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Sorption is a key process to understand the environmental fate of pollutants on
soils, conduct preliminary risk assessments and fill information gaps. Quantitative
Structure-Activity Relationships (QSAR) and Pedotransfer Functions (PTF) are the
most common approaches used in the literature to predict sorption. Bothmodels
use different outcomes and follow different simplification strategies to represent
data. However, the impact of those differences on the interpretation of sorption
trends and application of models for regulatory purposes is not well understood.
We conducted a systematic review to contextualize the requirements for
developing, interpreting, and applying predictive models in different scenarios
of environmental concern by using pesticides as a globally relevant organic
pollutant model. We found disagreements between predictive model
assumptions and empirical information from the literature that affect their
reliability and suitability. Additionally, we found that both model procedures
are complementary and can improve each other by combining the data
treatment and statistical validation applied in PTF and QSAR models,
respectively. Our results expose how relevant the methodological and
environmental conditions and the sources of variability studied experimentally
are to connect the representational value of data with the applicability domain of
predictive models for scientific and regulatory decisions. We propose a set of
empirical correlations to unify the sorption mechanisms within the dataset with
the selection of a proper kind of model, solving apparent incompatibilities
between both models, and between model assumptions and empirical
knowledge. The application of our proposal should improve the
representativity and quality of predictive models by adding explicit conditions
and requirements for data treatment, selection of outcomes and predictor
variables (molecular descriptors versus soil properties, or both), and an
expanded applicability domain for pollutant-soil interactions in specific
environmental conditions, helping the decision-making process in regard to
both scientific and regulatory concerns (in the following, the scientific and
regulatory dimensions).

KEYWORDS

environmental fate, organic pollutants, pesticides, decision-making, model
interpretation

OPEN ACCESS

EDITED BY

Rui Zhang,
University of Jinan, China

REVIEWED BY

Manuel Garcia-Jaramillo,
Oregon State University, United States
Sen Li,
Beijing University of Chinese Medicine, China

*CORRESPONDENCE

Angelo Neira-Albornoz,
angelo-javier.neira-albornoz@uni-

konstanz.de
Andreas Spitz,
andreas.spitz@uni-konstanz.de

RECEIVED 30 January 2024
ACCEPTED 19 July 2024
PUBLISHED 13 August 2024

CITATION

Neira-Albornoz A, Martínez-Parga-Méndez M,
González M and Spitz A (2024), Understanding
requirements, limitations and applicability of
QSAR and PTFmodels for predicting sorption of
pollutants on soils: a systematic review.
Front. Environ. Sci. 12:1379283.
doi: 10.3389/fenvs.2024.1379283

COPYRIGHT

© 2024 Neira-Albornoz, Martínez-Parga-
Méndez, González and Spitz. This is an open-
access article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Environmental Science frontiersin.org01

TYPE Systematic Review
PUBLISHED 13 August 2024
DOI 10.3389/fenvs.2024.1379283

https://www.frontiersin.org/articles/10.3389/fenvs.2024.1379283/full
https://www.frontiersin.org/articles/10.3389/fenvs.2024.1379283/full
https://www.frontiersin.org/articles/10.3389/fenvs.2024.1379283/full
https://www.frontiersin.org/articles/10.3389/fenvs.2024.1379283/full
https://www.frontiersin.org/articles/10.3389/fenvs.2024.1379283/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2024.1379283&domain=pdf&date_stamp=2024-08-13
mailto:angelo-javier.neira-albornoz@uni-konstanz.de
mailto:angelo-javier.neira-albornoz@uni-konstanz.de
mailto:angelo-javier.neira-albornoz@uni-konstanz.de
mailto:andreas.spitz@uni-konstanz.de
mailto:andreas.spitz@uni-konstanz.de
https://doi.org/10.3389/fenvs.2024.1379283
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2024.1379283


1 Introduction

Sorption is a key process in tracking the environmental fate of
pollutants on soils due to its role in increasing the persistence and
accumulation (Dollinger et al., 2015; Rybacka and Andersson, 2016;
Zhu et al., 2017; De Gerónimo et al., 2018; Cai et al., 2019; Conde-
Cid et al., 2019; Pandey and Roy, 2021) by reducing their transport
(Kodešová et al., 2015; Wang et al., 2015; Sidoli et al., 2016; De
Gerónimo et al., 2018; Zhang et al., 2018; Cai et al., 2019; Conde-Cid
et al., 2019; Conde-Cid et al., 2020; Pandey and Roy, 2021; Hu et al.,
2022) and bioavailability (Kodešová et al., 2015; Zhang et al., 2018;
Cai et al., 2019; Conde-Cid et al., 2020; Cantwell et al., 2022; Hu
et al., 2022), and negatively affecting their biodegradation (Dollinger
et al., 2015; Aranda et al., 2016; Zhang et al., 2018; Cai et al., 2019;
Pandey and Roy, 2021; Cantwell et al., 2022) and bioremediation
(Cantwell et al., 2022). This has led to the development of various
models for the prediction of sorption, with two taking a dominant
position in the literature: quantitative structure-activity
relationships (QSAR) and pedotransfer functions (PTF). Both
models are considered an efficient option for conducting
preliminary risk assessment, filling information gaps, identify soil
issues and guide soil management and sustainability in different
soils of interest (e.g., agricultural, polluted, and vulnerable soils)
when the production of experimental data may be infeasible for real
time and large-scale decision-making (Wang et al., 2015; Aranda
et al., 2016; Sidoli et al., 2016; Singh et al., 2016; Berthod et al., 2017;
Sabour and Moftakhari Anasori Movahed, 2017; Zhu et al., 2017; De
Gerónimo et al., 2018; Zhang et al., 2018; Cai et al., 2019; Conde-Cid
et al., 2019; Conde-Cid et al., 2020; Kobayashi et al., 2020; Kobayashi
and Yoshida, 2021; Muhire et al., 2021; Pandey and Roy, 2021;
Cantwell et al., 2022; Hu et al., 2022; Jiang et al., 2022). Additionally,
both models predict sorption on soils through sorption coefficients,
which represent the linear/nonlinear distribution between the
retained and the aqueous concentration of pollutant in chemical
equilibrium in sorption isotherm studies (Neira-Albornoz
et al., 2022).

Despite the fact that both kinds of models seem applicable under
similar conditions and have been scientifically validated in their
predictive ability, their shared goal is pursued by employing
different procedures and assumptions that entail different
chemical, computational, and regulatory implications. We therefore
identified three factors that may affect their reliability and suitability
for regulatory purposes: (i) outcome selection, which depends on the
experimental design and conditions as well as methodological
considerations due to the complexity of environmental systems
(Neira-Albornoz et al., 2022); (ii) simplification strategy, with
QSAR models describing the sorption process through molecular
properties of pollutants (Wang et al., 2015; Aranda et al., 2016;
Berthod et al., 2017; Sabour and Moftakhari Anasori Movahed,
2017; Zhu et al., 2017; Zhang et al., 2018; Cai et al., 2019;
Kobayashi et al., 2020; Kobayashi and Yoshida, 2021; Muhire
et al., 2021; Pandey and Roy, 2021; Cantwell et al., 2022; Jiang
et al., 2022), and PTF assuming that the sorption depends on the
local soil properties instead (Sidoli et al., 2016; Singh et al., 2016; De
Gerónimo et al., 2018; Conde-Cid et al., 2019; Conde-Cid et al., 2020;
Hu et al., 2022); and (iii) institutionalization, where only QSAR
models have been promoted by the Organization for Economic
Co-operation and Development (OECD), the Registration,

Evaluation, Authorization, and Restriction of Chemicals (REACH)
and the U.S. Environmental Protection Agency (USEPA), based on
institutional requirements and guidelines (OECD, 2014; Card et al.,
2017; Kar et al., 2018; Thomas et al., 2019; Chinen and Malloy, 2020).

For instance, different, non-equivalent sorption coefficients are
used to represent the sorption process (Mamy et al., 2015; Nolte and
Ragas, 2017; Neira-Albornoz et al., 2022), which are interpreted as
physicochemical properties of pollutants (QSAR) or of soils (PTF),
affecting the data collection, data treatment and the reliability,
comparability, and applicability of their predictions in real
scenarios. Therefore, understanding the background of QSAR
and PTF models is crucial to determine when and how to apply
them in environmental contexts of concern. However, this
comparative background is not fully understood, creating
uncertainty in both scientific and decision-making practice.

In this work, we assess the links between the underlying
assumptions of predictive models and the state-of-the-art based
on experimental studies to develop a conceptual background for
improving the use of models for the prediction of the sorption of
pollutants on soils for regulatory purposes. We contribute to the
scientific practice and decision-making processes in three ways: (i)
we develop a comprehensive analysis of two contrasting approaches
for predicting sorption coefficients for regulatory purposes, (ii) we
connect the QSAR and PTF theories to current experimental trends,
and (iii) we propose a procedure that unifies and improves the
contextualization and interpretability of predictive models.

2 Methodology

Our methodology included three stages: (i) the presentation of
an explicit scope to introduce our audience and contextualize the
outcomes and pollutants assessed in our study, (ii) the description of
the systematic review, and (iii) the extraction of information from
the literature. We divided the last step into (i) QSAR and PTF
models to describe and compare their development backgrounds,
and (ii) empirical findings from the literature to contrast them with
the development and interpretation of predictive models.

2.1 Scope of the study

2.1.1 Sorption coefficients
Our study is focused on three sorption coefficients used as outcomes

in QSAR and PFT models to describe the sorption of pollutants of
environmental concern: (i) the linear coefficient, Kd, (ii) the nonlinear
Freundlich coefficient, KF, whose interpretation depends on the degree
of curvature of the sorption isotherm, described through a linearity
coefficient, 1/n, and (iii) the soil organic carbon-normalized sorption
coefficient, KOC, quantified from Kd or KF when soil organic carbon
content (OC) is the dominant sorbent in soils.

2.1.2 Approach
Our analysis involved three layers (Engeström, 2011; Jensen,

2022): (i) an interpretative layer, where assumptions used by
scientists and predictive models to make decisions were explicitly
defined and addressed, (ii) a contradictory layer, where
contradictions among QSAR and PTF assumptions were
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analyzed, and (iii) an agentive layer, involving different actors that
transform scientific practices, including regulatory agencies (e.g.,
OECD guidelines for the development of predictive models)
(OECD, 2014).

The interpretative layer has already been addressed in critical
reviews for QSAR (Hansen et al., 1999; Mamy et al., 2015; Nolte
and Ragas, 2017) and PTF (McBratney et al., 2002; Van Looy et al.,
2017) models, independently. However, they were not contrasted with
each other (QSAR vs. PTF) norwith experimental studies. In this article,
we compared both models and included three scientific actors (QSAR
developers, PTF developers, and soil scientists conducting experimental
research), their assumptions as well as potential contradictions, and the
impact of OECD guidelines on the scientific practices.

2.1.3 Decision-making process
We defined two dimensions: scientific and regulatory (Figure 1).

The scientific dimension is composed of soil scientists who conduct
experimental research or develop and use predictive models (scientific
decisions). The regulatory dimension involves environmental entities
that apply those models in different socio-environmental contexts at
local or global scale (regulatory decisions).

Our study considers scientific decisions as model development,
where the interpretative layer consist of (i) experimental designs
used by soil scientists to produce data, and (ii) theoretical
background and assumptions applied during the predictive model
development. Additionally, a contradictory layer was addressed
through the comparison of (i) QSAR and PTF models, and (ii)
predictive models versus empirical information.

In addition, we considered regulatory decisions as model
implementation through a contradictory layer that considered the
concord between experimental designs and predictive model
assumptions to evaluate the representational value of data and
reliability of predictions. In addition, we included an agentive
layer based on the OECD principles (OECD, 2014), which are
used in QSAR models and equivalent to some REACH
conditions (Chinen and Malloy, 2020).

In this sense, our approach (Figure 1) shows how different
scientific and regulatory decisions are mediated by predictive models
that act as an interface (e.g., science-policy interaction) and whose
understanding requires a holistic approach.

2.2 Systematic literature review

As the basis for our investigation, we conducted two systematic
literature reviews about research into the sorption of organic
pollutants on soils: one for QSAR and PTF models (Figure 2A)
and another for experimental sorption studies (Figure 2B).

Based on the number of published articles, we used two intervals
of recent years to represent research and trends conducted with
comparable and currently validated procedures: 5 years (2017–2021)
for experimental studies, and (ii) 8 years (2015–2022) for QSAR and
PTF models.

We identified numerous experimental studies, which exceeded
the feasible amount for manual annotation, and consequently
selected pesticides as a globally relevant organic pollutant model

FIGURE 1
Representation of the decision-making process used in this study.
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of focus. While reducing the manual data extraction to a scope that
was feasible to conduct, this also ensured a sufficiently diverse
number of pollutants in the considered studies, allowing us to
extrapolate our findings to other organic pollutants assessed by
QSAR and PTF models.

