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Nitrous oxide (N2O) is one of the most significant contributors to greenhouse
forcing and is the biggest contributor to ozone depletion in the 21st century, and
roughly 70% of anthropogenic nitrous oxide emissions are from agriculture and
soil management. Agricultural nitrous oxide emissions are shown to spike during
hotspot events, and according to the data used in this study, over 78% of nitrous
oxide flux occurred during just 15% of the recorded data points. Due to the
complex biogeochemical processes governing nitrous oxide formation, machine
learning and process-based models often fail to predict agricultural nitrous oxide
flux. A novel informed neural network was developed that combined the
trainability of neural networks with the rigorous differential equation-based
framework of process-based models. Differential equations that explained the
variability of various nitrogen-containing compounds in soil were derived, and
integrated into the network loss. The informedmodel explained ~85% of variation
in the data and had an F1 score of 0.75, a marked improvement over the classical
model explaining ~30% of variation and having a score of 0.53. The informed
network was also able to perform exceptionally well with only small subsets of the
training data, having an F1 score of 0.41 with only 25% of training data. The model
not only shows great promise in the remarkably accurate prediction of these
hotspots but also serves as a potential new paradigm for physics-informed
machine learning techniques in environmental and agricultural sciences.
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1 Introduction

Of various atmospheric pollutants, greenhouse-forcing gases (GHGs) such as carbon
dioxide and methane are well known, and policymakers on regional and global scales often
seek to regulate and limit their emissions. In addition to the regulation of GHGs, global
policies such as the Montreal Protocol heavily limited and even halted the usage of ozone-
depleting pollutants, in order to terminate the ongoing damage to the ozone layer.

Nitrous oxide (N2O), however, remains widely unregulated, despite being one of the
most prevalent and dangerous anthropogenically emitted GHGs, potentially being
300 times more greenhouse forcing than carbon dioxide (Cassia et al., 2018). In
addition to this, N2O is the largest contributor to ozone depletion in the 21st century
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and is predicted to stay as such for the next 100 years (Ravishankara
et al., 2009). It is also critical that we begin cutting and mitigating
emission factors in the present, as positive feedback loops have been
found in N2O emissions in a warmer and wetter climate (Griffis
et al., 2017). A reduction in N2O emissions would be a beneficial for
both climate change and atmospheric ozone repair.

Perhaps the cause behind the lack of widespread N2O discharge
control is in its emission sources—roughly 70% of anthropogenic
N2O emissions are from agricultural practices such as fertilizer
application (Tian et al., 2020). Various microbes are present in
the soil, and as part of their biological pathways, they transform
nitrogen between various its different chemical forms. Excess
nitrogen content from both artificial and natural chemicals
(Thomson et al., 2012) cannot fully undergo all biogeochemical
soil processes, and not all nitrate is fully denitrified by soil microbes
to nitric oxide or ammonium, and instead produces N2O, a partially
reduced form of nitrogen. Although N2O is produced in many
natural biogeochemical pathways, its emissions are heightened with
excess nitrogen application. Other pathways in soil similarly
produce N2O. As food and agricultural demand increases across
the world, the usage and application of nitrogen-based fertilizers will
similarly increase, and with it, N2O production.

In particular, N2O was chosen as a target of this study not only
due to its prominence as the third most important GHG, or as the
most important ozone depletant, but because its emissions are much
more unpredictable than other gases, due to its biological origins.
This makes N2O modeling more nuanced, and requires more
advanced techniques than simple machine learning or
mathematical modelling.

Notably, the bulk of agricultural N2O emissions happen during
“hot moments” and in “hot spots” (Machado et al., 2021), and being
able to predict where and when these high flux events occur is of the
utmost importance when considering mitigation measures. It was
found that in a grazed pastoral farm, only 3.2% of the farmland
contributed to 9.4% of the N2O emissions (Luo et al., 2017). The
ability to predict both where and when these hotspots occur is
incredibly important for effective mitigation. Strategies for
agricultural emission factor mitigation can be implemented on
smaller scales while still being highly effective.

Soil nitrogen dynamics are extremely complex, and many
attempts have been made to predict N2O flux variability, with
both machine-learning models and process-based models
(PBMs), and with some studies even using both in tandem to
make predictions (Joshi et al., 2022; Liu et al., 2022, Saha et al.,
202). Popular PBMs have been shown to have specific issues with
simulation shortcomings, and are not adaptable to different fields/
agriculture without calibration (Wang et al., 2021), while pure
machine learning models require large amounts of input data to
fit the complex subsoil dynamics.

