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Introduction: Within the global framework of carbon emissions constraints, the
digital economy has become a new strategy for cities to achieve sustainable
development. Scholarly literature exploring the spatial spillover and spatial
mechanisms of the digital economy on carbon emissions is notably scarce.

Methods: To estimate the spatial impact of digital economy on carbon emissions,
this paper conducted spatial analysis with the spatial Dubin model and panel data
of 215 cities in China from 2011 to 2019.

Results: The results show that there is a growing regional agglomeration of the
digital economy, whereas the spatial evolution of carbon emissions displays low
liquidity and high stability. Second, the digital economy directly reduces urban
carbon emissions, and this conclusion is supported through a series of robustness
tests. However, there exist negative spatial spillover effects of digital economy on
carbon emissions reduction in neighboring cities. Third, mechanism analysis
reveals that the digital economy mainly affects urban carbon emissions
through two paths: industrial structure upgrading and green technology
innovation. Moreover, the influence of digital economy exhibits heterogeneity,
with a more pronounced effect observed in the central cities and in large and
medium-sized cities, as well as in cities with a high agglomeration of the new
energy industry.

Discussion: Our paper not only presents new documentary evidence for
understanding the relationship between digitalization and decarbonization, but
also provides specific references for policy making to accelerate low-carbon
urban development.
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1 Introduction

With the exacerbation of global warming and intensification of
economic competition, China, as the world’s largest carbon emitter,
confronts significant challenges in reducing carbon emissions. In 2022,
China’s total carbon dioxide emissions reached approximately
11.5 billion tons. 2023 United Nations Climate Change Conference
(COP28) emphasized further curbing greenhouse gas emissions, and
urged developing countries to progressively attain net-zero emissions of
greenhouse gases. In response to the need for controlling carbon
emissions and steering the economy toward green development, the
Chinese government formally pledged at the 2020 United Nations
General Assembly to achieve carbon peak by 2030 and carbon
neutrality by 2060 (Dual-Carbon Target). Simultaneously, the
breakthrough and innovation of information technology have
propelled the ongoing expansion of the digital economy, facilitated
the digital transformation of the industry, and led the society to the
digital era (Goldfarb and Tucker, 2019). In 2022, China’s digital
economy has surged to 7.46 trillion dollars, contributing over 41%
to GDP and ranking second in the global. Consequently, digital
economy has indisputably emerged as a crucial metric for economic
growth across all sectors, serving as a key driving force for bolstering the
national competitiveness (Liu et al., 2022).

In recent research, the economic impact and spatial effect of the
digital economy and low-carbon development have garnered
significant attention. From the aspect of digital economy, a body
of literature have underscored its capacity to reduce transaction
costs (Müller, 2019; Xu et al., 2019), enhance resource allocation
efficiency (Ma and Zhu, 2022), stimulate technology upgrading
(Ning et al., 2022), optimize enterprise operation efficiency
(Mikalef et al., 2019) and move the clean energy developing
process forward (Chen, 2022), etc. Concurrently, the digital
economy exhibits obvious spatial spillover effects (Varlamova
and Kadochnikova, 2023), especially in the domains of urban
green technology innovation (Dian et al., 2024), green total factor
productivity (Lyu et al., 2023), and haze control (Tan and Chen,
2022). All these benefits mentioned associated with the digital
economy could contribute to fostering high-quality economic
development (Wang et al., 2022b). As for low-carbon
development, its purpose is to achieve economic development
while conserving energy and reducing carbon emissions. Carbon
emission is a pivotal aspect of low-carbon development (Zhou et al.,
2023). Scholars have analysed the temporal and spatial evolution of
carbon emissions from the perspective of global (Smith et al., 2021),
countries (Sporkmann et al., 2023) and regions (Shan et al., 2022).
Moreover, existing literature still explores the relationship between
low-carbon development and key dimensions including energy
structure (Wang et al., 2016), transformation of economic
development modes (Li and Wei, 2021), and industrial planning
adjustment (Zheng et al., 2021).

With the implementing of China’s Dual-Carbon Target, the
intricate relationship between digital economy and carbon
emissions has emerged as a research focus (Zhang J. et al., 2022).
The impact of digital economy on urban carbon emissions is multi-
dimensional and complex. Numerous studies have verified that the
development of digital economy can foster a decline in regional
carbon emissions (Zhang W. et al., 2022; Yi et al., 2022), thereby
facilitating the achievement of Dual-Carbon Target. However, there

are also studies showing the digital economy itself also needs a low-
carbon transition (Thornbush and Golubchikov, 2019; Akberdina
and Osmonova, 2021). Low-carbon is not an inherent nature of the
digital economy. The extensive development of digital economy has
also given rise to carbon emissions challenges. Additional studies
highlight the non-linear relationship between digital economy and
carbon emissions (Xu C. et al., 2023). Digital industrial technology,
for instance, will increase carbon emissions intensity during the
upgrading process, but the upstream and downstream enterprises
empowered by digital technology will ultimately reduce the carbon
emissions (Zeng and Yang, 2023). In the context of Dual-Carbon
Target, there is a discernible and accelerating convergence between
the digital economy and low-carbon development. This prompts
scholarly reflection on the relationship between the digital economy
and carbon emissions. Can the digital economy propel low-carbon
development? What specific mechanisms underlie the potential
impact of digital economy? Answering these questions holds
substantial theoretical and practical significance for the low-
carbon transformation of economic and social development.

The possible contributions of this paper include three main
aspects. 1) Research perspectives. There is a scarcity of studies
discussing the spatial mechanisms of digital economy despite
many scholars have acknowledged the spatial effects of digital
economy. This study delved into both direct and indirect effects,
analyzing the spatial spillover mechanisms of digital economy and
their impact on carbon emissions. This provides theoretical
references for regional coordinated efforts aimed at carbon
emissions reduction. 2) Research methodologies. We combined
traditional econometric models with geographic information tools
in our study. Using the Slope function, we visualized the spatial-
temporal evolution of the digital economy and carbon emissions.
Under the dual influence of geographic distance and economic
distance, we empirically examined the spatial impact of the
digital economy on carbon emissions using a spatial Durbin
model. Furthermore, employing a two-stage transmission effect
model with spatial effects, we explored the spatial mediation
mechanism of the digital economy. 3) Research objects. We
conducted heterogeneous analysis considering geographical
location, city size, and the agglomeration of new energy industry.
This provides specific recommendations for cites at different
development levels in formulating policies related to digital
economic development.

Using a panel dataset encompassing 215 cities from 2011 to
2019, we explored the spatial impact of the digital economy on
carbon emissions. Initially, we conduct a thorough analysis of the
spatio-temporal evolution between the digital economy and carbon
emissions. Subsequently, we empirically investigate the direct and
indirect effects of digital economy on carbon emissions by spatial
econometric model. Furthermore, we check a series of robustness
test and evaluate the heterogeneity. Finally, we discuss the
mechanism affecting urban carbon emissions from the
perspective of industrial structure upgrading and green
technology innovation.