A schematic overview is shown in Figure 2. A detailed
description of our search strategy (keywords, search date, dataset
used) and the application of inclusion criteria for each individual
article are listed in Supplementary Table S1 for QSAR and PTF
models, and Supplementary Table S2 for experimental sorption
studies. In screening the related work, we discarded duplicates,
articles without abstract, with language restrictions, or those that
were not downloadable. We then applied eligibility criteria for each
literature review. For predictive models, we included articles focused
on QSAR or PTF models to predict sorption coefficients of organic
pollutants on soils, describing their procedure (Figure 2A;
Supplementary Table S1). For experimental studies, we included
articles conducting experimental studies on the sorption of
pesticides on soils and soil-related sorbents (Figure 2B;
Supplementary Table S2).

We only included experimental studies that meet three specific
requirements based on the selected predictive models (Figure 2B;
Supplementary Table S2). First, experimental conditions that ensure
data comparability and representativeness: the corroboration of
equilibrium condition through kinetic studies, mention of the
isotherm shape, and description of the quantification method
(e.g., mass balance to quantify the sorbed concentration from the
aqueous concentration). Second, the use of statistical tools to

validate sorption coefficients: Pearson coefficient >0.95 and five
or more concentration points to produce one sorption coefficient,
based on the minimum observation:descriptor ratio proposed for
QSAR models to avoid overfitting (Roy et al., 2015). Finally, the
suitability and comprehensiveness of the provided data descriptions
for data extraction: an explicit calculation of sorption coefficients
including clear values, units and nomenclature along the article, and
explicit conditions where data were quantified, such as solution,
sorbent:solution ratio, and interval of concentrations.

All selection criteria were applied successively.

2.3 Description of QSAR and PTF
development procedures

We conducted a descriptive analysis of scientific articles
producing predictive models through the following process: First,
we divided their procedures into shared steps (Figure 3). Then, we
extracted information related to each step: outcome selection
(outcome, units, accomplishment of the OECD principle P1),
data collection and treatment (data production, data mining,
diversity of data, experimental conditions used to quantify data
within the dataset, data treatment, kind of sorption coefficients
included in the dataset), predictor variables (kind of predictor,
quantification method), model equation and validation (splitting
procedures, algorithms linked to the OECD principles P2 and P4),
and applicability and regulatory purposes (considering the
OECD principles P3 and P5). This information is shown in

FIGURE 2
Flow chart and procedure for the analysis of recent articles that (A) develop predictive models, and (B) conduct experimental studies.
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Supplementary Table S3. Later, we compared the approaches both
models followed, and finally we identified and described similarities
and differences, summarizing relevant patterns for the development
of predictive models.

Additionally, we proposed QSAR and PTF assumptions for
explaining common procedures during the model development
procedures. Assumptions are (i) implicit within each article, (ii)
derived from general observations during the development of
predictive models, and (iii) conceptually linked to the
simplification strategies followed by both predictive models.

2.4 Extraction and classification of the
empirical information

The following information was extracted from the experimental
studies (Figure 2B): (i) data per article, (ii) sources of variability
explored during the experimental design within each article, (iii)
pesticides studied per article (to evaluate frequency and consistency
among studies), and (iv) characterization of pesticides studied within
an article by name, target, acid-base activity, and chemical class.

The information extracted from articles is shown in Supplementary
Table S4, where we classified the sources of variability addressed within
each article into two groups: soil variability (SV) and other sources of
variability (OV). SV included the use of different soils (SV [soil]),
treatments applied to the soils prior to the experiment (SV [treat]),
spatial variability during the soil sampling process (SV [spatial]), and
the lack of soil variability (SV [none]). On the other hand, OV included
the use of different pesticides (OV [pollut]), control and analysis of
specific experimental conditions (OV [exp]), and the lack of other
sources of variability (OV [none]). The effect of time (OV [time]) was
investigated in a few reviewed articles and discarded during the
application of specific requirements for the included articles (Figure 2B).

During the classification of soil variability, we considered soil-
related sorbents (e.g., soils, sediments, microplastics) as
independent. Additionally, we defined SV [treat] as treatments
made to one soil that modifies its structural composition, such as
additions (e.g., application of organic amendments, biochar at one
or different temperatures, lime, fertilizers, adjuvants, microplastics),

removals (e.g., removal of organic matter), isolation of components
(e.g., extraction of clay fractions), and management practices. In this
sense, different sorbents obtained from one soil were considered as
SV [treat] instead of SV [soil]. Finally, SV [spatial] encodes
topographic variations in which all samples belong to the same
soil but at different depths, horizons, or surface location in one plot.

For other sources of variability, OV [pollut] represents the
quantification of the sorption coefficient of different chemicals in
the same article, while OV [exp] represents the application of
different approaches to describe the behavior of the same
pollutant, such as sorption studies (e.g., one-point and sorption
isotherm), experimental conditions (e.g., pure pesticides, mixture of
pesticides, commercial formulations) and control of variables (e.g.,
the effect of temperature, pH, salinity, soil solution composition and
sterilization of soils in the sorption experiment).

Pesticide names were homogenized when the same pesticide had
different names among the articles, and their attributes were derived
from the Pesticide Properties Database, PPDB (Lewis et al., 2016).
Then, the most relevant functional groups of every pesticide were
obtained from the database (Lewis et al., 2016). The groups were
ordered according to the number of apparitions among the studies,
and pesticides were successively classified considering their most
frequent group. The compounds with low-frequent groups or lack of
information on the PPDB website were classified within the groups
in which they fit the best after a structural analysis. Finally, we
created four sub-groups according to common characteristics within
the groups, whose chemical structures are shown in Supplementary
Figure S1. The information about pesticides is shown in
Supplementary Table S5.

The combination of articles studying the same pesticide was
used to evaluate (i) sources of variability available in the literature
per pesticide, (ii) number of articles studying a pesticide, and (iii)
characterization of individual pesticides. Then, the distribution of
information was analyzed among articles and pesticides, and the
contrast with QSAR and PTF assumptions and the impact for
scientific and regulatory decisions was discussed.

Finally, we analyzed the interpretation of current QSAR models
through the following procedure: (i) we considered the averaged
sorption coefficient values for one pesticide among different soils

FIGURE 3
General procedure for developing predictive models, including the OECD principles (from P1 to P5) (OECD, 2014).
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TABLE 1 Summary of the information extracted fromQSAR and PTF models from the literature (presented in the same order as in Supplementary Table S3).

Article
Outcome
(units)a

Data included in the
dataset

Predictive model development Applicability
domain

# Ref. Typeb Diversityc Predictor
(quantification)d

Splittinge Model
equation
(validation
methods)f

QSAR models

1 Cantwell et al.
(2022)

log KOC (Not
shown)

T P: 21 PBDEs.
S: unclear.
Data: (21 ×
1 = 21)

Mol (sof) TTS Yes (GoF, Rob, PrA) Not included

2 Jiang et al.
(2022)

log KOC (Not
shown)

T and
E (lit)

P: 22 PFAs.
S: Sediments and
soils.
Data: (22 ×
1 = 22)

Mol (sof) TTS Yes (GoF, Rob, PrA) Yes

3 Muhire et al.
(2021)

log KOC (Not
shown)

T P: 24 OPI.
S: unclear.
Data: (24 ×
1 = 24)

Mol (sof) TTS Yes (GoF, Rob, PrA) Yes

4 Kobayashi and
Yoshida (2021)

log KOC (Not
shown)

E (lit) P: 964 NIOC.
S: unclear.
Data: (964 ×
1 = 964)

Mol (sof) TTS Yes (GoF, Rob, PrA) Yes

5 Pandey and Roy
(2021)

log KOC (Not
shown)

E (lit) P: 223 OrC.
S: unclear.
Data: (223 ×
1 = 223)

Mol (sof) TTS, PCPCs Yes (GoF, Rob, PrA) Yes

6 Kobayashi et al.
(2020)

log KOC (Not
shown)

E (lit) P: 163 Pes.
S: unclear.
Data: (163 ×
1 = 163)

Mol (sof) TTS Yes (GoF, Rob) Yes

7 Cai et al. (2019) log KOC (Not
shown)

E (lit) P: 27 PAHs and
PAEs.
S: unclear.
Data: (27 ×
1 = 27)

Mol (sof) TTS Yes (GoF, Rob, PrA) Yes

8 Olguin et al.
(2019)

log KOC (Not
shown)

E (lit) P: 964 NIOC.
S: unclear.
Data: (964 ×
1 = 964)

Mol (sof) TTS Yes (GoF, Rob, PrA) Yes

9 Zhang et al.
(2018)

log KOC (Not
shown)

E (lit) P: 60 PMeODEs,
PHODEs, PCDEs.
S: unclear.
Data: (60 ×
1 = 60)

Mol (sof) TTS, PCPCs Yes (GoF, Rob, PrA) Yes

10 Daré et al. (2017) log KOC (Not
shown)

T P: 24 OPI.
S: unclear.
Data: (24 ×
1 = 24)

Mol (sof) TTS Yes (GoF, Rob, PrA) Yes

11 Olguin et al.
(2017)

log KOC (Not
shown)

E (lit) P: 964 NIOC.
S: unclear.
Data: (964 ×
1 = 964)

Mol (sof) TTS Yes (GoF, Rob, PrA) Not included

12 Sabour and
Moftakhari
Anasori
Movahed (2017)

log KOC (Not
shown)

Mostly T P: 800 OrC.
S: unclear.
Data: (800 ×
1 = 800)

Mol (sof) TTS Yes (GoF, Rob, PrA) Yes

(Continued on following page)
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TABLE 1 (Continued) Summary of the information extracted from QSAR and PTF models from the literature (presented in the same order as in
Supplementary Table S3).

Article
Outcome
(units)a

Data included in the
dataset

Predictive model development Applicability
domain

# Ref. Typeb Diversityc Predictor
(quantification)d

Splittinge Model
equation
(validation
methods)f

QSAR models

13 Berthod et al.
(2017)

log Kd (L kg-1) E (lit) P: 148 Pha and
major
metabolites.
S: unclear.
Data: (148x
[>1] = 297)

Mol (sof) TTS, PCPCs Yes (GoF, Rob, PrA) Not included

14 Zhu et al. (2017) log Kop
OC (Not

shown)

E (lit) P: 52 PCBs.
S: One specific
soil
Data: (52 ×
1 = 52)

Mol (sof) TTS Yes (GoF, Rob, PrA) Yes

15 Rybacka and
Andersson
(2016)

log Kd (L kg-1) E (lit) P: 110 Pha.
S: Sewage sludges
Data: (110 ×
1 = 110)

Mol (sof) TTS, PCPCs Yes (PrA in the
training set)

Not included

16 Aranda et al.
(2016)

log KOC (Not
shown)

E (lit) P: 643 OrC.
S: unclear.
Data: (643 ×
1 = 643)

Mol (sof) TTS Yes (GoF, Rob, PrA) Yes

17 Wang et al.
(2015)

log KOC (L kg-1) T and
E (lit)

P: 824 OrC.
S: unclear.
Data: (824 ×
1 = 824)

Mol (sof) TTS Yes (GoF, Rob, PrA) Yes

PTF models

1 Hu et al. (2022) 1. Kd (L kg-1)
2. KF (mg1-1/n

L1/n kg-1)

E (lit) P: 7 ABs.
S: 79–159 soils.
Data: (7x [79-
159] = 694)

SP and MC (exp) TTS, comp Yes (GoF, PrA) No (but an alternative
analysis was made)

2 Conde-Cid et al.
(2020)

KF (Ln μmol1−n

kg-1)
E (exp) P: 2 ABs

S: 63 agricultural
soils.
Data: (2 ×
63 = 126)

SP (exp) Comp Yes (GoF) Not included

3 Conde-Cid et al.
(2019)

1. Kd (L kg-1)
2. KF (L1/n μmol1-
1/n kg-1)

E (exp) P: Sulfadiazine.
S: 68 agricultural
soil samples.
Data: (1 ×
68 = 68)

SP (exp) TTS, soil Yes (GoF) Not included

4 De Gerónimo
et al. (2018)

KF ((mg kg-1)
(mg L-1))

E (exp) P: Glyphosate.
S: 12 soils.
Data: (1 ×
12 = 12)

SP (unclear) Not applied Yes (GoF, Rob) Not included

5 Klement et al.
(2018)

KF (cm3/n μg1-1/n

g-1)
E (exp) P: 3 Pha.

S: 7 soils.
Data: (3 × 7 = 21)

SP (exp) Comp Yes (GoF) Not included

6 Singh et al.
(2016)

Kop
d (L kg-1) E (exp) P: 2,4-D and

atrazine.
S: 591 soil
samples.
Data: (2 × 591 >
1,000)

SP (unclear) TTS, comp,
soil

Yes (GoF, PrA) Not included

(Continued on following page)
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(called KF(pest) and KOC(pest)), and for one soil among different
pesticides (called KF(soil) and KOC(soil)), then (ii) we quantified the
coefficients of variation (COV) for KF(pest) and KF(soil), and lastly (iii)
we contrasted the COV for KF(pest) and KOC(pest) (related to SV
[soil]) with KF(soil) and KOC(soil) (related to OV [pollut]).

3 Literature review results

In this section we present our results for predictive models and
empirical findings. Table 1 is a condensed version of Supplementary
Table S3 and acts as a guide for reader in this section, showing
information from Figure 3 for each article, such as outcome, data
collection and treatment (type and diversity), predictor variables,
model equation and validation, and applicability domain.