Hybrid machine learning/PB models perform better than either
model individually, however, require either large amounts of data or
are non-generalizable for various types of agricultural cultivars and
require field-specific input parameters to ensure proper data fitting.
In this study we propose an alternative machine learning-based
approach for the prediction of N2O flux over periods of time,
utilizing a new type of model in machine learning, the physics-
informed neural network (PINN) (Markidis, 2021). PINNs enforce
soft constraints on the training of neural networks through modified

loss function, and they characteristically require much less data to
train than pure data-driven approaches and are easily generalizable
across various systems (Raissi et al., 2019). One of the key
characteristics of a PINN in terms of data approximation is its
ability to predict peaks or future trends that may not be present in
data, but are represented in the constraining DEs (Figure 1). This
may also allow a PINN to approximate sharp peaks in data that may
not be accurately predicted by a traditional neural network.

We first derive a set of differential equations (DEs) to describe
the relationship between soil nitrogen compound concentration and
N2O production using a Michaelis-Menten based approximation of
soil reaction velocities. We then apply these differential equations to
a Multi-Layer Perceptron (MLP) loss function and extensively
characterize the network’s performance in determining whether
data indicates a high flux event or not. Features of the neural
network include various concentrations of compounds found
within the soil, as well as data on precipitation and air
temperature. The network will be compared pre- and post-loss
function modification, based on various statistics, including the
ability to explain variance in data, accuracy, and other metrics.
In order to determine the performance of the model under smaller
training data sets, we also compare both model’s performance after
being trained under subsets of the original training data. Using
mathematically simple modifications to the loss function expression,
we aim to not only show that an informed technique has the
potential to solve issues with data availability and model
generalization for N2O predictions, but also that informed
techniques like these not only represent a new paradigm in
physics based neural network applications, but also in larger scale
environmental predictions.

2 Materials and methods

2.1 Data acquisition and preprocessing

The source of data for this study is from a study by Saha et al.,
2021 that used soil parameters like chemical concentration and
other variables such as precipitation to predict variations in
agricultural N2O flux. The data from the paper was collected
from three experiments over an extended period of time
(measurements are dated between 2003 and 2017). Data was
gathered by automated flux chambers, and measurements were
taken 4 times a day and averaged. Flux stations were moved
every 10–15 days to minimize spatial variability. Additional
details on the experimental location and specific facilities can be
found in Saha et al., 2021. A description of features used in themodel
can be found in Table 1, as well as a description of the model output.

This dataset was chosen for this study due to its comprehensive
nature, having various climate and soil variables tied to each flux
measurement. For future applications of this neural network, many
of the major variables used here are easily measured at large scales.
This means that when implementing the model proposed here, it is
much easier to maintain its operations due to ease of data
availability. Notably, many of the variables from the Saha et al.
database are relatively simple to integrate into a PINN, due to their
correspondence with soil chemical contents that govern
N2O formation.
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To prepare data for use in the network, data entries with null
values were removed. Additionally, extra data columns present in
the original dataset, that were not chosen for use in the network,
were removed.

2.2 Neural network architecture and training
hyperparameters

The architecture of the neural network (NN) used in this study
was a Multi-layer perceptron (MLP). Due to high feature
dimensionality, a large number of nodes were used per layer, and
multiple hidden layers were used to fit more complex relationships
in the data. Both NNs (pre-modification control NN and the
informed NN) had 5 total layers, with a 9-node input layer,
3 layers each with 64 nodes, and a final single node layer for
regression (Figure 2). In order to minimize coding complexity
and streamline NN development, a Python-based Keras/

TensorFlow wrapper SciANN (Haghighat and Juanes, 2020) was
used to build and train the network. The activation function chosen
was Tanh, as it is a nonlinear function that ranges from (−1, 1) and
doesn’t suffer from being “stuck” during backpropagation like the
sigmoid function (Szandała, 2020).

Training was done using a mini-batch gradient descent, with a set
batch size of 128. The learning rate in SciANNwas set to 0.001, and the
network used the Adam optimizer for gradient descent. Due to a
relatively low quantity of data points (2,246 total), a 60:40 train-test split
was used to minimize the variance in both the parameter estimates and
performance statistics, and neural network training took place over
150 epochs. The random seed used for neural network training was 28.

Due to an imbalanced dataset (only 355 of 2,246 flux events
classified as high flux events), the network generally heavily
underestimated peaks in the data, lowering both the overall model
classification and regression accuracy. In order to combat this, a basic
oversampling technique was used. Of the training data in the split, all
data points classified as “hotspot”were sampled 3 times each, allowing

FIGURE 1
Theoretical example of curve fitting by a classic (left) and an informed (right) model. This Figure (A) shows a set of data (blue), and a curve (red)
representing the best solution determined by the machine learning model. The curve fits the best-identified pattern represented only in the raw
datapoints. The green perforated curve in (B) illustrates a solution curve predicted by purely natural physical laws. Note that the informedMLmodel in (B)
solves for an NN solution that conforms to natural laws (bends downward after a threshold) while also shifting slightly to accommodate the raw data
input. In contrast, the classical model does not have enough data to “understand” that downwards trend, and as such does not represent it in its
NN solution.