The remainder of this paper is structured as follows. Section 2
elucidates the theoretical analysis and provides research hypotheses.
Section 3 details the methodologies and variable descriptions.
Section 4 presents the results and discussion. Section 5 provides
conclusion, policy implications and limitations.
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2 Theoretical analysis and research
hypotheses

2.1 Direct impact of digital economy on
urban carbon emissions

As a new economic form, the digital economy has engendered
new production and consumption patterns, spawning new business
forms (Guo et al., 2023). The impact of digital economy on urban
carbon emissions can be reflected in the following four aspects. First,
the digital economy has accelerated the construction of urban digital
infrastructure. Notably, the construction of digital infrastructure,
represented by 5G base stations and cloud computing data centers,
accelerates information dissemination, promotes telecommuting
and remote work, thereby curtailing urban traffic activities
(Huang et al., 2023). The shared economy model facilitated by
digital technologies has enhanced the efficiency of urban resources
utilization, consequently mitigating carbon emissions arising from
resource profligacy. Second, the digital economy has propelled the
widespread application of digital technologies in the industrial field,
enhancing the production and organizational efficiency (Tan et al.,
2023). Digital technology helps enterprises effectively monitor the
energy consumption states, identify production process with high
energy consumption, thereby reducing energy consumption during
production stages (Zhang L. et al., 2022). Third, the digital economy
facilitates the involvement of data as a crucial factor in production
(Wang et al., 2023). It has reshaped the hierarchy of production
factors, weakened the over-dependence of enterprises on labor and
energy (Gan et al., 2023), and made data factor as the paramount
production factor in the digital era (Farboodi et al., 2019). The digital
economy optimizes the input structure of production factors and
improves the allocation efficiency of resources, ultimately mitigating
carbon emissions (Goldfarb and Tucker, 2019). Fourth, the digital
economy has optimized the energy consumption structure of cities.
On the one hand, digital technology helps to reduce the costs of
renewable resources, facilitating increased penetration of renewable
energy into the energy market (Lyu and Liu, 2021). On the other
hand, digital technology is embedded in the production process of
energy, assisting enterprises in achieving dynamic and efficient
management of energy production, thereby contributing to the
decarbonization of energy production (Wang and Shao, 2023).

The digital economy has compressed the space-time distances,
improved the efficiency of information transmission, and strengthened
economic linkages between regions (Banalieva and Dhanaraj, 2019).
The digital economy has spatial spillover effects on regional economic
growth (Hao X. L. et al., 2023), technological innovation (Ren et al.,
2022), and resource allocation (Ma and Zhu, 2022), subsequently
influencing the carbon emissions of nearby areas. According to New
Economic Geography Theory (Wilson, 2011), the phenomena of
knowledge spillover and environmental spillover exhibit dual
character in regional development, characterized by positive spillover
and negative spillover. Consequently, the spillover effects of the digital
economy on adjacent carbon emissions also manifest this duality. On
one hand, there is a positive spillover. The digital economy expedites the
cross-regional flow of funds, clean technologies, and environmental
protection concepts (Zhang W. et al., 2022), thereby reducing
transportation costs and resource waste and promoting regional
carbon reduction. On the other hand, there may be a negative

spillover as well. The digital economic growth has driven the
construction of digital infrastructure in surrounding regions,
intensifying energy consumption. The rapid expansion and high
value-added characteristics of the digital economy attract premium
production factors, resulting in the loss of resources in surrounding
areas, which is detrimental to regional carbon reduction.

Derived from the above analysis, our paper proposes the
hypotheses 1a and 1b.

Hypothesis 1a: (H1a): The development of digital economy has a
positive impact on the reduction of carbon emissions in cities.

Hypothesis 1b: (H1b): The impact of the digital economy on
carbon emissions exhibits spatial spillover effects, but the direction
of these spillover effects needs further empirical investigation.

2.2 Digital economy, industrial structure
upgrading, and carbon emissions

The digital economy can promote the upgrading of industrial
structure through digital industrialization and industrial digitalization
(Yu et al., 2023). In terms of digital industrialization, the development of
digital economy has fostered many emerging industries, including
industrial Internet, software and information technology service
industries. Compared with the traditional industry, the digital
industry exhibits a fast growth rate in output value, featuring low
dependence on fossil fuels, and gradually become the engine of
urban economic growth. In terms of industrial digitization, the
utilization of big data has advanced the construction of enterprise
informatization, the transformation of operation models, and the
innovation of production. The integration of data factor with the
service industry has spawned new service industries like electronic
payment, online shopping, and smart medical care, opening new
markets for the tertiary industry.

The upgrading of industrial structure promotes carbon reduction
through industrial structure rationalization and optimization. First,
industrial structure rationalization can coordinate various production
departments, fostering the rational allocation of production resources.
This process facilitates the flow of capital and labor factors towards
sectors characterized by higher added value and cleaner production
(Zeng and Yang, 2023), guiding industries towards low-carbon
development. Second, the upgrading of industrial structure promotes
the transition of industries from lower to higher levels, thus fostering the
adoption of cleaner production modes. Discernible variations exist in
the energy consumption coefficients across diverse industries, with the
secondary industry exhibiting a higher coefficient compared to the
tertiary industry. The digital economy directly expands the proportion
of tertiary industry in the overall economy (Wang et al., 2022a),
accelerating the evolution of the secondary industry to the tertiary
industry (Bai et al., 2023). This contributes to mitigate the energy
consumption during industrial development, and realize the
‘decoupling’ between economic development and carbon emissions.
According to above analysis, this paper proposes the second hypothesis.

Hypothesis 2: (H2): The upgrading of industrial structure plays an
intermediary role between the digital economy and
carbon emissions.
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2.3 Digital economy, green technology
innovation, and carbon emissions

The digital economy, characterized by high innovation and strong
integration (Meng et al., 2023), significantly promotes the continuous
progress of green technology innovation. First, it accelerates the
integration and sharing of information resources, enriched the
information acquisition channels for enterprises and academic
setting. Si et al. (2023) believed that digital economy has speeded up
knowledge dissemination and accumulation, thereby enhancing the
efficiency of green technology innovation. Secondly, the digital
economic agglomeration has promoted the agglomeration of
innovative and scientific talents (Ren et al., 2022). The integration of
digital technology with other industries expedites the formation of new
industries (Yin et al., 2023), leading to the creation of new jobs that
attract innovative talents. This job agglomeration generates a talent
agglomeration effect, which could lay a foundation for urban green
technology innovation. Additionally, the digital economy couldmitigate
the information asymmetry between lenders and borrowers in financial
markets, broadening financing channels for green technology
innovation activities (Ma, 2023).

