consensus. Nevertheless, by employing AHP, this research has provided
valuable insights into selecting appropriate GCMs for making realistic
projections of the future TMY under varying climate change scenarios.

In the future, employing recommended city-specific GCMs for
generating future TMY datasets is critical for architectural researchers
and policymakers worldwide. This practice enhances the accuracy of
climate projections, offering valuable insights for informed urban
planning and design decisions. Moreover, it facilitates the
implementation of sustainable building practices and plays a pivotal
role in shaping effective climate policies for the future. The approach
tested in this study provides a universal method for selecting GCMs for
preparing future TMY datasets, applicable across the globe for
comprehensive climate modeling and planning.
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