TABLE 1 Network inputs and the network output descriptions.

Network parameters

NH4-N content (kg ha−1): Used as a measure of soil ammonium/ammonia concentration for training and in use in DEmodeling. This data was simulated by a soil PBmodel. (cite)

NO3-N content (kg ha−1): Used as a measure of soil nitrate concentration for training and in use in DE modeling. This data was simulated by a soil PB model. (cite)

WFPS (fraction): Water-filled pore space in the top 25 cm of soil is represented as a fraction. This was estimated using volumetric water content and soil bulk density. WFPS was
used as an estimate of soil oxygen limitation for DE modeling. Measurements were taken for every flux measurement. Information on data collection can be found here (cite)

SOM (soil organic matter) (%): Percentage of soil consisting of organic matter. This was a fixed parameter during experiments. SOMwas used as an estimate of carbon content for
DE modeling and training

Precipitation, 7 days (mm): Total precipitation over the 2 days before gas sampling

Days after top-dressed fertilization application (days)

Days after side-dressed fertilization application (days)

Nitrogen-containing fertilization rate (kg- N ha−1)

Average air temperature (°C): Averaged over the day

Network Output

N2O (g N2O-N ha−1 day−1): Average of N2O flux over a day (4 measurements taken). Note that this value may be negative, indicating soil intake of N2O exceeded its output
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for a more balanced representation of spikes in the data. This
effectively increased the amount of training data by ~30%.

In order to further test the informed network’s ability to train
effectively, many metrics used to characterize models were also used
on both models that were only trained on a subset of data. Only 25%
of the original training data was randomly sampled for these trials
(15% of the total original dataset). Note that the training data for
both trials were generated randomly once, and used with both
networks to ensure that no bias would occur.

2.3 Loss function modification

Many types of loss functions are used in data-driven neural
networks, the most common of which is the mean squared error
(MSE) loss function, and is the loss function used in this study. The
general form of an MSE loss function is:

argminLℯ � 1
n
∑n
i�1

yi − ŷi( )2 (1)

Where yi and ŷi are the true value of a network output and the
predicted value of a network output respectively. The MSE function
serves as a simple, non-computationally intensive measure of
network performance.

Applying Eq. 1, an ordinary purely data-driven MLP has a loss
function of the form:

argW,b min  L W, b( ) � 1
n
∑n
i�1

N xi, yi, zi, . . .( ) − N̂ xi, yi, zi, . . .( )( )2
� 1

n
∑n
i�1

N xi, yi, zi, . . .( ) −NN W, b, xi, yi, zi, . . .( )( )2
(2)

Where N and N̂ indicate the true output as a function of the
input parameters and the predicted output from a neural network
with those same input parameter values respectively. Note thatN is
equivalently represented as NN , the neural network function with
weights (W) and biases (b) as inputs.

When informing the network, another term is created that
accounts for deviation in the neural network from the DEs that
constrain it:

fDE � ∂N
∂x

(3a)

argW,b min  Lℴ W, b( ) � 1
n
∑n
i�1

∂NN ,

∂xi
− fDE( )2

(3b)

Where the derivative of the network output with respect to an
input parameter (∂N∂x) is modeled by some function (fDE). Note that
fDE can be a function of any parameter in the network or of a
differential of parameters in the model.

These loss functions from Eqs 2, 3b are then added to generate
the final loss function in Eq. 4:

argW,b min  Lℴ W, b( ) � L W, b( ) + Lℴ W, b( )
� 1
n
∑n
i�1

N xi, yi, zi, . . .( ) −NN W, b, xi, yi, zi, . . .( )( )2
+K 1

n
∑n
i�1

∂NN ,

∂xi
− fDE( )2

(4)

The value of K is added to dictate the relative importance of the
physics-based function versus the data-driven loss, although for this
study K is set to a value of 1.

This knowledge integration allows for much faster convergence,
ensures that the hypothesis set is limited to realistic constraints, and
improves the overall accuracy of the model. The model shown in this
study does include multiple unknown parameters in its loss
function, and these parameters are set as trainable during
network training as well. This parameter inversion could also
classify the neural network as a supervised learning approach, in
contrast to a classical neural network being unsupervised (Cuomo
et al., 2022).

The general training pipeline for physics-informed neural
network training is shown in Figure 3.