The green technology innovations affect carbon emissions
throughout the production, consumption and end treatment
phases (Du et al., 2019). In the process of production, green

technology innovation helps to enhance energy efficiency (Xu X.
et al., 2023), lowering carbon emissions per unit of output (Du and
Li, 2019). In the process of consumption, the innovations of clean
energy technology reduce the acquisition cost of clean energy,
bringing more clean energy to the energy supply market, and
fostering a low-carbon energy consumption structure (Lee et al.,
2023). In the process of end treatment, the innovation of pollution
control technology drives waste treatment, thereby reducing end
carbon emissions (Xu et al., 2021). Therefore, the third hypothesis of
this paper is proposed. The influencing mechanism of digital
economy on urban carbon emissions is showed in Figure 1.

Hypothesis 3: (H3): The innovation of green technology plays an
intermediary role between the digital economy and
carbon emissions.

3 Methodology and data

3.1 Methods

3.1.1 Improved entropy method
Functioning as an objective weighting method, the entropy

method can distinguish the impact intensity of various indicators,

FIGURE 1
Influencing mechanism of digital economy on urban carbon emissions.
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thereby illustrating the effectiveness of the information they convey
(Dong et al., 2022). The traditional entropy method is mostly
utilized for cross-sectional data analysis, with limited applicability
to panel data. Referring to Yi et al. (2022), we used an improved
entropy method for weighting estimation in panel data.

First, normalize the indicators:

xitj
′ � xitj − min xitj( )

max xitj( ) − min xitj( ) (1)

In Eq. 1, xitj
′ and xitj represent the standardized value and the

original value of indicator j for the ith city in year t, respectively.
max(xitj) and min(xitj) denote the maximum and minimum values
of indicator j, respectively.

Second, calculate the information entropy value ej for
indicator j:

ej � −∑
n
i�1∑2019

t�2011yitj ln yitj

ln C( ) (2)

In Equation 2, yitj represents the proportion of indicator j for ith
city in year t, which is calculated by yitj � xitj′

∑n

i�1∑2019

t�2011xitj
′
. C is the

number of cites. To avoid zero values in yitj, we applied a suitable
shift by yitj = yitj +0.000001. The ej satisfies ej >0.

Third, calculate the entropy redundancy gj as Eq. 3.

gj � 1 − ej (3)

The M is the total number of indicators. The weight wj for
indicator j is calculated as shown in Eq. 4:

wj � gi

∑M
j�1gi

(4)

Finally, the Digeit representing the level of digital economic
development is calculated through a multivariate linear weighted
function in Eq. 5:

Digeit � ∑
n

i�1
wjxitj

′ (5)

3.1.2 Trend analysis model
To detect the trend of carbon emissions and digital economy

across various cities from 2011 to 2019, this paper utilized the slope
function for trend analysis (Wang et al., 2020; Zhang H. et al., 2022).
The trend serves as a direct indicator of the fluctuations in carbon
emissions and the growth rate of digital economy within each city.
The specific formula is as shown in Eq. 6:

Slope � n × ∑n
i�1 i × Vi( ) −∑n

i�1i × ∑n
i�1Vi

n × ∑n
i�1i2 − ∑n

i�1i( )2 (6)

Where Vi denotes the carbon emissions or the level of digital
economic development in the ith year, and n is the number of years.
A positive or negative slope of Vi signifies a linear growth or decline
trend in the time series, respectively.

3.1.3 Spatial correlation analysis
This paper employed the global Moran’s I index to conduct a

spatial autocorrelation test, examining the potential spatial

relationship between digital economic development and carbon
emissions. The calculation formula is presented in Eq. 7:

Wij �
1
dij

i ≠ j

0 i � j

⎧⎪⎪⎨
⎪⎪⎩ (7)

Moran′s I � ∑n
i�1∑n

j�1wij Xi − �X( ) Xj − �X( )
S2∑n

i�1∑n
j�1wij

(8)

In Equation 7,Wij represents the inverse-distance matrix, where
dij denotes the geodesic distance between the centroids of cities i and
j, calculated based on their respective latitudinal and longitudinal
coordinates. In Equation 8,Xi andXj represent the digital economic
development level or carbon emissions of cities i and j respectively,
where �X and S2 denote the corresponding mean and variance. n is
the number of cities. Simultaneously, we used the local Moran’s I
index (LISA) to analyze the spatial clustering patterns as shown in
Eq. 9:

LISA � Xi − �X

S2
∑
n

j�1
wij Xi − �X( )[ ] (9)

According to the spatial distribution characteristics, spatial
clustering can be classified into four types: High-High cluster
(H-H), High-Low cluster (H-L), Low-High cluster (L-H), and
Low-Low cluster (L-L).

3.1.4 Spatial econometrics model
Considering theoretical analysis and Hypothesis 1b, a potential

spatial correlation emerges between the digital economy and urban
carbon emissions. Conventional panel regressions neglect spatial
interactions among variables, possibly leading to biased empirical
results (Li and Wang, 2022). Therefore, a spatial econometric model
needs to be established.

Commonly spatial econometric models include spatial lag
model (SLM), spatial error model (SEM), and spatial Durbin
model (SDM) (LeSage and Pace, 2009). The SDM, an extended
form that combines the SLM and SEM, incorporates spatial effects of
both independent and dependent variables into the model.
Compared with the SLM and SEM, the SDM provides enhanced
explanatory capabilities for relationships among spatial variables
(Elhorst, 2010). For testing Hypothesis 1a and 1b, the following
SDM is constructed:

lnCeit � a0 + ρ∑wijlnCeit + α1Digeit+β1 ∑wijDigeit + aclnXit+
βc ∑wijlnXit + φi + σt + τit

(10)
In Eq. 10, Ceit represents urban carbon emissions, Xit denotes

control variables. ρ is the spatial autoregressive coefficient, α1 and αc
are the estimated coefficients for Dige and control variables, while β1
and βc are the spatial lag coefficients.wij is the spatial weight matrix.
a0 is the constant term, φi represents city effects, σt represents time
effects, and τit is the random perturbation term.

3.1.5 Two-stage transmission effect model
To test hypotheses 2 and 3, this study examined the influencing

mechanism of Dige by setting industrial structure upgrading and
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green technological innovation as mediating variables. Taking
spatial effects into account, we built a two-stage transmission
effect model for mechanism analysis (Li and Wang, 2022). The
model helps circumvent the evident endogeneity issues in the third
step of the traditional three-step method. The specific setting form is
as follows:

Pathit � β0 + ρ1 ∑wijPathit + β1Digeit + ρ2 ∑wijDigeit + βclnXit+
ρc ∑wijlnXit + φi + σt+τit

(11)
lnCarbonit � γ0 + θ1 ∑wijlnCarbonit + γ1Pathit + θ2 ∑wijPathit+

γclnXit + θc ∑wijlnXit + φi + σt+τ it
(12)

In Equation 11, Pathit serves as the mediating variable. Xit

functions as the control variables. Firstly, for Equation 11, β1 needs
to be significant, demonstrating that Digeit has a significant impact
on the mediating variable Pathit. This is a prerequisite for
conducting Equation 12. Secondly, when both β1 in Equation 11
and γ1 in Equation 12 are significant simultaneously, it indicates the
presence of mediating effect.