3.1 Literature on predictive model
development

Based on the articles found in the literature (17 QSAR and 9 PTF
models, Figure 2A), we provide a comprehensive analysis by
considering the key development steps of QSAR and PTF models

(Figure 3). Furthermore, we include the five principles proposed by
the OECD to guide the development procedure of QSAR models for
regulatory purposes (P1-5, Figure 3) (OECD, 2014), to enable a
comparison between QSAR and PTF models.

3.1.1 Outcome selection
3.1.1.1 QSAR models

According to the QSAR model theory, activities or properties of
pollutants (e.g., sorption coefficients) are explained by their
chemical structure (Aranda et al., 2016; Olguin et al., 2019). This
implies that the outcome is exclusively dependent on pollutants, or
put another way, independent of soil properties.

In the literature, a high correlation between soil organic carbon
content (OC) and sorption coefficients has been found for non-
ionizable or neutral pollutants sorbed on soils with OC > 0.1%
(Olguin et al., 2017; Olguin et al., 2019). This minimizes the soil
variability (only OC is important) and allows the extrapolation of
trends to other soils having the same sorption mechanism, especially
if the mechanism is unspecific (i.e., pollutants may interact with
different types of sorption sites) and generalizable (i.e., a specific soil
component may represent the whole sorption), such as
hydrophobic. Under this scenario, the sorption coefficient is a
property of pollutants (Olguin et al., 2017; Cai et al., 2019).

TABLE 1 (Continued) Summary of the information extracted from QSAR and PTF models from the literature (presented in the same order as in
Supplementary Table S3).

Article
Outcome
(units)a

Data included in the
dataset

Predictive model development Applicability
domain

# Ref. Typeb Diversityc Predictor
(quantification)d

Splittinge Model
equation
(validation
methods)f

PTF models

7 Sidoli et al.
(2016)

Kf ((mg kg-1) (L
mg-1)−1/n)

E (exp) P: Glyphosate and
AMPA.
S: 15 agricultural
soils.
Data: (2 ×
15 = 30)

SP (exp) Comp Yes (GoF) Not included

8 Dollinger et al.
(2015)

1. Kf (L kg-1 1/
n−1)
2. Kop

d (Not
shown)
3. 1/n
(dimensionless)

E (lit) P: Glyphosate.
S: 101 soils and
sediments
Data: (1 ×
101 = 101)

SP (unclear) and
MC (exp)

Sorp Yes (GoF, Rob) No (but an alternative
analysis was made)

9 Kodešová et al.
(2015)

KF (cm3/n μg1-1/n

g-1)
E (exp) P: 7 Pha.

S: 13 soils.
Data: (7 ×
13 = 91)

SP (exp) Comp Yes (GoF) No (but an alternative
analysis was made)

aNote that (i) some units are not shown (e.g., QSARmodels) or are incorrectly defined (e.g., KF for PTF 8), (ii) it is unclear the origin of KOC when used, and (iii) we included the superscript “op”

for outcomes that were quantified from one specific initial concentration of pollutant (one-point Kd or KOC) instead of a sorption isotherm.
bT: theoretical (predicted), E(lit): empirical (from literature), E(exp): empirical (quantified in this study).
cTwo categories were used, i.e., P: pollutants, S: Sorbents. Additionally, some P were abbreviated, i.e., ABs: antibiotics, NIOC: non-ionic organic compounds, OrC: organic chemicals, OPI:

organophosphorus insecticides, PAEs: phthalic acid esters, PAHs: polycyclic aromatic hydrocarbons, PBDEs: polybrominated diphenyl ethers, PCBs: polychlorinated biphenyl congeners,

PCDEs: Hydroxylated- and methoxylated-polychlorinated diphenyl ethers, Pes: pesticides, PFAs: perfluorinated and polyfluoroalkyl substances, Pha: pharmaceuticals, PHODEs:

polyhydroxylated diphenyl ethers, PMeODEs: polymethoxylated diphenyl ethers.
dThree kinds of descriptors, i.e., Mol: molecular descriptors, SP: soil properties, MC: methodological conditions. Two kinds of quantification were abbreviated, i.e., Sof: software, Exp:

experimental.
eComp: one model per compound, PCPCs: classification by physicochemical properties of compounds, i.e., chemical classes or charge state, Soil: One model per soil, Sorp: Classification by

sorption characteristics, i.e., experimental information or sorption trend, TTS: Use of training:test sets.
fGoF: Goodness-of-fit, PrA: predictive ability, Rob: Robustness.
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In this sense, most QSAR models predicted KOC (Wang et al.,
2015; Aranda et al., 2016; Olguin et al., 2017; Sabour andMoftakhari
Anasori Movahed, 2017; Zhu et al., 2017; Zhang et al., 2018; Cai
et al., 2019; Olguin et al., 2019; Kobayashi et al., 2020; Kobayashi and
Yoshida, 2021; Muhire et al., 2021; Pandey and Roy, 2021; Cantwell
et al., 2022; Jiang et al., 2022) of non-ionizable and neutral
compounds, such as diphenyl ethers and biphenyl congeners
(Zhu et al., 2017; Zhang et al., 2018; Cantwell et al., 2022),
perfluorinated and polyfluoroalkyl substances (Jiang et al., 2022),
polycyclic aromatic hydrocarbons and phthalic acid esters (Cai et al.,
2019), pharmaceuticals (Rybacka and Andersson, 2016; Berthod
et al., 2017), pesticides (Kobayashi et al., 2020), organophosphorus
insecticides (Daré et al., 2017; Muhire et al., 2021), or several organic
compounds of different chemical classes (Wang et al., 2015; Olguin
et al., 2017; Sabour and Moftakhari Anasori Movahed, 2017; Olguin
et al., 2019; Kobayashi and Yoshida, 2021; Pandey and Roy, 2021).

3.1.1.2 PTF models
In contrast to QSAR, PTF theory considers that correlational

associations among soil properties have explanatory implications for
other soil properties (Sidoli et al., 2016; Singh et al., 2016; De
Gerónimo et al., 2018; Conde-Cid et al., 2020). Therefore,
sorption coefficients of one pollutant among different soils must
depend on soil properties.

In the literature, different sorption mechanisms and trends have
been found for the same pollutant, e.g., a major and a minor role of
OC in the sorption of oxytetracycline and chlortetracycline across
different soils (Conde-Cid et al., 2020) or non-hydrophobic sorption
mechanisms (Dollinger et al., 2015; Kodešová et al., 2015; Sidoli
et al., 2016; De Gerónimo et al., 2018; Klement et al., 2018), in
accordance with the PTF theory.

Additionally, the outcome selection process was linked to the
evaluation of sorption linearity during the data treatment (Kodešová
et al., 2015; Sidoli et al., 2016; Klement et al., 2018) and the analysis
of predictor variables related to the environmental and
methodological conditions, such as tillage (Singh et al., 2016) or
the presence of phosphate (Sidoli et al., 2016) in agricultural soils.

In this sense, PTF models studied one pollutant at a time,
including pesticides (Dollinger et al., 2015; Sidoli et al., 2016;
Singh et al., 2016; De Gerónimo et al., 2018), pharmaceuticals
(Kodešová et al., 2015; Klement et al., 2018), and antibiotics
(Conde-Cid et al., 2019; Conde-Cid et al., 2020; Hu et al., 2022),
generally ionizable (Dollinger et al., 2015; Kodešová et al., 2015;
Sidoli et al., 2016; De Gerónimo et al., 2018; Klement et al., 2018;
Conde-Cid et al., 2019; Conde-Cid et al., 2020; Hu et al., 2022), and
using non-normalized sorption coefficients (Kd and KF) (Dollinger
et al., 2015; Kodešová et al., 2015; Sidoli et al., 2016; Singh et al., 2016;
De Gerónimo et al., 2018; Klement et al., 2018; Conde-Cid et al.,
2019; Conde-Cid et al., 2020; Hu et al., 2022) and sorption isotherm
linearity (Dollinger et al., 2015) for representing the linear (1/n = 1)
and nonlinear (1/n ≠ 1) sorption under specific conditions.

3.1.1.3 Key insights
We found different strategies that were employed to simplify the

sorption process. QSAR models considered the sorption coefficient
as a physicochemical property of pollutants, independent of soils
and are therefore valid for all soils, simplifying the outcome selection
(P1, Figure 3). PTF models evaluated one pollutant per model,

considering that the sorption coefficient is a soil property. This
implies that QSAR models, when applicable, are broad and general,
while PTF models tend to be specific, acquiring local relevance.
Figure 4 shows conditions and assumptions that we propose to
understand both kinds of predictive models.

3.1.2 Data collection and treatment
3.1.2.1 QSAR models

Physicochemical information of sorbents was typically not
included in QSAR studies (Wang et al., 2015; Aranda et al., 2016;
Rybacka and Andersson, 2016; Berthod et al., 2017; Daré et al., 2017;
Olguin et al., 2017; Sabour and Moftakhari Anasori Movahed, 2017;
Zhu et al., 2017; Zhang et al., 2018; Cai et al., 2019; Olguin et al.,
2019; Kobayashi et al., 2020; Kobayashi and Yoshida, 2021; Muhire
et al., 2021; Pandey and Roy, 2021; Cantwell et al., 2022; Jiang et al.,
2022). Additionally, methodological conditions used to obtain the
experimental sorption coefficient values were neglected during the
development of the datasets. Moreover, some sorption coefficients
were theoretically derived from other predictive models using the
octanol/water partition coefficient (KOW) (Wang et al., 2015; Daré
et al., 2017; Sabour and Moftakhari Anasori Movahed, 2017; Muhire
et al., 2021; Cantwell et al., 2022; Jiang et al., 2022). Of course, these
theoretical data lack a specific experimental methodology and soil/
environmental properties that explain their values and guide their
interpretation.

The previous findings impact the applicability of QSAR models
in two ways: (i) empirical values were used together, independent of
their quantification method (e.g., one-point vs. isotherm, batch vs.
field-based) or sorption trend (e.g., sorption isotherm linearity); and
(ii) datasets in the considered literature were built using mean or
median sorption coefficient values such that the amount of data is
equivalent to the number of pollutants and soil variability was part
of the experimental error. Both issues increase the uncertainty when
trying to assess the representational value of data for reliable
predictions.

Furthermore, findings impact the reproducibility of QSAR
models: (i) only three QSAR models provided the units of
sorption coefficients (Wang et al., 2015; Rybacka and Andersson,
2016; Berthod et al., 2017), necessary to evaluate the comparability
among empirical values obtained from different studies due to
possible changes in the isotherm shape (linearity, 1/n); and (ii)
more recent QSAR studies used data from previous articles that were
in turn obtained from even older papers, based on well-known
databases and the ability to contrast algorithms among QSAR
models if they share the same dataset. As a result, several QSAR
articles shared their datasets (Olguin et al., 2017; Olguin et al., 2019;
Kobayashi and Yoshida, 2021; Daré et al., 2017; Muhire et al., 2021;
Wang et al., 2015; Sabour and Moftakhari Anasori Movahed, 2017)
or part of the data (Zhang et al., 2018; Pandey and Roy, 2021; Wang
et al., 2015; Aranda et al., 2016; Kobayashi et al., 2020). However, we
were unable to determine the empirical origin of data used in those
articles. Moreover, the amount of data among QSAR articles sharing
datasets differed without an explanation, which affects their
interpretation and usability.

3.1.2.2 PTF models
In contrast to QSAR, articles concerning PTF included the

description of the site and procedure for soil sampling, with most
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of the sorbents being agricultural soils. Generally speaking, soil
samples were superficial, from 0 to 5 (De Gerónimo et al., 2018), 20
(Conde-Cid et al., 2019; Conde-Cid et al., 2020) or 25 cm depth
(Kodešová et al., 2015; Klement et al., 2018), with few cases
addressing the spatial variability (Kodešová et al., 2015; Singh
et al., 2016). In some cases, confounding variables were
minimized using soils without application of the pollutants or
fertilizers in previous years (De Gerónimo et al., 2018) or by
evaluating the presence of pollutants before the sorption study
(Conde-Cid et al., 2020).

Additionally, methodological and environmental conditions
such as soil:solution ratio, interval of concentrations, background
electrolyte, temperature, and contact and equilibrium time impacted
the magnitude and interpretation of sorption coefficients and
therefore were included during the data collection and treatment.
For instance, the selection of the interval of concentrations or the
soil:solution ratio impacted the isotherm shape (Dollinger et al.,
2015), with several nonlinear sorption isotherms fitting to the
Freundlich model (Dollinger et al., 2015; Kodešová et al., 2015;
Sidoli et al., 2016; De Gerónimo et al., 2018; Klement et al., 2018;
Conde-Cid et al., 2019; Conde-Cid et al., 2020; Hu et al., 2022),
including the prediction of the linearity coefficient (1/n) in addition
to the sorption coefficient (Dollinger et al., 2015).