2.4 Derivation of differential equation
constraints

Nitrogen in the soil takes upon various forms, and the processes
that interchange these nitrogen compounds are extraordinarily
intricate. For this reason, the DEs that are used here to model
the major processes that produce and consume N2O are
approximations of the complex kinetics that govern soil N2O flux.

The 3 main processes that most directly affect N2O soil
concentration are nitrification, nitrifier denitrification, and
denitrification. All three processes serve to produce N2O, while
denitrification also serves to consume N2O. In order to simplify
kinetic studies, steady-state intermediates (such as nitrite) were not
considered for DE derivation. The total rate of production was
calculated for N2O, as well as ammonia/ammonium and nitrate. The

FIGURE 2
Overview of the neural network architecture. The layers are as
follows: 9-dimensional input layer, 3 hidden layers (64 neurons each),
1-dimensional output layer (node).
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chemical reactions that govern the concentrations of the three
compounds are shown below:

NH+
4 + 2O2 → NO−

3 +H2O + 2H+ (5a)
2.5NH+

4 + 2.75O2 → N2O + 0.5NO−
2 + 3.5H2O + 3H+ (5b)

2NH+
4 + 2O2 → N2O + 3H2O + 2H+ (5c)

2NO−
3 + 2CH2O + 2H+ → N2O + CO2 + 3H2O (5d)

N2O + 0.5CH2O → N2 + 0.5CO2 + 0.5H2O (5e)

Equations 5a–5c are the chemical reactions that correspond to
the processes of nitrification and nitrifier denitrification, and are
large sources of N2O. The other large source is denitrification, with
the incomplete reduction of nitrate to N2O represented in Eq. 5d,
and the major soil sink of N2O, the complete reduction of N2O to
nitrogen in Eq. 5e.

All of these reactions are catalyzed by soil microbes, and various
biological enzymes catalyze these biochemical pathways in cells. As
such, all reaction velocities can be expressed as a function of the
substrate (reactant) concentrations by the Michaelis-Menten model
of enzyme kinetics:

d P[ ]
dt

� Vmax
S[ ]

S[ ] + Km
(6)

Where d[P]
dt is the reaction velocity (rate of product formation

with respect to time), [S] is the substrate concentration, Vmax is the
maximum reaction rate, and Km is a kinetic parameter that is
inversely related to the affinity an enzyme has for the substrate.

Using Eq. 6, the rate of formation of each nitrogen-containing
compound can be expressed as a function of reactant concentrations:

d NO−
3[ ]

dt
� v1

NH+
4[ ]

NH+
4[ ] + k1

O2[ ]
O2[ ] + k2

− 2v2
NO−

3[ ]
NO−

3[ ] + k3

CH2O[ ]
CH2O[ ] + k4

I1
O2[ ] + I1

(7a)

d NH+
4[ ]

dt
� d NH+

4[ ]prod
dt

− v1
NH+

4[ ]
NH+

4[ ] + k1

O2[ ]
O2[ ] + k2

− 2.5v3
NH+

4[ ]
NH+

4[ ] + k5

O2[ ]
O2[ ] + k6

− 2v4
NH+

4[ ]
NH+

4[ ] + k7

O2[ ]
O2[ ] + k8

I2
O2[ ] + I2

(7b)

d N2O[ ]
dt

� v2
NO−

3[ ]
NO−

3[ ] + k3

CH2O[ ]
CH2O[ ] + k4

I1
O2[ ] + I1

+ v3
NH+

4[ ]
NH+

4[ ] + k5

O2[ ]
O2[ ] + k6

+ v4
NH+

4[ ]
NH+

4[ ] + k7

O2[ ]
O2[ ] + k8

I2
O2[ ] + I2

− v5
N2O[ ]

N2O[ ] + k9

CH2O[ ]
CH2O[ ] + k10

(7c)

v1−5 and k1−10 are kinetic parameters specific to each reaction, and
are set as trainable during the network training.

Although ammonium doesn’t directly have a chemical equation
representing it, it’s primary method of formation is decomposition
of biological matter or nitrogen fixation. As such, it’s rate of
production is treated as being directly proportional to soil
organic matter (SOM) (Nishio and Fujimoto, 1989) (Eq. 8):

d NH+
4[ ]prod

dt
� kNH4 SOM( ) (8)

FIGURE 3
The general training pipeline for a physics informed neural network. After the network is evaluated, the network is differentiated with respect to
network parameters. The calculated values for the differentials are then plugged into the physics informed loss function equation and summed with a
data-driven loss function term. The loss is then used in the optimization/gradient descent algorithm to adjust the network parameters.
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Where kNH4 is set as a trainable constant. The data
representations of each reactant concentration are as follows:
ammonium and nitrate concentration are directly used from the
dataset, and oxygen concentration is estimated by Eq. 9:

O2[ ] � kO2 1 −WFPS( ) (9)

WFPS represents oxygen limitation in soil, and the factor kO2

corrects for proper unit scale. Organic carbon/material
concentration is estimated by the SOM content (Eq. 10):

CH2O[ ] � kCH2O SOM( ) (10)
It’s important to note the inhibition terms (denoted I in Eqs

7a–7c) added in certain chemical equations, due to some reactions
being inhibited by oxygen concentration.