3.2 Variables selection

3.2.1 Explained variable
The explained variable is the carbon emissions (Carbon) of cities.

Carbon dioxide emissions intuitively reflect the carbon emissions status.
The calculation of carbon emissions is based on the research findings of
Shan et al. (2022). Fossil energy use and the production processes of
industrial goods, such as cement, are identified as the primary sources of
carbon emissions (Shan et al., 2022). The energy consumption of
47 socio-economic sectors is multiplied by the fuel emission
coefficients to obtain energy-related carbon emissions. The cement
production is multiplied by the emission coefficient per unit to obtain
cement product-related carbon emissions. The summation of these two
components yields the total carbon emissions for each city. To enhance
data stability, logarithmic transformation (lnCarbon) was applied.

3.2.2 Explanatory variable
The core explanatory variable is the digital economy (Dige).

Considering the extensive nature of Dige, a singular indicator falls
short of providing a comprehensive reflection of the level of digital
economic development. Consequently, this paper has constructed
an evaluation index system to assess the urban Dige, encompassing
four dimensions: digital infrastructure construction, digital industry,
digital inclusive finance, and digital development vitality (Table 1).
The construction of the index system draws upon existing research
(Zhang J. et al., 2022; Yi et al., 2022; Wang and Shao, 2023) and
incorporates indicators for Dige sourced from the International
Telecommunication Union and the China Academy of Information
and Communications Technology.

The digital infrastructure construction serves as a foundational
element for the evolution of Dige. The digital industry constitutes the
core of digital economic advancement. The digital inclusive finance
expands the scope and forms of financial services, furnishing essential

financial support for Dige. The digital development vitality reflects the
innovative prowess and inherent potential embedded within Dige.

3.2.3 Mediating variables
Industrial structure upgrading (Uis). The proportion of the three

industries’ output value to the GDP intuitively reflects the industrial
structure. We utilized the ratio of the tertiary industry’s output value to
that of the secondary industry to characterizeUis (ZhangW. et al., 2022).

Green technological innovation (Gti). As the ultimate outcome of
innovative activities, the quantity of patents serves as an indicator
reflecting the level of technological innovation (Li and Wang, 2022).
In our paper, the green technology innovation is delineated through two
indicators: the number of green patent applications per 10,000 people
(Gti1) and the number of green patents granted per 10,000 people (Gti2).

3.2.4 Control variables
Considering the impact of economic and social factors on carbon

emissions, this study introduced the following control variables. 1)
Economic development level (lnPGDP): The economic development
level is recognized as a pivotal determinant impacting carbon emissions
(Li and Wei, 2021), expressed by per capita GDP. 2) Financial
development level (lnfinance): The advancement of financial markets
is conducive to enhancing the efficiency of capital utilization. It enables
businesses secure more capital for green technological innovation,
assisting in reducing carbon emissions (Ran and Zhang, 2023),
expressed by the proportion of year-end financial loan balances to
GDP. 3) Transportation (lnProad): Urban expansion has heightened
the demand for transportation, with transportation-related carbon
emissions emerging as a main source of carbon emissions (Sun
et al., 2017). It is characterized by the road mileage per
10,000 people. 4) Government intervention (lnPfe): Governments
implement specific measures to intervene in urban activities, thus
influencing carbon emissions (Zhang J. et al., 2022), expressed by
per capita fiscal expenditure. 5) Urbanization level (lnUrban): As a
key indicator of modernization, urbanization significantly impacts
carbon emissions (Zhang et al., 2017), expressed by the proportion
of urban population in the total population.

3.3 Data source

Based on the continuity and comprehensiveness of data, this study
established a panel dataset with 215 cities in China from 2011 to 2019.
Interpolation method was applied to address sporadic data gaps,
culminating in a dataset comprising 1,935 observational samples. The
carbon emissions data were sourced from the China Carbon Accounting
Database (https://www.ceads.net.cn/). Other data mainly came from the
“China Urban Statistical Yearbook”, as well as the statistical yearbooks of
individual cities. The data on green patents were obtained from the China
National Intellectual Property Administration (https://www.cnipa.gov.
cn/). The digital inclusive finance indices were derived from Peking
University Digital Finance Research Center and Ant Group Research
Institute (Guo et al., 2020). For non-ratio data, a logarithmic
transformation was applied. For data points containing zero values, a
logarithmic transformation with an addition of one was employed.
Descriptive statistics for the variables are presented in Table 2.
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4 Empirical results and discussion

4.1 The spatiotemporal evolution
characteristics of the carbon emissions and
digital economy

Table 3 shows the results of spatial autocorrelation tests. The
Moran’s I indices for carbon emissions and Dige from 2011 to
2019 have passed significance tests at the 1% and 5% levels,
respectively. Both Dige and carbon emissions exhibit significant
spatial correlation during the study period.

Figure 2 illustrates the spatiotemporal distribution of urban carbon
emissions and Dige in 2011, 2015, and 2019. It reveals significant
regional variations, indicating distinctive disparities across the country.

From 2011 to 2019, the evolution of carbon emissions exhibited
characteristics of low mobility and high stability. In comparison to
2011, the carbon emissions levels of 157 cities remained unaltered in

2019, accounting for 73.02%. Cities with elevated carbon emissions
are mainly concentrated in the north of the Qinling Mountains and
the Huaihe River. This distribution aligns with the higher coal
proportion in the energy structure in the northern region.
Meanwhile, cities in the southern regions such as the Yangtze
River Delta and the Pearl River Delta also demonstrate high
carbon emissions, associated with factors such as industrial
agglomeration and high population density.

From 2011 to 2019, the average level of urban Dige has
significantly increased. The index values of Dige in 189 cities
have experienced a growth exceeding 100%, constituting 87.91%
of all cities. The numerical range has shifted from 0.02 to 0.63 in
2011 to 0.09–0.86 in 2019. However, a widening gap in development
level among cities has emerged. Spatially, cities in the southern
region exhibit higher levels compared to those in the northern

TABLE 1 Evaluation index system for the development level of digital economy in Chinese cities.

Primary
indicators

Secondary indicators Indicator description Index
attribute

Development level of digital
economy

Digital infrastructure
construction

Broadband internet foundation Number of international internet users per 10,000 people +

Mobile internet foundation Number of mobile phones users per 10,000 people +

Digital industry Postal industry development Total postal business +

Infrastructure of information
industry

Number of employees in information transmission,
computer services and software

+

Telecommunications industry
development

Total telecommunications business +

Digital inclusive finance Extent of coverage Index of extent of coverage +

Depth of usage Index of depth of usage +

Degree of digitization Index of degree of digitization +

Digital development
vitality

Human capital Number of university students per 10,000 people +

Government investment Government expenditure on education as a share of GDP +

University support Number of general higher education institutions +

TABLE 2 Descriptive statistics.