All sorption coefficients used in PTF models were quantified
experimentally. Most of the PTF studies produced their own data

using the same methodological conditions (Kodešová et al., 2015;
Sidoli et al., 2016; Singh et al., 2016; De Gerónimo et al., 2018; Klement
et al., 2018; Conde-Cid et al., 2019; Conde-Cid et al., 2020). Only in
two cases data were collected from other studies (Dollinger et al., 2015;
Hu et al., 2022), wheremethodological differences among studies were
included as predictor variables and analyzed during the mechanistic
interpretation of predictive models. Additionally, data treatment
included a homogenization step when (i) sorption was
approximately linear, so KF and Kd were used jointly (Dollinger
et al., 2015; Conde-Cid et al., 2019) or (ii) isotherm linearity was
highly variable, affecting the comparability and interpretation of KF

values, where average linearity coefficients (1/n) were calculated for
each pollutant and their KF values were recalculated (Kodešová et al.,
2015; Sidoli et al., 2016; Klement et al., 2018).

Another homogenization technique involved the simplification of
the sorption mechanisms by minimizing the variability (i) between
pollutants, e.g., using pH-dependent pollutants at similar pH values
among soils (Conde-Cid et al., 2019) or avoiding mixtures between
ionic and non-ionic forms (Sidoli et al., 2016); or (ii) between
sorbents, e.g., using unmodified soils or sediments with OC < 20%
and comparable background electrolytes (Dollinger et al., 2015).

3.1.2.3 Key insights
QSAR models were focused on a common sorption mechanism

applicable through several soils, while PTF models considered local

FIGURE 4
Assumptions considered during the development of predictive models. QSAR examples (A–C) represent the sorption of the neutral form of three
different pollutants on soils, specifically on the OC fraction. PTF examples (D–F) represent diverse pollutant-soil interactions for the same hypothetical
pollutant on different soils.
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variability and specific sorptionmechanisms, in accordance with our
proposed assumptions (Figure 4). This affected the data collection
and treatment. For QSAR models, data lack methodological and
environmental context because they are assumed as independent of
soils (e.g., methodological conditions such as soil:solution ratio
could be perceived as soil variability and therefore irrelevant). On
the other hand, PTF models implemented a highly detailed
procedure, including (i) description of soils, (ii) impacts of
methodological and environmental conditions, and (iii)
classification and treatment of data in agreement with the
previous steps.

3.1.3 Predictor variables
3.1.3.1 QSAR models

Onlymolecular properties were used by QSARmodels to predict
sorption coefficients. Those predictor variables, called “descriptors”
in QSAR models, were generally related to hydrophobicity, such as
KOW (Cai et al., 2019; Muhire et al., 2021) or the number of C-F
bonds in a molecule (Jiang et al., 2022). In general, the simplified
molecular input line entry system (SMILES), international chemical
identifier (InChIKey) and structural data file (SDF) were sufficient to
represent the 2D and 3D molecules. Then, a molecular structure
optimization method was applied (Wang et al., 2015; Zhu et al.,
2017; Zhang et al., 2018; Cai et al., 2019; Jiang et al., 2022). Finally,
descriptors were quantified implementing several software solutions
such as Dragon (Wang et al., 2015; Sabour and Moftakhari Anasori
Movahed, 2017), EPI Suite (Aranda et al., 2016; Olguin et al., 2017),
MOLE db (Sabour and Moftakhari Anasori Movahed, 2017), MOE
(Berthod et al., 2017), Mordred (Kobayashi et al., 2020; Kobayashi
and Yoshida, 2021), Multiwfn (Jiang et al., 2022), Open Babel
(Kobayashi et al., 2020), OPERA (Kobayashi and Yoshida, 2021),
and PaDEL-Descriptor (Aranda et al., 2016; Pandey and Roy, 2021).
These software offer thousands of constitutional, topological,
geometrical, electronic, thermodynamic, quantum chemical, and
other kinds of theoretical and semi-theoretical descriptors.
Descriptors quantified by each software were complementary
yet also overlapped, making it necessary to eliminate constant or
correlated descriptors in a future step.

Despite the previously described procedure, (i) hydrophobicity
was in some cases inadequate for representing the sorption of ionic
species, affecting the statistical quality of QSAR models (Rybacka
and Andersson, 2016; Berthod et al., 2017), and (ii) the use of
molecular descriptors (hydrophobic, hydrogen-bonding and
charge-related interactions) to address soil variability produced
poor predictive ability (Berthod et al., 2017). Both cases support
our proposed assumption (Figure 4) as a requisite to apply
QSAR models.

3.1.3.2 PTF models
Physicochemical properties of soils were used as predictor

variables for PTF models, including environmental and
methodological conditions that varied within the dataset. The
most common properties were pH in different solutions, OC, soil
texture, and cation exchange capacity (CEC). More properties were
added to represent specific soil orders or land uses, such as variable
charge (e.g., exchangeable aluminum, crystallized and amorphous
oxy-hydroxides) (Sidoli et al., 2016; De Gerónimo et al., 2018;
Conde-Cid et al., 2019), salinity (e.g., CaCO3 content, hydrolytic

and exchangeable acidity, base cation saturation) (Kodešová et al.,
2015; Klement et al., 2018), or agricultural context (e.g., total organic
N content, available P) (Sidoli et al., 2016; Conde-Cid et al., 2019).
Some properties showed statistically significant correlations, such as
OC with CEC and clay content with iron and aluminum oxides (De
Gerónimo et al., 2018). Since these correlations depend on soils they
cannot be generalized. Additionally, the quantification method
varied among articles. In these cases, different methodological
conditions within a dataset were (i) tested as descriptors, e.g.,
soil:solution ratio and maximum initial concentration of
pollutants (Dollinger et al., 2015; Hu et al., 2022) or (ii) used as
part of the data splitting (Dollinger et al., 2015).

3.1.3.3 Key insights
According to our proposed assumptions (Figure 4), if the

sorption mechanism is independent of soils, then it is not
necessary to contextualize predictor variables or include soil
descriptors. This explains why QSAR models generally follow an
a posteriori approach, where a massive pool of molecular descriptors
is used, and the mechanistic explanation is derived from the
algorithmically selected descriptors to represent the outcome. On
the other hand, PTF models explicitly address the complexity of the
sorption process, following an a priori approach, where they explain
the conceptual background of the sorption process and consequently
propose a few predictor variables to develop predictive models.

3.1.4 Model equation
3.1.4.1 QSAR models

Databases were split into a training and a test set, used to develop
the QSAR model and assess its predictive performance, respectively.
In this sense, data splitting helped to evaluate the reliability of QSAR
models when applied to external data, providing an estimate of the
performance for new pollutants. Ideally, data are uniformly
distributed between training and test set. In the literature, the
process was random (Wang et al., 2015; Berthod et al., 2017;
Sabour and Moftakhari Anasori Movahed, 2017; Muhire et al.,
2021; Cantwell et al., 2022; Jiang et al., 2022) or rational,
depending on the splitting algorithm, where Y-ranking is the
most frequent approach (Zhu et al., 2017; Cai et al., 2019; Olguin
et al., 2019; Kobayashi and Yoshida, 2021). Considered training:test
set ratios include 14:86 (Aranda et al., 2016), 66:33 (Olguin et al.,
2017; Olguin et al., 2019; Kobayashi and Yoshida, 2021; Cantwell
et al., 2022), 70:30 (Sabour andMoftakhari Anasori Movahed, 2017),
75:25 (Wang et al., 2015; Daré et al., 2017; Muhire et al., 2021;
Pandey and Roy, 2021), 80:20 (Berthod et al., 2017; Zhu et al., 2017;
Cai et al., 2019; Pandey and Roy, 2021; Jiang et al., 2022), and 88:12
(Kobayashi et al., 2020). In one case, the effect of dataset size was also
evaluated, showing that the division of the training set (N = 643) into
eight subsets (N = 79 - 81) produced equivalent QSAR models to
those for the whole dataset (Olguin et al., 2019).

Some articles applied mechanistic criteria for splitting, such as
the development of different QSAR models based on the whole
dataset and specific chemical classes (aliphatic groups,
monoaromatic hydrocarbons, diphenyl ethers, polyaromatic
hydrocarbons and plant protection products), with their
respective training and test sets (Pandey and Roy, 2021), the use
of different test sets based on intervals of low, medium and high
sorption coefficient values (Daré et al., 2017), the use of several
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training and test sets to evaluate the stability of the mathematical
equation and its predictability (Berthod et al., 2017), and the
development of QSAR models based on the charge of the
pollutants (neutral, positively, and negatively charged) (Rybacka
and Andersson, 2016; Berthod et al., 2017).

Different algorithms were used to develop the QSAR models,
most of them assuming a linear relationship between descriptors and
outcome, such as multiple linear regression (MLR) (Wang et al.,
2015; Aranda et al., 2016; Berthod et al., 2017; Kobayashi et al., 2020;
Kobayashi and Yoshida, 2021; Pandey and Roy, 2021; Jiang et al.,
2022), partial least squares regression (PLSR) (Rybacka and
Andersson, 2016; Berthod et al., 2017; Daré et al., 2017; Zhu
et al., 2017; Cai et al., 2019; Pandey and Roy, 2021), support
vector machines (SVM) (Kobayashi et al., 2020; Kobayashi and
Yoshida, 2021), and univariate linear regression (ULR) (Berthod
et al., 2017; Olguin et al., 2017; Zhang et al., 2018; Olguin et al.,
2019). Nonlinear models included gradient boosting decision tree
(Kobayashi et al., 2020; Kobayashi and Yoshida, 2021) and neural
network-based models (Berthod et al., 2017; Sabour and Moftakhari
Anasori Movahed, 2017) algorithms.

MLR was the most frequently used algorithm due to the simple
mechanistic explanation derived from those QSAR models.
However, previous treatments were required due to the large
number of descriptors, e.g., stepwise selection (Wang et al., 2015;
Berthod et al., 2017; Pandey and Roy, 2021; Jiang et al., 2022), best
subset selection (Pandey and Roy, 2021) and replacement method
(Aranda et al., 2016). Additionally, PLSR was useful for
dimensionality reduction and to avoid multicollinearity (Zhu
et al., 2017; Cai et al., 2019; Pandey and Roy, 2021). On the
other hand, nonlinear regressions were able to represent complex
relationships between sorption coefficients and descriptors. Finally,
ULR was used to assess simple relationships between sorption
coefficients and hydrophobicity.

3.1.4.2 PTF models
Data splitting was always related to mechanistic issues, such as

the use of different outcomes (Hu et al., 2022), the use of one
pollutant per model (Kodešová et al., 2015; Sidoli et al., 2016; Singh
et al., 2016; Klement et al., 2018; Conde-Cid et al., 2020) and/or per
site or plot from which the data were obtained (Singh et al., 2016),
and the methodological conditions and available information about
specific physicochemical properties (Dollinger et al., 2015).
However, only three articles included training and test sets
(Singh et al., 2016; Conde-Cid et al., 2019; Hu et al., 2022),
negatively affecting the validation of most of the PTF models.

Algorithms for developing PTF models included MLR
(Dollinger et al., 2015; Kodešová et al., 2015; Sidoli et al., 2016;
De Gerónimo et al., 2018; Klement et al., 2018; Conde-Cid et al.,
2019; Conde-Cid et al., 2020; Hu et al., 2022) with stepwise
selection (Dollinger et al., 2015; Sidoli et al., 2016; De
Gerónimo et al., 2018), PLSR (Singh et al., 2016) and nonlinear
algorithms (Sidoli et al., 2016). One study used principal
component analysis (PCA) to guide the interpretation of
descriptors for the MLR (De Gerónimo et al., 2018). Some MLR
algorithms included the transformation of physicochemical soil
properties that did not follow a normal distribution (Conde-Cid
et al., 2020), or the use of exponential relationships between
sorption coefficients and predictor variables to improve the

statistical quality (from R2 < 0.75 to > 0.92) but changing the
mechanistic interpretation (Sidoli et al., 2016).

3.1.4.3 Key insights
Data splitting preceded the generation of a mathematical

equation. This had a statistical explanation in QSAR models
(i.e., reliability by using training and test sets), with a few articles
including characteristics of pollutants. The procedure and the use of
several explicit algorithms for developing the QSAR models agrees
with the OECD principle P2 (Figure 3). Inversely, PTF models
lacked a statistically validated procedure but evaluated diversity and
complexity of data and used the data splitting to better represent
sorption mechanism, according to pollutant-soil interactions. This
procedure is not included in QSAR models because the sorption
mechanism was assumed as generalizable and independent of
soils (Figure 4).

3.1.5 Model validation
3.1.5.1 QSAR models

The validation of QSAR models was based on the OECD
principle P4 (Wang et al., 2015; Sabour and Moftakhari Anasori
Movahed, 2017; Kobayashi et al., 2020; Kobayashi and Yoshida,
2021), considering several statistical parameters and procedures
classified in two steps: internal validation (training set) related to
the goodness-of-fit and robustness, and external validation (test set)
to evaluate the predictive performance.