For implementation of the informed loss function, the
differentials of the DEs should be the (partial) derivatives of
one parameter with respect to another. For loss function
implementation in this study, the N2O concentration is
differentiated with respect to ammonium concentration and
with respect to nitrate concentration. From calculus, the
multivariable chain rule can be used to express a differential
as a sum of two chained differentials (Eqs 11a, 11b):

A � f B t( ), C t( ), P,W, ...( ) (11a)
∂A
∂t

� ∂A
∂B

∂B
∂t

+ ∂A
∂C

∂C
∂t

(11b)

For ease of integration into the neural network [N2O] is
modeled as a function of [NH+

4 ] and [NO−
3 ], with both of those

as functions of time. The loss minimization for this is of the form
Eq. 12:

Lℴ � 1
n
∑n
i�1

d N2O[ ]
dt

− ∂ N2O[ ]
∂ NH+

4[ ] d NH+
4[ ]

dt
+ ∂ N2O[ ]
∂ NO−

3[ ] d NO−
3[ ]

dt
( )( )2

(12)

The informed loss function now appears as (Eq. 13):

argW,b min  Lℴ W, b( ) � 1
n
∑n
i�1

d N2O[ ]
dt

− ∂ N2O[ ]
∂ NH+

4[ ] d NH+
4[ ]

dt
+ ∂ N2O[ ]
∂ NO−

3[ ] d NO−
3[ ]

dt
( )( )2

+1
n
∑n
i�1

N xi, yi, zi, . . .( ) −NN W, b, xi, yi, zi , . . .( )( )2
(13)

Where [N2O] is N2O concentration in soil, assumed to be
linearly related to the gaseous flux outside of the soil.

2.5 Initial conditions

Although all constant parameters are set trainable by the neural
network, the parameters were initialized with values that were reasonable
estimates for their values. The maximum initial velocities were all set to
3.3 μg−Ng−1 day−1, themaximum rate of nitrification found inHokkaido
fields (Nishio and Fujimoto, 1989). The half-saturation constants were
initially set to 4.816 · 10–6 mmol L−1, a unit-corrected value from the same
study. Inhibition constants were initialized to half of this value, 2.408 −
10–6 mmol L−1. Although many constants were initially set at the same
value, all parameters were allowed to train separately and held various
final values post-NN training.

2.6 Data analysis

Data analysis on the initial raw data was performed in Microsoft
Excel, after the removal of data points with missing or invalid values.
For model characterization and testing, the output testing data from
each model was analyzed using the Python library Scikit-learn.

Although the models developed in this study are considered
regression models due to the predictions being continuous and
numerical, the models were mainly evaluated on their ability to
identify data points that indicate a hotspot for N2O emission. In
order to make this data transformation, a threshold value was used
to determine whether a numerical prediction indicated a hotspot.
The threshold value was carefully chosen based on the percentage of
total emissions that occurred from these hotspots, and the
percentage of data points that were classified as a high flux event.
The former percentage measure was maximized, while the latter
measure was minimized.

The first two evaluation criteria used are the R2 (as a measure of
percent variance explained by the model) and root mean squared
error (RMSE) values, shown below, which evaluate models on their
performance as numerical regressors.

R2 � 1 − ∑i�1 yi − ŷi( )2∑i�1 yi − yi( )2
RMSE �
















1
n
∑n

i�1 yi − ŷi( )2√
The other metrics used are commonly used benchmarks for binary

classificationmachine learningmodels. These include type I and II error
rates, false discovery rates, overall accuracy, F1 score, and the area under
the curve of the receiver operating characteristic curve (AUC-ROC).
These common methods of binary classification characterization
account for imbalances in true/false classifications, and additionally,
the AUC-ROC metric is independent of the chosen threshold value.