Variables Obs Mean Std.Dev Min Max

lnCarbon 1935 3.414 0.871 1.193 5.420

Dige 1935 0.138 0.112 0.030 0.660

lnPGDP 1935 10.802 0.541 9.664 12.061

lnfinance 1935 4.387 0.571 2.350 5.765

lnProad 1935 3.357 0.475 2.181 4.696

lnPfe 1935 8.998 0.537 7.870 10.463

lnUrban 1935 −0.588 0.254 −1.306 −0.052

Uis 1935 0.963 0.470 0.327 3.131

Gti1 1935 1.215 2.240 0.012 22.992

Gti2 1935 0.678 1.212 0.006 12.466

TABLE 3 Spatial autocorrelation test for urban carbon emissions and digital
economy from 2011 to 2019.

Year Carbon Dige

Moran’s I Z value Moran’s I Z value

2011 0.049 (0.000) 7.013 0.011 (0.033) 2.131

2012 0.054 (0.000) 7.608 0.013 (0.017) 2.397

2013 0.053 (0.000) 7.494 0.020 (0.001) 3.247

2014 0.056 (0.000) 8.000 0.017 (0.004) 2.878

2015 0.056 (0.000) 7.959 0.018 (0.003) 2.971

2016 0.064 (0.000) 8.984 0.020 (0.001) 3.187

2017 0.064 (0.000) 8.991 0.023 (0.000) 3.561

2018 0.060 (0.000) 8.392 0.021 (0.001) 3.330

2019 0.050 (0.000) 7.071 0.019 (0.002) 3.109

Note: p-value is in parentheses.
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region. Meanwhile, cities in the eastern region surpass those in the
central region, while the central region outperforms the
western region.

Figure 3 illustrates the dynamic trends in carbon emissions and
Dige for each city from 2011 to 2019. For carbon emissions
(Figure 3A), 37.67% of cites showed a decreasing trend in carbon
emission, while 62.33% of cities demonstrated an increasing trend.
The most obvious increasing trends appeared in the central and
eastern regions of Inner Mongolia, the northern part of Shaanxi
Province, and the border region encompassing Hebei, Shanxi,
Henan, and Shandong provinces. For digital economy
(Figure 3B), over 43.26% of cities have a growth slope below
0.01, indicating slower growth. Cities with elevated levels of Dige
are predominantly concentrated in key regions, including the
Beijing-Tianjin-Hebei Region, Yangtze River Delta, Sichuan-
Chongqing, and Pearl River Delta areas. Regions with a stronger
economic foundation tend to attract digital technology talents,
fostering innovation and the development of Dige.

Figure 4 depicts the spatial agglomeration of carbon emissions and
digital economy in 2011, 2015, and 2019. For carbon emissions, the
spatial agglomeration effect is more pronounced in the northern
regions. High-high (H-H) agglomeration areas are primarily located
in the Beijing-Tianjin-Hebei region, central Inner Mongolia, northern
Shaanxi Province, the Shandong Peninsula and the Yangtze River Delta
region, displaying a tendency toward contraction. Low-low (L-L)
agglomeration regions are contiguous in western Hunan Province,

central-southern Jiangxi Province, and northwestern Fujian Province.
High-Low (H-L) agglomeration regions encompass Chongqing,
Wuhan, and Guangzhou, while Low-high (L-H) agglomeration
regions include cities like Langfang, Hengshui, and Cangzhou. For
digital economy, the spatial agglomeration effect is exhibiting an
expanding trend. H-H agglomeration regions include Tianjin,
Shanghai, and Guangzhou, while H-L agglomeration regions
encompass provincial capitals like Chongqing, Wuhan, Changsha,
Nanchang, and Zhengzhou. The radiating effect of regional digital
economic centers is intensifying.

4.2 Benchmark regression results

Table 4 presents the results of the fitness tests for spatial models.
Firstly, all LM test statistics are significant at the 1% level, indicating
the superiority of choosing the spatial econometric model. Secondly,
the LR test results are all significant at the 1% level, leading to the
rejection of SLM and SEM, thus favoring the selection of SDM.
Lastly, the Hausman test is passed at the 1% significance level,
suggesting that the fixed-effects SDM is the optimal choice.

Table 5 shows the benchmark regression results. A double fixed
effects OLS was used for comparison in (1) column. (2)–(5) columns
display the estimated coefficients and effect decomposition of the
SDM. The spatial autoregressive coefficient (ρ) of carbon emissions
is significantly positive at the 5% level, indicating a pronounced

FIGURE 2
Spatial distribution of urban carbon emissions and digital economy among Chinese cities. (A): Carbon emission in 2011; (B): Carbon emission in
2015; (C): Carbon emission in 2019; (D)Dgie in 2011; (E) Dige in 2015; (F): Dige in 2019. Note: Referring to Cai et al. (2018), this paper categorized carbon
emissions (units: million tons) into four levels: first level (Carbon<30), second level (30≤Carbon<50), third level (50≤Carbon<100) and fourth level
(100≤Carbon<500). Drawing on the work of Yi et al. (2022) and considering the practical context of urban development, this paper categorized the
index of digital economic development levels into four levels: first level (Dige<0.1), second level (0.1≤Dige<0.2), third level (0.2≤Dige<0.3) and fourth
level (0.3≤Dige<1).
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spatial dependence in the distribution of carbon emissions. The
coefficients of Dige are consistently significantly positive in columns
(1)–(5), indicating that digital economic development has effectively
reduced urban carbon emissions. Hypothesis 1a is validated.
Simultaneously, the coefficient of the spatial interaction term for
Dige (W×Dige) is significant at the 5% level, implying the potential

presence of spatial spillover effects of digital economy on
carbon emissions.

We further decomposed the impact of various variables on carbon
emissions into direct effects, indirect effects, and overall effects. In
columns (3)–(5), the direct effect of Dige is significantly negative at the
1% level, while the indirect effect demonstrated a positive correlation at

FIGURE 3
Trends in Carbon emissions and Dige in Chinese cities from 2011 to 2019. (A): Carbon emissions; (B): Dige.

FIGURE 4
LISA maps of carbon emissions and digital economy among Chinese cities. (A): Spatial agglomeration of carbon emission in 2011; (B): Spatial
agglomeration of carbon emission in 2015; (C): Spatial agglomeration of carbon emission in 2019; (D) Spatial agglomeration of Dgie in 2011; (E) Spatial
agglomeration of Dige in 2015; (F): Spatial agglomeration of Dige in 2019.
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the 5% significance level. Increases in the level of Dige in neighboring
regions amplify the pressure for carbon reduction in the local regions. It
could be that the development of the local digital economy has driven
the construction of digital infrastructure in surrounding areas, thereby
exacerbating energy consumption and carbon emissions in those
neighboring regions. Moreover, the high value-added nature of the
digital economy squeezes the survival space of high carbon-emitting,
low-profit industries, which compels these industries to relocate to
surrounding areas, resulting in a geographical shift of carbon emissions.

Hypothesis 1b is validated, and the spatial spillover of digital economy
to carbon emission is negative.