Common statistical parameters for goodness-of-fit included R2

(Berthod et al., 2017; Daré et al., 2017; Olguin et al., 2017; Sabour
and Moftakhari Anasori Movahed, 2017; Zhu et al., 2017; Zhang
et al., 2018; Cai et al., 2019; Olguin et al., 2019; Kobayashi et al., 2020;
Kobayashi and Yoshida, 2021; Muhire et al., 2021; Pandey and Roy,
2021; Cantwell et al., 2022) and adjusted R2 (Wang et al., 2015;
Muhire et al., 2021; Jiang et al., 2022), F-Test value (Zhang et al.,
2018; Muhire et al., 2021; Cantwell et al., 2022), standard error of the
estimate (Zhu et al., 2017; Zhang et al., 2018; Cai et al., 2019;
Kobayashi et al., 2020; Cantwell et al., 2022), residual sum of squares
(Olguin et al., 2017; Kobayashi et al., 2020), root mean square error
(RMSE) (Wang et al., 2015; Daré et al., 2017; Olguin et al., 2017;
Sabour and Moftakhari Anasori Movahed, 2017; Olguin et al., 2019;
Kobayashi and Yoshida, 2021; Muhire et al., 2021; Jiang et al., 2022),
p-value of descriptors contained in the QSAR model (Zhu et al.,
2017; Cai et al., 2019; Muhire et al., 2021; Jiang et al., 2022), variance
inflation coefficient to evaluate multicollinearity (Jiang et al., 2022),
mean absolute error (Pandey and Roy, 2021), and concordance
correlation coefficient (CCC) (Olguin et al., 2017; Sabour and
Moftakhari Anasori Movahed, 2017; Olguin et al., 2019;
Kobayashi and Yoshida, 2021).

Robustness was typically addressed through one of the following
procedures: “leave-one-out” cross-validation (Wang et al., 2015;
Aranda et al., 2016; Berthod et al., 2017; Daré et al., 2017; Olguin
et al., 2017; Sabour and Moftakhari Anasori Movahed, 2017; Zhang
et al., 2018; Cai et al., 2019; Olguin et al., 2019; Kobayashi et al., 2020;
Kobayashi and Yoshida, 2021; Muhire et al., 2021; Pandey and Roy,
2021; Cantwell et al., 2022; Jiang et al., 2022), “leave-many-out”
cross-validation (Olguin et al., 2017; Olguin et al., 2019), and
bootstrapping (Wang et al., 2015). Additionally, Y-scrambling
was used to detect or discard chance correlations (Aranda et al.,
2016; Daré et al., 2017; Olguin et al., 2017; Sabour and Moftakhari
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Anasori Movahed, 2017; Zhang et al., 2018; Olguin et al., 2019;
Kobayashi and Yoshida, 2021; Muhire et al., 2021; Pandey and Roy,
2021). Other statistical parameters such as RMSE and CCC for the
internal validation were also used (Daré et al., 2017; Olguin et al.,
2017; Zhang et al., 2018; Olguin et al., 2019; Kobayashi and Yoshida,
2021; Muhire et al., 2021).

External validation was evaluated through different indicators,
such as variance explained in external prediction (Wang et al., 2015;
Daré et al., 2017; Olguin et al., 2017; Sabour and Moftakhari Anasori
Movahed, 2017; Zhu et al., 2017; Zhang et al., 2018; Cai et al., 2019;
Olguin et al., 2019; Kobayashi and Yoshida, 2021; Muhire et al.,
2021; Pandey and Roy, 2021; Cantwell et al., 2022; Jiang et al., 2022),
modified coefficient of determination of the external validation
(Daré et al., 2017; Olguin et al., 2017; Sabour and Moftakhari
Anasori Movahed, 2017; Zhang et al., 2018; Olguin et al., 2019;
Kobayashi et al., 2020; Muhire et al., 2021; Pandey and Roy, 2021),
standard error of prediction (Zhu et al., 2017; Cai et al., 2019;
Cantwell et al., 2022), RMSE of validation (Wang et al., 2015; Sabour
and Moftakhari Anasori Movahed, 2017; Zhang et al., 2018; Olguin
et al., 2019; Kobayashi and Yoshida, 2021; Muhire et al., 2021),
external CCC (Zhang et al., 2018; Olguin et al., 2019; Kobayashi and
Yoshida, 2021), and mean absolute error (Pandey and Roy, 2021).

3.1.5.2 PTF models
Validation of PTF models was scarce and focused on goodness-

of-fit, using R2 or adjusted R2 (Kodešová et al., 2015; Sidoli et al.,
2016; Singh et al., 2016; Klement et al., 2018; Conde-Cid et al., 2019;
Conde-Cid et al., 2020), p-value (Kodešová et al., 2015; Klement
et al., 2018; Conde-Cid et al., 2019) and standard error (Singh et al.,
2016), but not including an analysis of overfitting (e.g., observation:
descriptor ratio). Two articles assessed the model robustness
through cross-validation (Dollinger et al., 2015) and bootstrap
methods (De Gerónimo et al., 2018). Articles that considered
validation sets followed different approaches to validate their
models: (i) developing the PTF model using the training set but
quantifying R2, Nash-Sutcliffe efficiency, RMSE, and absolute error
only for the validation set (Hu et al., 2022), thereby causing the
model to lack goodness-of-fit and robustness, (ii) plotting the
measured vs. estimated sorption coefficient values for the training
and test set and checking how many data fell within the interval of
the measured value ± 2 units (Conde-Cid et al., 2019), or (iii)
applying the same goodness-of-fit parameters for the validation set
(R2, standard error) (Singh et al., 2016).

3.1.5.3 Key insights. QSAR models present a higher statistical
quality than PFT models, due to the application of training and test
sets, the high number of statistical parameters applied to the data,
and their consistency among different studies. This is not related to
our proposed assumptions (Figure 4) but the institutionalization of
QSAR models with respect to PTFs (P2 and P4, Figure 3).

3.1.6 Applicability of predictive models
3.1.6.1 QSAR models

The applicability domain (AD) is a theoretical chemical space
where QSAR models make reliable predictions (Kobayashi et al.,
2020; Kobayashi and Yoshida, 2021). This region is defined by the
diversity of pollutants (molecular structures) in the training set and
the descriptors that are used to predict their endpoints (Aranda

et al., 2016; Zhu et al., 2017). The AD is specific to each QSAR
model, and reliability is only possible to assess for molecules and
properties that fall within this chemical space, based on similarity
(Daré et al., 2017; Zhu et al., 2017). Otherwise, a prediction is an
unreliable model extrapolation (Aranda et al., 2016; Zhu et al., 2017).
Without an explicit definition of the AD, a predictive model does not
meet the OECD principle P3 (Zhang et al., 2018).

AD was quantified by standardization (Wang et al., 2015; Daré
et al., 2017; Sabour and Moftakhari Anasori Movahed, 2017; Zhu
et al., 2017; Zhang et al., 2018; Cai et al., 2019; Olguin et al., 2019;
Kobayashi et al., 2020; Kobayashi and Yoshida, 2021; Pandey and
Roy, 2021), leverage (Wang et al., 2015; Aranda et al., 2016; Daré
et al., 2017; Sabour and Moftakhari Anasori Movahed, 2017; Zhu
et al., 2017; Zhang et al., 2018; Cai et al., 2019; Olguin et al., 2019;
Muhire et al., 2021), Euclidean distance (Kobayashi et al., 2020;
Kobayashi and Yoshida, 2021), and one-class support vector
machines (Kobayashi and Yoshida, 2021). These methods were
applied to detect outliers (usually defined as > 3.0σ from the
mean) and/or influential points (leverage > threshold). AD was
commonly visualized through a Williams plot considering the
standardized cross-validated residuals versus leverage values of
pollutants (Wang et al., 2015; Sabour and Moftakhari Anasori
Movahed, 2017; Zhu et al., 2017; Zhang et al., 2018; Cai et al.,
2019; Olguin et al., 2019; Muhire et al., 2021; Jiang et al., 2022). Here,
outliers and influential points were molecular structures, and their
analysis was based on molecular descriptors, delimiting the scope
and interpretability of QSAR models (Cai et al., 2019; Jiang
et al., 2022).

3.1.6.2 PTF models
The considered PTF models did not include an AD. Therefore,

PTF model applicability was not statistically validated.

3.1.6.3 Key insights
QSAR models presented a clearly defined AD, guided by the

OECD (P3, Figure 3). AD was independent of methodological or
environmental conditions from which the empirical values are
obtained, which fits with the QSAR assumption that we proposed
(Figure 4) and impacts the OECD principle P5 (Figure 3). On the
other hand, PTF models lack a defined AD but used soil
physicochemical properties and methodological conditions as
predictor variables, implying that their AD would be defined by
the diversity of pollutant-soil interactions, whose interpretability
depends on soils and local conditions.

3.1.7 Regulatory purposes
3.1.7.1 QSAR models

In general, QSAR models were considered as successful for
estimating sorption coefficients and were applied to
environmental risk assessment (Berthod et al., 2017; Sabour and
Moftakhari Anasori Movahed, 2017; Zhang et al., 2018; Cai et al.,
2019; Kobayashi et al., 2020; Kobayashi and Yoshida, 2021; Muhire
et al., 2021; Jiang et al., 2022), helping the design of new molecules
with less environmental impact (Sabour and Moftakhari Anasori
Movahed, 2017; Kobayashi et al., 2020; Muhire et al., 2021; Jiang
et al., 2022), providing objective decisions (Kobayashi et al., 2020;
Kobayashi and Yoshida, 2021) and assessing soil remediation and
potential leaching (Sabour andMoftakhari Anasori Movahed, 2017).
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TABLE 2 Summary of the information extracted from the experimental articles from the literature (presented in the same order as in Supplementary
Table S4).

Articles
Sources of
variabilitya

Characterization of pesticides Trends found in the
study

# Ref. Soil
(SV)

Other
(OV)

Pesticides
studiedb

Targetc Acid-
base
activityd

Chemical
classe

Chemical
form in
the study

Method
to
analyze
trendsf

Variables
affecting
sorptiong

1 Kaur et al. (2022) Soil None P30 Herb (V)WA G1 Anionic Unclear OC and clay
content

2 Pavão et al. (2022) Soil None P34 Herb (V)WA G2 pH-dependent PCA PCA1 (clay,
base
saturation,
CEC), PCA2
(total OC
and pH)

3 Siek et al. (2021) Soil,
Spatial

None P36 Fung OAB G1 pH-dependent Correlation
matrix, PLS

Specific types
of OC and
acidity

4 Cáceres-Jensen et al.
(2021)

Soil None P1 Herb (V)SA G4 Mostly anionic Correlation
matrix, MLR

IEP of mineral
oxides in
variable-
charged soils
where
IEP > pH

5 Meftaul et al. (2021) Soil None P17 Herb (V)SA G3 pH-dependent Correlation
matrix, PCA

Kop
d vs. OC(+),

Fe/Al
oxides(+),
clay(+), silt(+),
pH(−) and
sand(−)

6 Chen et al. (2021) Soil None P32 Herb Non-I G1 Not applicable Correlation KF vs. CEC(+)

and %clay(+)

7 Beringer et al. (2021) Soil None P8 Insec SB G1 Not mentioned Not
applicable

Not applicable

8 Xu et al. (2020) Treat None P37 Insec Non-I G1 Not applicable Not
applicable

Not
considered

9 Zhao et al. (2020) Soil None P3 Herb (V)WB G1 Neutral Comparison
of data

Structural
differences of
sorbents

10 Meftaul et al. (2020) Soil None P1 Herb (V)SA G4 Anionic Comparison
of data

OC content,
clay content,
Al/Fe oxides,
and soil
acidity

11 García-Delgado et al.
(2020)

Soil,
Treat

Pollut P5, P15,
P33, P38

Herb (V)WA,
Non-I

G2 Not mentioned Comparison
of data,
MLR, PCA

OC content,
polarity of
sorbent, and
pesticide
properties
(KOW)

12 das Chagas et al.
(2020)

Soil,
Treat

None P14 Herb Non-I G2 Not applicable Comparison
of data

Lime addition
(associated to
the OC
content) and
the presence of
Ca+2(aq) and
Mg+2(aq)

13 Wang et al. (2020) None Pollut P4, P10, P11,
P12, P21

Insec,
Fung

(V)SA,
Non-I, (V)
WB, OAB

G1, G2, G3 pH-dependent Correlation KF vs. KOW

(Continued on following page)

Frontiers in Environmental Science frontiersin.org14

Neira-Albornoz et al. 10.3389/fenvs.2024.1379283

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1379283


TABLE 2 (Continued) Summary of the information extracted from the experimental articles from the literature (presented in the same order as in
Supplementary Table S4).