# offalse postitives � fp

# offalse negatives � fn

# of true postitives � tp

# of true negatives � tn

Type IError � fp

fp + tn

Type II Error � fn

tp + fn

FalseDiscovery Rate � fp

fp + tp

Accuracy � tp + tn

tp + tn + fp + fn

F1 Score � tp

tp + 0.5 fp + fn( )
AUCROC � ∫TPR d FPR[ ]

Other than comparing themodels pre- and post-modification by
their performance under the same training conditions, the models
are compared in their convergence speed (speed of loss function
minimization across multiple epochs) and their accuracy and
classification under smaller training data sets.
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3 Results and discussion

3.1 Data characterization and threshold
determination

The full dataset contains a few extremely high-value outliers that
heavily skew the data—these are the high-flux events that are
significant contributors to the total flux emissions.
Approximating these high values is the primary goal of the
model, though for classical machine learning models, this task is
difficult. This is where the informed loss function guiding the model
to a more accurate solution is important.

In order to utilize the regressor models as classifiers, a
threshold value had to be chosen in the data. In order to do
this, the percentage of total flux above the threshold was plotted
with the percentage of data points recognized as positives against
the threshold value (Figure 4A). Notably, the threshold was
determined after taking into account the full data set, not just
the testing or training sets. A theoretical optimal threshold value
would minimize the percentage of data points classified as
positive, in order to minimize the number of important high
flux events to be mitigated. The threshold should also maximize
the percentage of the total flux emitted at these hotspots. It’s
difficult to derive a quantitative measure that perfectly optimizes
this tradeoff, and for this study, the target threshold was simply
the threshold value to the nearest tenth that maximized the flux
percentage while staying under 16% of data points classified
as positive.

The threshold was chosen to be 8.7 g N2O-N ha−1d−1, with
15.80% of recorded events containing 78.25% of the total flux.

3.2 Convergence speed

An advantage of the informed model is an increase in
convergence speed. Figure 4B plots the loss of the model at the
conclusion of each epoch.

The total loss for the informed model starts higher than the loss
for the classical model, due to the loss function having an additional
term and thus gives it a larger loss value. It optimizes much faster
than the classical model though, and reaches a more optimal
solution in less training time. While it may be inferred that
running the model for more epochs may allow the classical loss
to reach the same value as the informed loss, as more epochs are run
for the model, overfitting begins to occur, and the overall model
performance for new data would subsequently worse than the
informed model still. Another benefit of the informed model is
that it is much more difficult to overfit the training data due to the
loss function having an additional non-data-driven term.

3.3 Performance as a regressor

Although these machine learning models are primarily intended
for the classification of data, they are fundamentally regressors. As
such, the models were evaluated by two key metrics, R2 and RMSE.
These values were also calculated for models trained with 25% of the
original dataset.

The classical model with the full training set had an R2 = 0.2978,
indicating it explained around 30% of the variation in the data. The
model also had a RMSE of 17.03, a relatively high value. Even with
oversampling, the classical model’s key weakness was that it could
not correctly approximate peaks in the data, often heavily
underestimating them (Figure 5). The informed model with the
same training parameters and data set had a final R2 = 0.8151,
meaning that almost 82% of the variance in the data was explained
by the model. Additionally, the RMSE of the informed model was
8.74, a large improvement in accuracy. The loss function
modification allowed for convergence on a realistic neural
network, which improved the model’s testing ability as well.

When the classical model was fed only 25% of the data, effectively
making the train/test split 15:40, its RMSE rose to 28.18. The model’s
earlier issue of underestimation of large peaks in the data was
intensified, and with this training set, the model could only explain
1.7% of variance of N2O. For this model, this result was expected upon
trimming of the data set. The informed model performed better than
the classic model with only 25% of the training set, explaining 14.1% of
the variation in the data with a RMSE of 21.07.

3.4 Performance as a classifier

Due to the nature of the informed network, it’s difficult to define the
network to be a classificationmodel rather than a regressionmodel. The
threshold allows for the transformation of the regressed prediction to a
classification: a high flux event or not a high flux event.

The various binary classifier statistics used to characterize the
classic and informed models with the full training set are
summarized in Table 2, and the confusion matrices for each are
found in Figures 6A, B.

Each of these metrics represents a different type of error or
accuracy of a binary classifier. Type I Error is the fraction of false
positives of the negatives, and it shows a significant, but not
particularly large drop after model modification. This is due to
the model’s characteristic behavior of underestimating peaks, but
not necessarily overestimating non-high flux events. Type II Error,
the fraction of positives classified as negative, had a significant and
large drop between models, explained by the informed model being
much better at approximating peaks. False discovery rate is another
way of looking at this type of error, measuring the fraction of
predicted positives that were false. The drop in this statistic is also
significant due to the same reasons described earlier.

Accuracy is a measure of the overall accuracy of the model, the
fraction of total predictions made correctly. The dataset was overall
imbalanced, with the high flux events severely underrepresented.
Thus, the prevalent false negatives obtained by the classical model
were also underrepresented, and the accuracies for both models are
relatively similar. For real-world applications though, the false
negative rate should be as minimized as possible in order to
mitigate the most total flux.