Regarding the control variables, the economic level has exerted a
catalytic effect on the carbon emissions, suggesting that the economic
growth has not fostered a low-carbon development model. The financial
development does not show a significant impact on carbon emissions in
the local region, but it markedly stimulates carbon emissions in
neighboring regions. It could be that the financial capital tends to
flow more towards high-carbon industries than green enterprises. The
transportation infrastructure significantly promotes carbon emissions.
The transportation infrastructure enhances inter-city transport capacity,
thereby amplifying carbon emissions frommotor vehicles. As a powerful
approach for controlling carbon emissions, government intervention
demonstrates a notable reduction in carbon emissions. Through fiscal
measures and administrative interventions, local governments guide
enterprises towards low-carbon development. The urbanization rate
does not distinctly affect regional carbon emissions.

4.3 Robustness test

4.3.1 Instrumental variable test
A potential reverse causality exists between the digital economy

and urban carbon emissions. To relieve the endogeneity, we used the

TABLE 4 Fitness tests for spatial econometric models.

Test Statistical value p-Value

LM-error 474.771*** 0.000

Robust-LM-error 370.638*** 0.000

LM-lag 131.567*** 0.000

Robust-LM-lag 27.434*** 0.000

LR_spatial_lag 24.93*** 0.000

LR_spatial_error 29.97*** 0.000

Hausman test 25.40*** 0.000

Note: *, **, *** represent the 10%, 5% and 1% significance levels, respectively.

TABLE 5 Benchmark regression results.

Variables OLS (1) SDM (2) Decomposition of effect

Direct effect (3) Indirect effect (4) Total effect (5)

Dige −0.531*** (−2.920) −0.475*** (−2.800) −0.462*** (−2.650) 2.826** (2.060) 2.364* (1.700)

lnPGDP 0.035 (0.690) 0.092* (1.730) 0.089* (1.760) −0.238 (−0.870) −0.149 (−0.580)

lnfinance −0.012 (−0.270) −0.031 (−0.730) −0.025 (−0.640) 0.641** (2.200) 0.616** (2.170)

lnProad 0.107* (1.950) 0.118** (2.010) 0.116** (2.090) −0.264 (−0.500) −0.147 (−0.290)

lnPfe −0.132*** (−2.730) −0.132*** (−2.800) −0.131*** (−2.950) −0.237 (−0.830) −0.368 (−1.310)

lnUrban −0.077 (−1.120) −0.068 (−1.010) −0.065 (−0.970) −0.082 (−0.140) −0.147 (−0.260)

W×Dige 2.168** (2.270)

W×lnPGDP −0.188 (−0.970)

W×lnfinance 0.451** (2.240)

W×lnProad −0.207 (−0.590)

W×lnPfe −0.132 (−0.650)

W×lnUrban −0.041 (−0.100)

City fixed effect Yes Yes Yes Yes Yes

Time fixed effect Yes Yes Yes Yes Yes

Ρ (rho) 0.297** (2.150) 0.297** (2.150) 0.297** (2.150) 0.297** (2.150)

Sigma2 0.035*** (31.090) 0.035*** (31.090) 0.035*** (31.090) 0.035*** (31.090)

N 1935 1935 1935 1935 1935

R2 0.552 0.621 0.621 0.621 0.621

Log_L 507.612 507.612 507.612 507.612

Note: *, **, *** represent the 10%, 5% and 1% significance levels, respectively. Z value is in parentheses.
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instrumental variable (IV) estimation. The first IV is the
geographical distance from each city to Hangzhou (lndigiv1) (Li
and Wang, 2022). Hangzhou, birthplace of digital financial giants
like Alibaba and home to ElectronicWorld Trade Platform (eWTP),
is driving the development of digital economy in China. Proximity
to Hangzhou is expected to enhance the spillover effects, correlating
with a higher level of digital economy. Thus, the first IV satisfies the
correlation. Meanwhile, it is noteworthy that Hangzhou is merely
one of the provincial capitals, and proximity to Hangzhou does not
dictate carbon emissions levels, satisfying the exogeneity. The
second IV is the per capita postal and telecommunication
services (lndigiv2) across cities in 1984 (Bai et al., 2023). The
application of digital technology originated with the
popularization of postal and telecommunications services.
Consequently, regions with advanced postal and
telecommunications infrastructure are expected to demonstrate a
high level of digital economy, thus meeting the correlation.
Additionally, the historical data in 1984 have a negligible impact
on contemporary carbon emissions, satisfying the exogeneity. We
interacted the IVs with time trend terms to obtain panel data.

We employed a Two-Stage Least Squares (2SLS) regression
analysis, and the results are presented in Table 6. The
Kleibergen-Paap rk LM and Kleibergen-Paap rk Wald F serve
as the outcomes of the Underidentification test and Weak
Identification test, respectively, both significantly rejecting
the null hypothesis of weak instrument variables. This
underscores the effectiveness of IVs. Even with two IVs, the
digital economy still significantly promoted carbon emissions
reduction. The instrumental variable test further confirms
Hypothesis 1.

4.3.2 Other robustness test
Table 7 shows the results of other robustness tests. Firstly,

column (1) indicates that, in the absence of control variables, the
restraining effect of the digital economy on carbon emissions has
also passed the significance test at the 1% level.

Secondly, we introduced the per capita carbon emissions as a
new explained variable for robustness testing. In column (2), after
replacing the explained variable, the regression coefficient of the
digital economy remains significantly negative at the 1% level.
Compared with the coefficient in benchmark regression, the
digital economy demonstrates a more pronounced effect on
reducing per capita carbon emissions.

Thirdly, this paper introduced lagged periods of one and two
for the digital economy. Column (3) shows that coefficient for lag
one is significantly negative, which not only affirms the
robustness of the benchmark regression results but also
indicates a temporal lag in the impact of the digital economy
on urban carbon emissions. However, the estimated coefficient
for lag two Dige is not significant in column (4), indicating a
diminishing effect of the digital economy over time.

Fourthly, this study conducted a robustness test by substituting
the inverse-distance matrix with the economic distance matrices (Xu
et al., 2021). Two economic distance weighting matrices are denoted

as W2,ij and W3,ij, where W2,ij �
1

gdpi − gdpj

∣∣∣∣ ∣∣∣∣ i ≠ j

0 i � j

⎧⎪⎪⎨
⎪⎪⎩ and

W3,ij �
1

pgdpi − pgdpj

∣∣∣∣ ∣∣∣∣ i ≠ j

0 i � j

⎧⎪⎪⎨
⎪⎪⎩ . Here, |gdpi − gdpj| and

|pgdpi − pgdpj| respectively represent the differences in the
annual average values of actual GDP and per capita GDP
between cities i and j. The columns (5) and (6) correspond to
the regression outcomes under W2,ij and W3,ij, respectively. The
estimated coefficients for Dige are significantly negative at the 5%
level, thereby reinforcing the core findings of this study.