Articles
Sources of
variabilitya

Characterization of pesticides Trends found in the
study

# Ref. Soil
(SV)

Other
(OV)

Pesticides
studiedb

Targetc Acid-
base
activityd

Chemical
classe

Chemical
form in
the study

Method
to
analyze
trendsf

Variables
affecting
sorptiong

14 Caceres-Jensen et al.
(2020)

Soil None P27 Herb (V)WA G2 pH-dependent Comparison
of data, PCA,
cluster
analysis

OC and
acidity
(hydrophobic
interactions);
CEC and
mineral
surface area
(other
interactions)

15 Agbaogun and
Fischer (2020)

Soil Pollut P5, P14, P19,
P20, P26

Herb Non-I, OAB G2 Not considered Comparison
of data,
correlation
matrix

KF vs. pH, Fe
oxides, OC,
among others
(depending on
the pesticide).
Average value
of KF vs.
molecular
properties
(log KOW

and MW)

16 Caceres-Jensen et al.
(2019)

Soil None P17 Herb (V)SA G3 Ionizable Comparison
of data

OC,
pH and IEP

17 Dos Santos et al.
(2019)

Soil,
Treat

None P18 Herb (V)WB G1 pH-dependent Comparison
of data

Lime addition
(associated to
the OC
content and
changes
in pH)

18 Pereira et al. (2019) Soil None P17 Herb (V)SA G3 Ionizable Comparison
of data

OC and Fe/Al
oxides

19 Loffredo et al. (2019) Soil None P25 Herb (V)SA G1 Not mentioned Comparison
of data,
correlation

Kd vs. OC(+),
ash content(−),
moisture(−)

and EC(−)

20 Góngora-Echeverría
et al. (2019)

None Pollut P1, P3, P9, P17 Herb,
Insec

(V)SA,
(V)WB

G1, G3, G4 Not mentioned Not
applicable

Not applicable

21 Ben Salem et al.
(2019)

None Pollut P6, P13 Insec Non-I G3 Not applicable Not
applicable

Not applicable

22 Silva et al. (2018) Treat None P7 Herb Non-I G1 Not applicable Comparison
of data,
correlations

KF vs. %
biochar/dp

23 Pose-Juan et al.
(2018)

Treat Pollut P23, P31, P38 Herb (V)WA,
Non-I

G2, G4 Two ionizable,
one neutral

Comparison
of data,
correlations

Kop
d vs. DOC

(for P23) or
pH (for P38)

24 Khorram et al.
(2018)

Treat None P16 Herb (V)SA G3 Anionic Comparison
of data

KF vs. %
biochar(+),
specific
surface area(+)

and DOC(−)

25 Paradelo et al. (2018) Soil None P22 Herb (V)WA G4 Ionizable and
neutral forms

Comparison
of data

OC content

26 Skeff et al. (2018) Soil None P17 Herb (V)SA G3 Ionizable Comparison
of data

KF vs. Fe/Al
content(+), pH

(Continued on following page)
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3.1.7.2 PTF models
PTF models were also considered successful and useable for

environmental fate and risk assessment (Dollinger et al., 2015;
Kodešová et al., 2015; Singh et al., 2016; Hu et al., 2022), and
identification of vulnerable soils (Conde-Cid et al., 2020; Hu
et al., 2022), helping the developing of mitigation strategies and
management practices when necessary (Conde-Cid et al., 2020;
Hu et al., 2022). However, the use of PTF models was generally
suggested more cautiously than for QSARs. For instance, PTF
models were proposed as screening methods for regional
approaches if local soils were included (Singh et al., 2016).
So, their validity depends on non-soil variables such as the
pollutants and environmental conditions (Hu et al., 2022).
Furthermore, their descriptors and the interval of initial
concentration for calculating sorption coefficients should be
verified with new datasets if used on different soils (Dollinger
et al., 2015; Kodešová et al., 2015).

3.1.7.3 Key insights
QSARmodels can be used for regulatory purposes for any soil at

any condition. However, QSAR reliability is restricted to the validity
of their assumption (Figure 4), which in turn depends on the main
sorption mechanism within the dataset. On the other hand, PTF
models represent diverse sorption mechanisms at local scale. In this
sense, QSAR and PTF models are not exclusive but complementary.

3.2 Literature describing empirical findings

Here, we describe the main trends found in empirical studies.
We focused the results on pesticides attributes and sources of
variability explored within the studies, shown per article and
pesticide in Tables 2, 3, respectively. Information in Table 2
shows the sources of variability addressed per article,
characterization of pesticides (name of pesticides studied per

TABLE 2 (Continued) Summary of the information extracted from the experimental articles from the literature (presented in the same order as in
Supplementary Table S4).

Articles
Sources of
variabilitya

Characterization of pesticides Trends found in the
study

# Ref. Soil
(SV)

Other
(OV)

Pesticides
studiedb

Targetc Acid-
base
activityd

Chemical
classe

Chemical
form in
the study

Method
to
analyze
trendsf

Variables
affecting
sorptiong

27 Sousa et al. (2018) Soil,
Treat

Pollut,
Exp

P14, P18 Herb Non-I,
(V)WB

G1, G2 Neutral Comparison
of data

OC, CEC,
interaction
between
pesticides
(mixture)

28 Kaur et al. (2018) Soil Exp P29 Herb (V)SA G4 Not considered Comparison
of data

Minerals (size
and
composition)
and
temperature

29 Mosquera-Vivas
et al. (2018)

Soil,
Spatial

None P36 Fung OAB G1 Protonated and
neutral forms

Comparison
of data,
correlation

KF vs. OC(+)

30 Marín-Benito et al.
(2017)

Soil,
Treat

Pollut P2, P20, P24 Herb,
Fung

(V)SA,
Non-I

G2 Not considered Comparison
of data

For KF:
pesticides,
minerals (size
and
composition),
OC (except
alachlor). For
Kop
d : OC

content added
by
amendments

31 Alfonso et al. (2017) Soil Pollut P9, P13,
P28, P35

Insec (V)SA,
Non-I, OAB

G3 Not mentioned Comparison
of data,
ANOVA

For KF: Water
solubility of
pesticides (not
all the cases)

aSources of variability are described in methodology, Section 2.4.
bPesticides are described in Table 3.
cFung: fungicide, Herb: herbicide, Insec: insecticide.
d(V)SA: strong or very strong acid, (V)WA: weak or very weak acid, (V)WB: weak or very weak base, Non-I: non-ionizable, SB: strong base.
eG1: heterocyclic compound, G2: amide derivative, G3: Cl- and PO3-derivatives, G4: other chemical class.
fANOVA: analysis of variance, MLR: multiple linear regression, PCA: principal component analysis, PLS: partial least squares.
gWe included the superscript “op” for outcomes that were quantified from one specific initial concentration of pollutant (one-point Kd or KOC) instead of a sorption isotherm. Additionally, the

superscripts “(+)” and “(−)” represent positive and negative correlations, respectively. CEC: cation exchange capacity, DOC: dissolved organic carbon, dp: diameter of particles assuming they

are spherical, EC: electrical conductivity, IEP: isoelectric point, KOW: octanol/water partition coefficient, MW: molecular weight, OC: organic carbon.

Frontiers in Environmental Science frontiersin.org16

Neira-Albornoz et al. 10.3389/fenvs.2024.1379283

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1379283


TABLE 3 Summary of the information about pesticides extracted from the experimental articles from the literature.

Pesticide
Characterization of pesticidesa Studies from literature Characterization

of studiesb

ID Name Target Acid-base
activity

Chemical
class

# Ref. Sum
of SV

Sum
of OV

P1 2,4-D Herb (V)SA G4 3 (Góngora-Echeverría et al., 2019; Meftaul et al., 2020;
Cáceres-Jensen et al., 2021)

None, Soil None,
Pollut

P2 Alachlor Herb (V)SA G2 1 Marín-Benito et al. (2017) Soil, Treat Pollut

P3 Atrazine Herb (V)WB G1 2 (Góngora-Echeverría et al., 2019; Zhao et al., 2020) None, Soil None,
Pollut

P4 Carbendazim Fung (V)WB G2 1 Wang et al. (2020) None Pollut

P5 Chlorotoluron Herb Non-I G2 2 (Agbaogun and Fischer, 2020; García-Delgado et al.,
2020)

Soil, Treat Pollut

P6 Chlorpyrifos Insec Non-I G3 1 Ben Salem et al. (2019) None Pollut

P7 Clomazone Herb Non-I G1 1 Silva et al. (2018) Treat None

P8 Clothianidin Insec SB G1 1 Beringer et al. (2021) Soil None

P9 Diazinon Insec (V)SA G3 2 (Alfonso et al., 2017; Góngora-Echeverría et al., 2019) None, Soil Pollut

P10 Dichlorvos Insec Non-I G3 1 Wang et al. (2020) None Pollut

P11 Difenoconazole Fung (V)SA G1 1 Wang et al. (2020) None Pollut

P12 Diflubenzuron Insec OAB G2 1 Wang et al. (2020) None Pollut

P13 Dimethoate Insec Non-I G3 2 (Alfonso et al., 2017; Ben Salem et al., 2019) None, Soil Pollut

P14 Diuron Herb Non-I G2 3 (Agbaogun and Fischer, 2020; Sousa et al., 2018; das
Chagas et al., 2020)

Soil, Treat None,
Pollut, Exp

P15 Flufenacet Herb Non-I G2 1 García-Delgado et al. (2020) Soil, Treat Pollut

P16 Fomesafen Herb (V)SA G3 1 Khorram et al. (2018) Treat None

P17 Glyphosate Herb (V)SA G3 5 (Skeff et al., 2018; Caceres-Jensen et al., 2019;
Góngora-Echeverría et al., 2019; Pereira et al., 2019;
Meftaul et al., 2021)

None, Soil None,
Pollut

P18 Hexazinone Herb (V)WB G1 2 (Sousa et al., 2018; Dos Santos et al., 2019) Soil, Treat None,
Pollut, Exp

P19 Isoproturon Herb Non-I G2 1 Agbaogun and Fischer (2020) Soil Pollut

P20 Linuron Herb Non-I G2 2 (Marín-Benito et al., 2017; Agbaogun and Fischer, 2020) Soil, Treat Pollut

P21 Malathion Insec Non-I G3 1 Wang et al. (2020) None Pollut

P22 Mecoprop Herb (V)WA G4 1 Paradelo et al. (2018) Soil None

P23 Mesotrione Herb (V)WA G4 1 Pose-Juan et al. (2018) Treat None

P24 Metalaxyl Fung (V)SA G2 1 Marín-Benito et al. (2017) Soil, Treat Pollut

P25 Metribuzin Herb (V)SA G1 1 Loffredo et al. (2019) Soil None

P26 Monuron Herb OAB G2 1 Agbaogun and Fischer (2020) Soil Pollut

P27 Nicosulfuron Herb (V)WA G2 1 Caceres-Jensen et al. (2020) Soil None

P28 Parathion-
methyl

Insec OAB G3 1 Alfonso et al. (2017) Soil Pollut

P29 Pendimethalin Herb (V)SA G4 1 Kaur et al. (2018) Soil Exp

P30 Penoxsulam Herb (V)WA G1 1 Kaur et al. (2022) Soil None

P31 Pethoxamid Herb Non-I G2 1 Pose-Juan et al. (2018) Treat None

P32 Pinoxaden Herb Non-I G1 1 Chen et al. (2021) Soil None

(Continued on following page)
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article, targets, acid-base activities, chemical classes, and chemical
forms in the study), and main trends found in the study.
Additionally, the name of the pesticides is shown in Table 3,
including their characterization per pesticide, the articles that
studied every pesticide and the characterization of those articles
(sum of sources of variability addressed per pesticide).

3.2.1 Pesticide attributes
3.2.1.1 Target

We identified three pesticide types in the literature:
herbicides (N = 24, 63% of studied pesticides), insecticides
(N = 10, 26%), and fungicides (N = 4, 11%), which reflects the
trend in global usage (De et al., 2014). Among all articles, N = 24
(77%) included herbicides.

3.2.1.2 Acid-base activity
A large percentage of pesticides had no or low pH-dependence:

N = 14 (37%) non-ionizable, N = 6 (16%) (very) weak acid, and N =
3 (8%) (very) weak base. Furthermore, acids were more common
than bases, with only one article studying a strong base.

3.2.1.3 Chemical class
Heterocyclic compounds and amide derivatives were frequent

among pesticides N = 10 (26%) and articles N = 13 (42%).

3.2.1.4 Key insights
A heterogeneous distribution of targets, acid-base activities and

chemical classes was found in the literature for articles and
pesticides. We related trends to the occurrence of the most
frequent pesticides: glyphosate, 2,4-D and diuron (Table 3;
Supplementary Figure S2), which are strong acid herbicides and
are present in 10 out of 31 articles (32%). These pesticides have been
found frequently in water bodies in North America (glyphosate) and
Australia (2,4-D and diuron) (Sharma et al., 2019). Furthermore,
glyphosate and 2,4-D are commonly used in Argentina, North/
Central America, and Africa (Sharma et al., 2019), and studied using
PTF models (Dollinger et al., 2015; Sidoli et al., 2016; Singh et al.,
2016; De Gerónimo et al., 2018).

3.2.2 Sources of variability
Some of the 31 articles studied one source of variability, while

others addressed combinations. Their distribution is shown
in Figure 5.

In descending order, we found that articles studied (i) SV [soil] >
SV [soil, treat] > SV [treat] > SV [none] > SV [soil, spatial] for soil
variability, with seven out of 31 articles studying different sources of
soil variability together, and (ii) OV [none] > OV [pollut] > OV
[exp] = OV [pollut, exp] for other sources of variability, with only
one out of 31 articles studying different sources of variability.

3.2.2.1 Complexity and uncertainty
Sources of variability contrasted in complexity: (i) soil variability

involved several sorbents, treatments and/or topographic conditions.
Samples had different physicochemical properties, so the interpretation
of trends may involve multiple potentially valid explanations, including
the presence of confounding variables. Then, these studies are useful to
represent real scenarios of environmental concern, but their evaluation
of sorptionmechanisms is limited due to the inherent uncertainty of the
experimental design. On the other hand, (ii) other sources of variability
generally involved one sorbent, modifying one specific variable at
controlled values (e.g., temperature, pH), giving simpler
interpretations that are only locally valid but have potential to be
extrapolated in future research.