To combat the skewed nature of accuracy, F1 score was used
instead. F1 score is the harmonic mean of the fraction of predicted
positives that are true positives and the fraction of real positives that are
classified as positive. Since F1 takes into account both, and takes the
harmonic mean of the values, it serves as a far better statistic for
measuring the accuracy of a binary classification model than the
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accuracy score. The increase in F1 score between models was extremely
significant, meaning that there was a large leap in true accuracy.

These metrics were also used to characterize the network with a
smaller training set, containing a randomly sampled 25% of the
original training data set. The results for this trial are summarized in
Table 2; Figures 6C, D. All measurements show a general increase in

accuracy and competency of the model after being informed, and
metrics like the overall accuracy, and Type I and Type II errors
especially show a large change.

3.5 Importance of performance increase
under smaller training set and model
interpretability

With expensive measurement and monitoring techniques,
especially over long periods of time, it may be hard to gather large
data sets for models. In this sense, the significant improvement of the
informed model over the classical model under much smaller training
sets is extremely important. The physical laws that bind the informed
model are able to approximate strong peaks in the output features,
making it much more accurate than an ordinary model.

An example of how themodelmakes peak approximations is shown
in the effect ofWFPS onN2O flux. It has been found by Saha et al. that as
WFPS reaches roughly 0.7, the N2O flux shows a sharp and unusual
increase. In the enzyme kinetic equations, [O2] serves as an inhibitor for
many equations, and asWFPS rises, [O2] decreases, leading to a general
increase in reaction velocity and an increase in gaseous flux.

The informedmodel accounts for various special patterns like these
in the data and allows us to draw conclusions about the underlying
reasons for patterns found in the data showing that the informedmodel
has an interpretability that may be lost in classical models.

3.6 The receiver operating characteristics
curve metric

Although the threshold value for classification was chosen at a
specific point for the metrics above, it’s also helpful to understand

FIGURE 5
Predicted N2O fluxes against actual flux measurements plotted
for both models above. Examining the plot for the classical model, its
key weakness becomes apparent. It cannot predict those extremely
high flux events, and instead approximates them as much lower
than their actual values. For the classicmodel, it overpredicts a few low
flux events, but generally predicts variation in high flux events with a
much higher accuracy.

FIGURE 4
(A) (left). The fraction of total events classified as high flux (red) and fraction of the total flux that was emitted over those events (blue) as a function of the
threshold value. Note that the fraction of events classified as high flux is lower than 1 at a threshold value of 0 g N2O-N ha−1 day−1 due to a large fraction of the
dataset containing negative flux events (indicating that N2O had a greater rate of flow into the soil than out of the soil). The fraction of total flux emitted at a
threshold of 0 gN2O-Nha−1 day−1 appears to begreater than 1 due to the sumof positivefluxes being greater than the sumof all fluxes (positive andnegative
fluxes). (B) For both models, the total loss is plotted after training each epoch. Loss for the informed model starts at a higher value since the loss function has
another term, differential equation loss sum. The classicalmodel trains at a slower rate than the informedmodel, but shows less spikes in the loss. For the informed
model, these small “explosions” in gradient are more common, due to training shifting weights away from a solution that conforms to the informed loss.
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how the model performs at varying thresholds. This is where the
ROC curve is most valuable. The ROC curve plots the true positive
rate against the false positive rate for varying thresholds, and curves
that maximize the true positive rate and minimize the false positive
rate appear to encompass more of the graph quadrant. The ROC
curves for both models are in Figure 7.

The quantification of the ROC curve is given by the area under
this curve (AUC-ROC). The AUC-ROC generally varies between
1 and 0.5, with values closer to 1 indicating a better overall model.
The AUC-ROC for the classical model is 0.8527, while the informed
model had a value of 0.9274. Although the classical model scored
well, the seemingly small leaps in the AUC-ROC indicate a large leap

TABLE 2 Summary of the metrics for the binary classifier models. Models trained on the full dataset along with the models trained with a randomly sampled
25% of the original set are both represented in the table.

Metrics Classic model Informed model Classic model (25% training set) Informedmodel (25% training set)

Type I Error 0.1739 0.1009 0.7642 0.5113

Type II Error 0.2824 0.1145 0.0428 0.1714

False Discovery Rate 0.5688 0.3830 0.8006 0.7563

Accuracy 0.8092 0.8969 0.3555 0.5450

Fl Score 0.5387 0.7273 0.3300 0.3766

FIGURE 6
Confusion matrices for both models in both trials. In red: confusion matrix for the classic model with the full training set (A) and the matrix for the
classicmodel with 25% training set (C). In blue: confusionmatrix for the informedmodel with the full training set (B) and thematrix for the informedmodel
with 25% training set (D).
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in overall model accuracy. The final AUC-ROC score
being >0.9 indicates an exceptional ability to classify.