4.4 Mechanism analysis

Table 8 reports the results of the mechanism tests. Both
industrial structure upgrading and green technological innovation
play a significant mediating role in the process of carbon reduction
facilitated by the digital economy. Column (1) and (2) show that the
digital economy does enhance urban carbon reduction by propelling
industrial structure upgrading, thus confirming Hypothesis 2. The
indirect effects of the digital economy on industrial structure
upgrading are found to be negative. The “Internet plus” broadens
the value-added scope of the service industry. In pursuit of higher
returns, service industries in regions with lower digital economy
levels tends to migrate towards regions with higher digital economy
levels. Consequently, neighboring regions with advanced digital
economies act as a siphon, attracting high value-added industries
away from the local region and diminishing the capacity for
industrial upgrading.

According to the columns (3) to (6), the digital economy
could reduce carbon emissions through green technological
innovation. The Hypothesis 3 is confirmed. Combining the
regression results of (3) and (5), it can be observed that the
promotion effect of the digital economy on green patent
applications surpasses that on green patent grants. This
discrepancy may arise from the long review period for patent
grants, introducing its statistical time lags. The impact of the
digital economy on current green technological innovation
activities is more immediately evident in the number of green
patent applications. The digital economy exhibits positive
indirect effects on green patent applications and green patent
grants in neighboring regions. The acceleration of information
dissemination within the digital economy enhances the spatial
spillover of knowledge and technology (Luo et al., 2023). This
contributes to reduce the acquisition costs for enterprises
pursuing green technologies, which facilitates the
establishment of environmentally friendly production patterns
within regions.

4.5 Heterogeneity analysis

4.5.1 Analysis of geographical location
Due to regional disparities, there exists obvious heterogeneity in

both the levels of digital economic development and carbon
emissions. In accordance with Chinese regional classification,
cities are divided into three regions: eastern, central, and western.
Columns (1) to (3) of Table 9 are the regression results. For eastern
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cities, the digital economy significantly reduces carbon emissions in
local regions, but its impact on neighboring cities is not significant.
For central cities, the digital economy have the stronger emission
reduction effect compared to other regions. However, it also
exacerbates carbon emissions in neighboring cities. For western
region, the coefficient of the digital economy is insignificant. The
coal utilization rate and carbon emissions intensity in the central
cities are relatively high. Concurrently, the digital economy is rapid
ascending in the central region, thereby rendering the marginal
emission reduction effects more pronounced.

4.5.2 Analysis of city scale
Population size is an important heterogeneity factor

affecting both carbon emissions and digital economy.
According to the Chinese criteria for urban scale
classification, cities are categorized as large and medium-sized
cities (population below 5 million) or mega-cities (population
equal to or exceeding 5 million). Considering the dispersed
geographical distribution and low spatial correlation arising
from this classification, we utilized a double fixed-effect OLS
for analysis. According to columns (4) and (5) of Table 9, for

TABLE 6 The test results of IV.

Variables The first IV The second IV

Dige (1) lnCarbon (2) Dige (3) lnCarbon (4)

lndigiv1 −0.051** (−2.340)

lndigiv2 0.012*** (3.840)

Dige −1.662*** (−3.790) −3.076* (−1.750)

Kleibergen-Paap rk LM 4.557 4.557 16.115 16.115

Kleibergen-Paap rk Wald F 40.242 40.242 19.762 19.762

Control variables YES YES YES YES

City fixed effect YES YES YES YES

Time fixed effect YES YES YES YES

N 1935 1935 1935 1935

R2 0.952 0.953 0.952 0.949

Note: *, **, *** represent the 10%, 5% and 1% significance levels, respectively. Z value is in parentheses.

TABLE 7 Robustness test results.

Variables Without control
variables

Replace the explained
variable

One
period lag

Two
periods lag

Change the spatial
weight matrix

(1) (2) (3) (4) W2,ij (5) W3,ij (6)

Dige −0.520*** (−3.110) −0.682*** (−3.940) −0.360**
(−2.190)

−0.342**
(−2.080)

W×Dige 1.219*** (4.830) 2.335** (2.440) −0.147
(−0.590)

0.390 (1.090)

F.Dige −0.412** (−2.120)

W×F.Dige 1.072 (1.060)

F2.Dige −0.142 (−0.640)

W×F2.Dige 1.060 (0.700)

Control
variables

NO YES YES YES YES YES

City fixed effect YES YES YES YES YES YES

Time fixed effect YES YES YES YES YES YES

N 1935 1935 1720 1,505 1935 1935

R2 0.549 0.730 0.577 0.093 0.411 0.301

Note: *, **, *** represent the 10%, 5% and 1% significance levels, respectively. Z value is in parentheses.
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large and medium-sized cities, the digital economy exhibits a
significantly positive effect on carbon reduction. However, for
mega-cities, the estimated coefficient of Dige did not pass the

significance test. This could be that population agglomeration
increases regional resource consumption and enhances
transportation intensity, leading to higher carbon emissions.

TABLE 8 Mechanism verification.

Variables Path = Uis Path = Gti1 Path = Gti2

Uis (1) lnCarbon (2) Gti1 (3) lnCarbon (4) Gti2 (5) lnCarbon (6)

Dige 1.005*** (8.770) 16.325*** (27.960) 7.578*** (25.540)

W×Dige −2.201*** (−3.580) 14.885*** (4.670) 8.620*** (5.190)

Uis −0.097*** (−2.940)

W×Uis 0.066 (0.560)

Gti1 −0.015*** (−2.640)

W×Gti1 0.088*** (3.560)

Gti2 −0.030*** (−2.630)

W×Gti2 0.156*** (3.320)

Control variables Yes Yes Yes Yes Yes Yes

Direct effect 0.971*** (7.980) −0.096*** (−2.840) 17.964*** (20.800) −0.015** (−2.500) 8.232*** (22.010) −0.029** (−2.490)

Indirect effect −7.773* (−1.670) 0.036 (0.180) 29.891** (2.370) 0.116*** (3.270) 30.398*** (2.560) 0.206*** (3.080)

Total effect −6.802 (−1.450) −0.060 (−0.300) 47.855** (2.490) 0.102*** (2.970) 38.630*** (2.710) 0.177*** (2.750)

City fixed effect Yes Yes Yes Yes Yes Yes

Time fixed effect Yes Yes Yes Yes Yes Yes

R2 0.703 0.512 0.567 0.526 0.554 0.476

N 1935 1935 1935 1935 1935 1935

Note: *, **, *** represent the 10%, 5% and 1% significance levels, respectively. Z value is in parentheses.

TABLE 9 Heterogeneity analysis.