Three different approaches were used to interpret results, based
on their complexity and limitations: (i) conceptual comparisons
without statistical tools when only two contrasting cases were
studied, e.g., two soils, treatments, or pollutants; (ii) correlations
between selected physicochemical properties of sorbents or
pollutants (Khorram et al., 2018; Pose-Juan et al., 2018; Silva et al.,
2018; Ben Salem et al., 2019; Góngora-Echeverría et al., 2019; Wang
et al., 2020; Xu et al., 2020); and (iii) statistical tools applied to all
possible variables with the purpose of reducing uncertainty when
interpreting experimental studies. Common statistical tools were
similar to those used in predictive models: PCA (Caceres-Jensen
et al., 2020; García-Delgado et al., 2020; Meftaul et al., 2021; Pavão
et al., 2022), regression models (García-Delgado et al., 2020; Cáceres-
Jensen et al., 2021; Siek et al., 2021), cluster analysis (Caceres-Jensen

TABLE 3 (Continued) Summary of the information about pesticides extracted from the experimental articles from the literature.

Pesticide
Characterization of pesticidesa Studies from literature Characterization

of studiesb

ID Name Target Acid-base
activity

Chemical
class

# Ref. Sum
of SV

Sum
of OV

P33 Prosulfocarb Herb Non-I G2 1 García-Delgado et al. (2020) Soil, Treat Pollut

P34 Sulfometuron-
methyl

Herb (V)WA G2 1 Pavão et al. (2022) Soil None

P35 Sulfotep Insec OAB G3 1 Alfonso et al. (2017) Soil Pollut

P36 Tebuconazole Fung OAB G1 2 (Mosquera-Vivas et al., 2018; Siek et al., 2021) Soil,
Spatial

None

P37 Thiacloprid Insec Non-I G1 1 Xu et al. (2020) Treat None

P38 Triasulfuron Herb (V)WA G2 2 (Pose-Juan et al., 2018; García-Delgado et al., 2020) Soil, Treat None,
Pollut

aAbbreviations for targets, acid-base activities and chemical classes are described in Table 2.
bSources of variability are described in methodology, Section 2.4. In this Table, we informed the sum of sources of variability evaluated in all the studies from literature.
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et al., 2020), multivariate ANOVA analysis (Alfonso et al., 2017), and
correlation matrices between (i) sorption coefficients and
physicochemical properties (Mosquera-Vivas et al., 2018; Loffredo
et al., 2019; Agbaogun and Fischer, 2020; Cáceres-Jensen et al., 2021;
Chen et al., 2021; Siek et al., 2021), (ii) sorption coefficients and
pairwise interactions to represent the effect of the interaction between
physicochemical properties on sorption (Cáceres-Jensen et al., 2021),
and (iii) physicochemical properties to explore multicollinearity and
avoid biased interpretations (Agbaogun and Fischer, 2020; Cáceres-
Jensen et al., 2021; Siek et al., 2021).

3.2.2.2 Key insights
Soil variability, especially SV [soil], was more frequent in the

literature than other sources of variability (Table 2; Figure 5).
Additionally, differences in complexity produced different
approaches to interpret results, where the use of statistical tools
within studies and comparison among studies affect their reliability
and extrapolation.

3.3 Evidence-based analysis of the predictive
model assumptions

This section explores the QSAR and PTF assumptions from an
empirical perspective to simplify their analysis and discussion
in Section 4.

3.3.1 Analysis of QSAR assumptions
Sorption coefficients correlated positively with OC content and

composition for non-ionizable or neutral pesticides in articles that

investigated SV [soil] (Paradelo et al., 2018; Sousa et al., 2018;
Agbaogun and Fischer, 2020; Caceres-Jensen et al., 2020; García-
Delgado et al., 2020; Pavão et al., 2022). The same trend was
observed for various aromatic pesticides (Mosquera-Vivas et al.,
2018; Paradelo et al., 2018; Sousa et al., 2018; Dos Santos et al., 2019;
Loffredo et al., 2019; Meftaul et al., 2020; Siek et al., 2021), including
a positive correlation between sorption coefficients and exogenous
OC such as biochar (Silva et al., 2018). These correlations were
associated with hydrophobic and polar sorption mechanisms.

When sorption on OC was exclusively hydrophobic, the previous
trend was accompanied for (i) a negative correlation between sorption
coefficients and pH for non-ionizable or neutral pesticides (Paradelo
et al., 2018; Caceres-Jensen et al., 2020; Pavão et al., 2022), and (ii) a
negative or positive correlation between sorption coefficients and
solubility or lipophilicity (e.g., KOW), respectively (Silva et al., 2018;
Sousa et al., 2018; Agbaogun and Fischer, 2020; García-Delgado et al.,
2020; Wang et al., 2020). These trends imply that only the neutral form
of pesticides is being sorbed, sorption occurs on OC, and the sorption
coefficient depends on pesticides properties (Figures 4A–C).

However, the previous trend is not always valid. For non-ionizable
aromatic and heterocyclic compounds, physicochemical properties
such as pH (Dos Santos et al., 2019; Siek et al., 2021), CEC (Sousa
et al., 2018; Chen et al., 2021), oxide mineral content (Meftaul et al.,
2020), size of particles (Silva et al., 2018; Meftaul et al., 2020; Chen et al.,
2021), among others (Loffredo et al., 2019; Agbaogun and Fischer,
2020; Chen et al., 2021; das Chagas et al., 2020) were found to be
relevant. This was explained by different sorption mechanisms
(hydrophobic > polar > others), which may occur together. For
example, π-interactions can be hydrophobic (e.g., n-π and π-π
stacking of heterocyclic pollutants on aromatic-C from soil OC)

FIGURE 5
Soil variability (SV, yellow) and other sources of variability (OV, light blue) studied in the literature. Gray bars represent a lack of variability (SV [none]
and OV [none]). Numbers to the right of each bar represent the number of articles.
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(Agbaogun and Fischer, 2020; García-Delgado et al., 2020; Zhao et al.,
2020) or polar (e.g., π-π electron-donor-acceptor) (Zhao et al., 2020),
and the affinity difference between aromatic and aliphatic interactions
may be relevant (García-Delgado et al., 2020). Additionally, the
addition of biochar or the presence of competitive sorption induced
changes in the isotherm shape (Silva et al., 2018; Sousa et al., 2018)
(i.e., linearity coefficients (1/n) were also needed to describe changes in
sorption trends), affecting the outcome selection and interpretation of
sorption coefficients.

In addition, we found four scenarios in the literature where
KOC did not imply that sorption is independent of soil properties:
(i) the presence of non-hydrophobic sorption and the interaction
between OC and other soil components may produce correlations
between the sorption of neutral pollutants and clay or CEC
(Caceres-Jensen et al., 2020; Chen et al., 2021; Pavão et al.,
2022), (ii) the hydrophobic sorption may be negatively
affected by polar interactions (García-Delgado et al., 2020),
(iii) the composition of the soil solution may affect the
sorption of non-ionizable pollutants, such as diuron in
presence of divalent cations (das Chagas et al., 2020), and (iv)
sorption coefficients may correlate with pesticide and soil
properties at the same time, e.g., the average sorption of non-
ionizable pesticides on soils may depend on KOW but the specific
sorption of each pollutant is related to soil properties (Agbaogun
and Fischer, 2020).

3.3.1.1 Key insights
The sorption of neutral and non-ionizable pollutants occurs

preferably on OC and could be represented by KOC, especially the
hydrophobic sorption mechanism. However, other sorption
mechanisms are also possible and KOC of non-ionizable and
neutral pollutants may vary among soils, principally for aromatic
and heterocyclic compounds, affecting the validity of QSAR
assumption (Figure 4).

3.3.2 Analysis of PTF assumptions
The hydrophobic sorption of non-ionizable and neutral

pollutants was predicted by PTF models using soil descriptors
and always following the same trends: positive and negative
correlation with OC and pH, respectively (Kodešová et al., 2015;
Singh et al., 2016; Klement et al., 2018; Hu et al., 2022). However, the
magnitude of the effect of each descriptor depended on
the pollutant.

The sorption of ionic pesticides (anions, cations and zwitterions)
in empirical studies in the literature correlated with OC and
pH (Skeff et al., 2018; Caceres-Jensen et al., 2019; Loffredo et al.,
2019; Meftaul et al., 2020; Meftaul et al., 2021), but observed trends
varied among the experimental studies. The same occurred in PTF
models, where correlations with OC were positive (Klement et al.,
2018; Conde-Cid et al., 2019), negative (Dollinger et al., 2015;
Klement et al., 2018) or negligible (Kodešová et al., 2015; Sidoli
et al., 2016; De Gerónimo et al., 2018), and other soil variables such
as clay content, Fe and Al oxide content, CEC and base-cation
saturation were more relevant than OC (Dollinger et al., 2015;
Kodešová et al., 2015; Sidoli et al., 2016; De Gerónimo et al.,
2018; Klement et al., 2018).

The variability explained by soil or pollutant properties was
also variable. In studies including strong acids, the soil

variability was negligible (Alfonso et al., 2017) or defined by
clay content and specific minerals (Marín-Benito et al., 2017).
Additionally, the contribution of minerals, the lack of
correlation between sorption coefficients and OC, or the high
variability of KOC values for the same pesticide have been used as
an indicator that KOC may not always be appropriate for
describing the sorption in soils (Cáceres-Jensen et al., 2021;
Siek et al., 2021). The same variability has been found in PTF
models, where the complexity of the sorption mechanism
produced positive and negative trends for (i) clay and OC
content (Dollinger et al., 2015; De Gerónimo et al., 2018) and
(ii) the presence of phosphorus on soils (Sidoli et al., 2016; De
Gerónimo et al., 2018). These cases imply that the sorption
process is specific for each pesticide-soil combination, and
trends require contextualization before assuming its
simplicity or complexity (Figures 4D–F).

The pH-dependent surface charge was a particular soil
characteristic impacting the sorption of ionic pesticides.
Sorption coefficients of anionic pesticides were explained by
soil texture, content of Fe and Al oxides and isoelectric point
of soils in experimental studies (Skeff et al., 2018; Caceres-Jensen
et al., 2019; Meftaul et al., 2020; Cáceres-Jensen et al., 2021;
Meftaul et al., 2021) and PTF models (Sidoli et al., 2016; De
Gerónimo et al., 2018). For example, glyphosate sorption was
mainly non-hydrophobic and higher in variable charge soils than
in permanent charge soils, depending on the isoelectric point and
content of Fe and Al oxides (Skeff et al., 2018; Caceres-Jensen
et al., 2019; Pereira et al., 2019; Meftaul et al., 2021) (Figure 4D
versus 4E). This behavior made KOC not appropriate to describe
the glyphosate dynamics (Skeff et al., 2018; Caceres-Jensen
et al., 2019).

Finally, articles that studied OV [exp] showed that the sorption
coefficients and nonlinearity (1/n ≠ 1) of sorption were affected by
the use of pure versus mixed pesticides (Sousa et al., 2018) and by
temperature (Kaur et al., 2018) during the sorption study of non-
ionizable, weak base and strong acid pesticides. Similarly, PTF
models included environmental and methodological conditions
during the data splitting or as predictor variables to minimize
those impacts.

3.3.2.1 Key insights
Sorption followed diverse trends depending on the acid-base

activity of pollutants and kind of soil (permanent and variable charge
soils). PTF models are applicable for predicting hydrophobic
sorption, conceptually linked to the QSAR assumption, but soil
properties (OC, pH) had different impacts (e.g., correlations)
depending on the pollutant. Furthermore, PTF models can
represent sorption mechanisms in specific scenarios beyond
QSAR assumption.

4 Discussion

In this section we discuss our findings, considering requirements
for developing and unifying QSAR and PTF models from an
empirical perspective, including recommendations for scientific
and regulatory decisions. We used headers to simplify the
understanding of our proposals.
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4.1 Requirements for developing and
applying predictive models

Based on findings from the literature, we found three topics
required for applying predictive models for regulatory purposes: (i)
an explicit connection between simplification strategies (QSAR and
PTF assumptions, Figure 4) and the representational value of data,
(ii) tools and procedures for validating predictive models and their
applicability, and (iii) practical needs covered by predictive models
for regulatory purposes.

4.1.1 Representational value
Production, collection and treatment of data determine their

representational value and potential use as evidence of the
phenomenon they are intended to represent (Leonelli, 2019).
Therefore, QSAR and PTF assumptions (Figure 4; Section 3.1)
should be evaluated and validated to minimize biases. For
instance, the idea that the hydrophobic sorption mechanism is
generalizable (QSAR assumption) might be enhanced by the
distribution of acid-base activities (Tables 2, 3), where most of
the current information in the literature is focused on sorption
mechanisms independent or only slightly dependent on pH.
Moreover, most of the pesticides studied were aromatic
(Supplementary Figure S1), which mainly present hydrophobic
mechanisms despite other interactions (e.g., polar). In this sense,
we recommend validating the assumptions based on the empirical
findings applied to the dataset used to develop predictive models.

We can further generalize the QSAR assumption to the following
statement: “Predictions can be extrapolated among soils when they share
an unspecific sorption mechanism occurring in a unique and common
soil component”. If that soil component isOC (see Figures 4A–C, F), and
the soil variability (including environmental and methodological
conditions) is so low that it can be neglected compared to the
variability among pollutants, then it is possible to quantify an average
sorption coefficient value per pollutant and create QSAR models.