3.7 Model limitations and comparison to
existing models

Although the PINN proposed here is much more accurate than
previously developed models for N2O flux, it is limited in
certain aspects.

The data used to train the model is not representative of N2O
emissions worldwide, since the sampling locations used for data
generation were limited geographically, and in the types of crop
field monitored. This may make application of this PINN in
particular limited, though it can be trained with additional data
as needed.

The concept of the PINN itself was generalized to environmental
applications in this study, but the modified loss function used here is
not generalized, and will not be accurate for other pollutants released
from fields. For future applications of similar techniques, modified
loss functions will need to be derived for each of those separately.

No previous model of nitrous flux has used a PINN, though
previous models that are either based in machine learning or
process-based techniques (PBMs) have been established. The
PINN here was only applied to a certain dataset, which had been
originally used with a Random Forest machine learning model. The
PINN is significantly more accurate in regression than the Random
Forest. PBMs, though, require a much larger input than what was
used here, requiring variables that constrain nearly every aspect of
the system, like sub-soil temperature or soil pH. The PINN doesn’t

require as many parameters, and is much more accurate than
existing general machine learning techniques.

3.8 The future and other informed machine
learning strategies for environmental
predictions

When applying this model for use across the world, it is
important to acknowledge certain difficulties that may be present
for implementation. The most pertinent of which is the issue of
non-in situ data collection. There are two key soil chemical
contents which are relevant to both the model training and
the loss function derivation—soil ammonium and nitrate.
These variables have to be constantly gathered for use of this
model, and finding a method for doing those at large scales is an
important question. One way in which this could be achieved is
through satellite spectral index usage. If spectral indices for soil
chemical data are extracted, it becomes simple for the model to
operate at large scales, continuously.

For a long period of time, physics-informed machine learning
was almost entirely applied to only physics-based experiments. Now,
however, informed machine learning techniques have been used in
various areas, like computational inorganic chemistry (Hautier et al.,
2010) and hydrological modeling (Daw et al., 2022). There are many
strategies for knowledge integration into neural networks, including
training set augmentation and addition, hypothesis set (network
architecture), and the strategy used here, learning algorithm
integration (von Rueden et al., 2021). Of these, learning
algorithm integration is the most generalizable method, and so it
was chosen for use here.

With regard specifically to soil biogeochemistry, many chemical
processes are regulated by various microorganisms and plants and
can be modeled with the same enzyme kinetic approximations
described in this study. The hope for this study is that future
work can be done using similar algorithms that are described
here to introduce a new paradigm for soil and other
environmental machine learning applications.

4 Conclusion

In this study, a novel neural network loss function inspired by
physics-informed loss functions is derived using enzyme kinetic
approximations of soil chemical dynamics to approximate above soil
N2O flux and identify high-flux events that account for 78% of the
total flux. The informed network is first measured as a regressor and
shows a significant drop in RMSE (~8.3) as compared to a classical
network using the same training data and parameters. A threshold
value was then obtained based on the initial dataset to determine a
quantitative measure of whether a flux event could be considered
high-flux (hotspot) or not. The model was then characterized as a
binary classification model, and the informed model was measured
to have a much higher F1 score (0.73 vs. 0.54) and AUC ROC value
(0.93 vs. 0.85) than the classical model. These scores also showed
extreme improvement when the models were trained with only 25%
of the initial training set. Differences in the model performances can
be accounted for by the reasoning that the informed loss function

FIGURE 7
Combined plot of the Receiver Operating Characteristics Curve
for the classic model (red) and the informed model (blue). More
competent classifiers have curves that tend to hug the top left corner
of the plot. As seen, the informedmodel does this better than the
classic model. The area under the curve (AUC) is a quantification of the
curves meaning, with AUC values closer to 1 indicating a model of
higher accuracy.
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was able to guide the network to a solution that correctly
approximated those high peaks in data using the Michaelis-
Menten kinetic model to determine whether a soil nitrogen
component had a particularly high rate of formation, or whether
a reaction was no longer inhibited by the presence of oxygen (Zhang
et al., 2023). The findings shown here represent a new tool that could
potentially help in mitigating a very large percentage of agricultural
anthropogenic N2O flux without compromising increasingly
important crop yields. We also hope that the new enzyme kinetic
based loss function developed in this study represents a new
paradigm for studying, understanding, and predicting soil
chemical dynamics, combining the flexibility of a classical neural
network with the natural laws that govern the system itself.
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