Variables Geographical location City scale The agglomeration of
new energy industries

Eastern
cities (1)

Central
cities (2)

Western
cities (3)

Large and medium-
sized cities (4)

Mega-
cities (5)

Listed
cities (6)

Unlisted
cities (7)

Dige −0.653***
(−3.120)

−1.592***
(−3.500)

0.087 (0.220) −1.039** (−2.430) −0.221
(−1.240)

−0.616***
(−3.780)

−0.245 (−0.620)

W×Dige −0.364 (−0.360) 9.033*** (3.960) −2.815 (−1.570)

Direct effect −0.644***
(−3.000)

−1.563***
(−3.360)

0.108 (0.270)

Indirect effect −0.198 (−0.220) 9.467*** (3.670) −2.745 (−1.380)

Total effect −0.843 (−0.910) 7.903*** (2.990) −2.637 (−1.260)

Control
variables

Yes Yes Yes Yes Yes Yes Yes

City fixed effect Yes Yes Yes Yes Yes Yes Yes

Time fixed
effect

Yes Yes Yes Yes Yes Yes Yes

R2 0.470 0.411 0.163 0.536 0.439 0.591 0.162

N 783 756 396 1,098 837 450 1,485

Note: *, **, *** represent the 10%, 5% and 1% significance levels, respectively. Z value is in parentheses.
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Furthermore, the development of digital economy could
enhance residents’ consumption capacity, partially offsetting
the carbon reduction effect inherent to the digital
economy itself.

4.5.3 Analysis of the agglomeration of new
energy industry

The development of new energy industry has become a key of
addressing the contradiction between global climate warming and
escalating energy consumption (Xu and Lin, 2018). The impact of
the digital economy on carbon emissions exhibits heterogeneity
based on the agglomeration of new energy industry. The Hurun
Institute assessed the agglomeration of new energy industry in
various cities from three dimensions: the agglomeration of high-
quality enterprises, the agglomeration of small and medium-sized
enterprises, and the agglomeration of investment enthusiasm.
“2023 Hurun Chinese New Energy Industry Agglomeration City
Ranking” has been issued, featuring a total of 50 cities. Leveraging
the Hurun Report, this paper categorized cities into listed cities and
unlisted cities, employing a double fixed-effect OLS regression
for analysis.

The results in columns (6) and (7) demonstrate that the digital
economy significantly reduces carbon emissions in listed cities,
whereas its impact on carbon emissions in unlisted cities is not
significant. This phenomenon is mainly ascribed to the robust
integration between the digital economy and the new energy
industry. The digital economy plays a crucial role in offering
technological support for the new energy industry (Kittner et al.,
2017). Concurrently, the advancement of new energy industry
further catalyzes the growth of digital economy. Cities with a
high agglomeration of the new energy industry exhibit an
elevated level of digital economic development, leading to a more
pronounced effect in reducing carbon emissions.

5 Conclusion and policy implications

5.1 Conclusion

With the panel data of 215 cities from 2011 to 2019, this study
calculated the development level of digital economy and explored
the spatial-temporal evolution trend of digital economy and carbon
emissions. Then, employing spatial empirical methods, this study
quantitatively analysed the spatial impact of digital economy on
urban carbon emissions, examining its mechanism and
heterogeneity. The main conclusions are as follows.

(1) Digital economy development and urban carbon emissions both
show strong spatial correlation. The levels of digital economy
development have significantly improved in most cities, but the
gap between cities shows a widening trend. The spatio-temporal
evolution of digital economy is conspicuous, with a gradual rise
in spatial agglomeration. Meanwhile, carbon emissions exhibit a
relatively stable spatio-temporal evolution.

(2) The development of digital economy has a positive effect on
urban carbon emissions reduction. After a series of robustness
tests, this conclusion remains valid. The impact of digital
economy on carbon emissions exists negative spatial spillover.

While digital economy helps reduce carbon emission in the
region, it concurrently heightens the burden of carbon reduction
in neighboring regions. The spatial mechanism test shows that
industrial structure upgrading and green technology innovation
play mediating roles between digital economy and
carbon emissions.

(3) The impact of digital economy on carbon emissions is
heterogeneous with geographical location, city scale and
new energy industry agglomeration. The reduction in
emissions is more obvious in central cities, large and
medium-sized cities as well as cities with a high
agglomeration of new energy industry.

5.2 Policy implications

Based on the conclusions, the following policy implications for
urban carbon reduction are proposed.

(1) It is supposed to expand the scale of digital economy to empower
cities for digital transformation. Given the low development
status of digital economy in many cities, there is huge space for
digital economic growth in Chinese cities. The construction of
the information infrastructure should be promoted to achieve
higher quality connectivity, facilitating the development of digital
industries such as big data, the Internet, and 5G.

(2) The focus should be on fostering the development of key
metropolitan areas such as Shanghai, Beijing, Guangzhou,
etc., and extend the regional radiation effect of digital
economy center cities. It is suggested to establish regional
digital technology research platforms to break digital barriers,
so as to propel the diffusion of digital technologies among
cities. Western region cities could be encouraged to cooperate
with the central and eastern region cities in the digital
economy sphere, aiming to narrow the “digital gap”
through technology transfer and industrial cooperation.

(3) Greater attention should be paid to upgrading the industrial
structure and strengthening green technology innovation. It is
recommended to drive urban industrial upgrading by advancing
digital industries and leverage the role of the digital economy in
promoting the tertiary industry. Increase the supply of premium
digital products and services on the supply side, while expand the
digital consumer market on the demand side. The government
should intensify its support for green technology innovation and
augment financial support for related innovation activities.
Direct efforts should be made towards researching key low-
carbon technologies, such as carbon storage and carbon capture,
aiming to provide technical support.

(4) Differentiated policies based on the specific urban
development are proposed to be implemented. According
to local conditions such as the geographical position, the city
scale and the agglomeration of new energy industry, the
specific plans for digital economy should be made. Policy
formulation could be appropriately tilted toward western
cities to expand their digital economy scale. Additionally,
in cities with a pre-existing foundation in the new energy
industry, it is imperative to intensify substantial support for
these industries.
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5.3 Limitations and future research

This study also exists some limitations, necessitating some
improvements in future research. First, our study covers the period
2011–2019. Since 2020, the global COVID-19 outbreak has catalyzed
the rapid expansion of digital economy, particularly online activities. In
the era of the pandemic and its aftermath, it is imperative to delve
deeper into the relationship between the digital economy and carbon
emissions. Secondly, our study focuses on the city level, lacking the
micro-level exploration. The deep integration of digital economy into
enterprise-societal progress has hastened shifts in production and
lifestyle. Consequently, there is a necessity to integrate micro and
macro research perspectives and systematically examine the impact
of digital economy on carbon emissions. Micro-level research centered
around enterprises could be further expanded. Thirdly, limited by data
availability, this study does not define specific indicators related to data
factor within the evaluation system. Considering the growing
importance of data factor in productive activities (Hao X. et al.,
2023), future research need incorporate relevant evaluation
indicators. Fourthly, the measurement of green technological
innovation requires further refinement. While the number of patents
can reflect the outcomes of technological innovation activities, its
capacity for elucidating the process of technological innovation is
limited. Future efforts may study the process from perspectives such
as financial investment, technical personnel, and related factors.
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