The notion of generalization has three implications: (i) BothQSAR
and PTF can share data (see Figures 4C, F, belonging to different kinds
of model despite being equivalent), (ii) the generalization of QSAR
assumption may help to develop new QSAR models or simplify PTF
models, e.g., if the common soil component is different than OC, and
(iii) all models (even QSAR) are applicable to soils with properties
similar to those used during the data collection and treatment, so soils
should necessarily be included in the AD.

4.1.2 Validation tools
The validation of predictive models should consider their

representational value and statistical parameters. Both kinds of
validation are necessary and complementary, addressing
methodological and environmental conditions affecting the
sorption coefficients and isotherm shape (as PTF models) and
giving the models a statistical and reproducible quality in
accordance with the OECD principles (as QSAR models).

Validation should be considered in all steps, such as data splitting
(e.g., splitting pure and mixed pollutants into different datasets, and
afterwards dividing them again into their respective training and test
sets) or selection of predictor variables (e.g., proposing them based on
the sources of variability and then evaluating different algorithms to
produce the mathematical equation).

For regulatory decisions, the validation process should improve
the applicability of predictive models in environmental scenarios of
concern with relevant but rarely studied sources or variability,
especially in agricultural contexts where (i) commercial
formulations may contain mixtures, (ii) pesticides can be added
in previously polluted soils, or (iii) the seasonality could produce
relevant temperature variations.

From an institutional perspective, only QSAR models are used
or promoted as reliable tools (OECD, 2014; Nolte and Ragas, 2017;
Chi et al., 2018; Kar et al., 2018; Thomas et al., 2019), probably due to
the generalizability and simplicity of these models in comparison
with PTF models, which depend on local conditions as well as
specific procedures and predictor variables. Following the QSAR
assumption (Figure 4), the OECD assumes that sorption coefficients
are physicochemical properties of pollutants (Kar et al., 2018) so its
principles have more impact on statistical validation than the
outcome selection (always KOC). However, we found empirical
studies that contradict the QSAR assumption, which might
explain why current QSAR models for predicting soil pollution
are not included in REACH Analysis of Alternatives reports for
authorization of active substances (Chinen and Malloy, 2020).

Considering the above, procedures derived from PTF models
may strengthen the application of OECD principles P1 and P5
(Figure 3) by giving a mechanistic context, while statistical tools used
in QSAR models support the principles P2, P4 and P3. In this sense,
future predictive models could combine both practices and be
mechanistically and statistically reliable from an institutional
perspective.

4.1.3 Usability for regulatory purposes
The AD of predictive models represents the variability

boundaries in which the model was built (e.g., structural
diversity, methodological and environmental conditions,
predictor variables), required to interpolate new cases,
avoiding the uncertainty of extrapolations. In this sense,
applicability depends on the dataset. However, it is usually
impossible to determine sorption mechanisms in real systems.
Notably, sorption experiments are made in ideal conditions,
where sorption is isolated from competitive processes such as
biological (Kaur et al., 2018; Silva et al., 2018; Skeff et al., 2018; Xu
et al., 2020; Beringer et al., 2021; Chen et al., 2021; Siek et al.,
2021) or chemical degradation (Góngora-Echeverría et al., 2019;
Loffredo et al., 2019; Zhao et al., 2020; Beringer et al., 2021).
Furthermore, methodological conditions are not representative
of real conditions, such as soil:solution ratio <1 (saturated soil),
the usage of a background solution in all studies, controlled
pH and temperature (e.g., OV [exp]), or the scarce connection
between the interval of concentrations used to quantify sorption
coefficients and the field dosages (only done in (Pavão et al., 2022;
Mosquera-Vivas et al., 2018; Dos Santos et al., 2019; das Chagas
et al., 2020. Predictive models should therefore be used
cautiously. What they represent is useful for researchers but
not necessarily reflective of regulatory needs, meaning that a
clearly defined AD (P3, Figure 3) is necessary but not sufficient to
ensure regulatory purposes.

The representational value is key to connect data with real
scenarios and establish the correct questions that predictive
models can answer for making decisions (Figure 1). For example,
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it is inappropriate to use sorption coefficients (quantified in
equilibrium condition) to represent non-equilibrium scenarios
such as environmental fate at non-saturated or variably saturated
conditions, e.g., during irrigation, heavy rain, or flooding. However,
scientists and environmental entities could use those sorption
coefficients to estimate the maximum sorption (at equilibrium)
and then the minimum transport of pollutants in ideal
conditions. Furthermore, the relevance of sorption with respect
to transport in the long term may help to understand the
implications of using predictive models for sorption in a specific
site or situation.

Additionally, the usability of predictive models depends on their
simplicity when used by non-experts, especially when they present
predictor variables that are easy to understand and quantify
(Berthod et al., 2017; Conde-Cid et al., 2020). If QSAR and PTF
models are equally applicable in a hypothetical situation, then QSAR
models are easy to implement due to the use of molecular and
theoretical descriptors, whose quantification is independent of local
conditions, while PTF models have simpler interpretations due to
their contextualized predictor variables, helping to understand the
meaning of predictions.

4.2 Unifying QSAR and PTF models
backgrounds

Following from the above, it is difficult to know a priori how
complex the sorption is, and it is difficult to determine sorption
mechanisms when several pollutant-soil interactions are possible
(see Figures 4D, E). In more complex scenarios, even interactions
among soil components or pollutants, such as OC-oxide minerals
and multilayer sorption (linearity coefficient 1/n> 1) (Alfonso
et al., 2017; Marín-Benito et al., 2017; Pose-Juan et al., 2018;
Sousa et al., 2018; Caceres-Jensen et al., 2019; Góngora-
Echeverría et al., 2019; García-Delgado et al., 2020; Cáceres-
Jensen et al., 2021; Meftaul et al., 2021) are possible. However,
we found empirical trends that (i) are available through
comparative analysis from the literature, (ii) are relatively easy
to identify from empirical findings, and (iii) are sufficient to
recognize, broadly speaking, how much complexity an overall
sorption coefficient is representing. In this sense, we propose
the use of three empirical correlations to identify what kind of
predictive model is applicable in a case-by-case analysis:

C1. A positive correlation between the sorption coefficient and
the percentage of the neutral (uncharged) form of pollutants
(100% if the pollutant is non-ionizable).

C2. An exclusive and positive correlation between sorption
coefficients and OC (i.e., lack of correlation with other
soil properties).

C3. Positive correlations between hydrophobic OC components
and sorption coefficients.

4.2.1 Interpretation
These three previous correlations are presented from

general to specific. We initially assume that any sorption
trend is possible within a dataset. Then, we may simplify the
development of predictive models without losing

representational value depending on the findings about C1,
C2 and C3. If C1 is true, then the sorption is mainly non-
ionic (see Figures 4A–C, E, F). If C2 is true, then OC is the most
relevant sorbent (see Figures 4A–C, F). Finally, if C3 is also true,
then sorption may be represented as hydrophobic on OC
(impossible to determine from Figure 4, because it involves
the OC composition).

In this sense, an agreement with C1, C2 and C3 represents the
hydrophobic sorption assumed in QSAR models, while the non-
compliance with any correlation involves the relevance of non-
hydrophobic sorption mechanisms, which account for mechanistic
diversity (i.e., evidence of several kinds of pollutant-sorbent
interaction) instead of fixed statements (QSAR and PTF
assumptions, Figure 4). Additionally, these correlations are
sensitive to different acid-base activities, chemical classes and
soils. Finally, they may be validated experimentally through (i) the
changes in sorption of pollutants on each soil at different pH values
(C1), (ii) sorption observed in isolated non-organic components of
soils and detection of multicollinearity with OC in case other
correlations are detected (C2), and (iii) sorption trends on
isolated specific OC components, e.g., aliphatic-C, aromatic-C (C3).

Note that C1 and C3 can be fulfilled without C2. This case
implies that (i) the main sorbent is OC, but the correlations
are hidden by changes in the OC composition among sorbents
or interactions between OC and other soil components (e.g.,
Figures 4C, F versus Figure 4A, B if OC interacts with minerals),
or (ii) other sorption mechanisms are relevant, but were
eliminated during the experimental procedure to assess
C3 (Figure 4E could potentially be an example). To minimize
this or other sources of uncertainty or misrepresentations
of the sorption coefficient, the corroboration of
correlations should follow the specific order: first C1, then
C2, and finally C3.

4.2.2 Connection with predictive models
If C1, C2 and C3 are true, then OV [pollut] is sufficient to

represent the variability among sorption coefficients (i.e., SV [soil], SV
[treat], SV [spatial], and OV [exp] are negligible in the dataset).
Therefore, QSAR models are valid approaches to represent the
variability within the dataset. On the other hand, PTF models are
representative of the dataset if OV [pollut] is negligible (e.g., only one
pollutant is analyzed) and SV [soil], SV [spatial], OV [exp] and SV
[treat] can be fully explained by physicochemical soil properties.
Finally, researchers should use PTF models or hybrid models
including soil and pollutant properties as predictor variables when
correlations C1, C2 and C3 are false or partially true.

4.2.3 Conditions
Model development (Figure 1) should consider whether the

data meet the correlations C1, C2 and C3 to decide an adequate
strategy (QSAR, PTF). Afterwards, outcome selection, data
treatment, proposal of predictor variables and AD should
include the following empirical information of the studies used
for obtaining the data: (i) physicochemical properties of pollutants
and soils, (ii) methodological and environmental conditions, and
(iii) shape of the isotherm. The third topic is especially relevant for
QSARmodels (i.e., C1 to C3 are met) built from data with different
sorption shapes, so the sorption coefficients associated with one
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pollutant are similar in magnitude but have different
interpretations. Finally, the model implementation (Figure 1)
should judge if their scenario of concern is included in the
model AD (e.g., inclusion of soil samples from different depths,
use of fertilized soils).

4.3 Recommendations

In this section, we propose best practices for developing,
interpreting, and using current and future predictive models,
especially QSAR models due to their institutionalization.

4.3.1 Using empirical information for developing
predictive models

The reliability of predictive models and their connection with
representational value of data may improve by using sources of
variability and our proposed correlations jointly in various stages of
the development of predictive models (Figure 3), helping and
complementing OECD and REACH guidelines through the
following approaches and steps.

4.3.1.1 Exploring sorption mechanisms
Sources of variability can improve the connection between

representational value of data and predictive models when used
to (i) explore the correlations C1 to C3 (SV [soil]), (ii) detect
properties of pollutants and soils affecting sorption (OV
[pollut], SV [soil]), and (iii) describe the impact of
methodological and environmental conditions in the sorption
process in specific contexts (e.g., climate, agricultural practices;
OV [exp], SV [treat]). As a result, empirical findings may guide
the selection of suitable approaches (QSAR or PTF), outcomes
and predictor variables to avoid misrepresentations (e.g.,
unexplored or underrepresented but relevant sorption
mechanisms).

4.3.1.2 Scoping the model
We suggest having a clear objective according to the expected

performance and applicability of predictive models, especially the
scale and degree of specificity. For instance, variable charge soils
(Figures 4A, D) are not common in the literature and their
sorption behavior may be hidden among the most common
trends (Figures 4B, C, E, F). However, variable charge soils
possess a high agricultural productivity, which makes them
relevant from a regulatory perspective, specifically for
agriculture-based economies from emerging and developing
countries (Caceres-Jensen et al., 2019). Then, a predictive model
created from large datasets without a mechanistic treatment of data
will have general applicability, making the conventional sorption
mechanisms and predictive models less useful to predict and
interpret specific and important scenarios (e.g., Figure 4D). In
this sense, models that have different scope or address infrequent
cases provide information that complements our understanding of
the sorption process.

4.3.1.3 Dataset
Predictive models should represent the variability among data in

the simplest way possible, considering the available information

under comparable conditions. As an example, changes in sorption
coefficients of soil samples at different depths (SV [spatial]) or
influenced by different treatments (SV [treat]) were generally
explained by changes in the physicochemical properties of soils
(e.g., OC content (endogenous + exogenous), kind of OC, pH,
salinity) (Khorram et al., 2018; Pose-Juan et al., 2018; Silva et al.,
2018; García-Delgado et al., 2020; Siek et al., 2021; Mosquera-Vivas
et al., 2018; Sousa et al., 2018; Dos Santos et al., 2019; das Chagas
et al., 2020; Marín-Benito et al., 2017) (see Table 2). Thus, they
behaved as different (but conceptually connected) soils and could be
included in the same dataset without requiring predictor variables
accounting for depth or treatment information. Nevertheless, the
extent of change in the soil properties varied among pesticides
(Marín-Benito et al., 2017; Pose-Juan et al., 2018) and soils (Pavão
et al., 2022; das Chagas et al., 2020), indicating that specific pesticide-
sorbent and soil-amendment interactions were relevant when SV
[treat]+OV [pollut] and SV [soil, treat] were addressed, respectively.

4.3.1.4 Data treatment
The data treatment should consider sources of variability

together with statistical tools to decide whether the findings are
reliable, especially if the same pollutant was addressed at different
levels of complexity and uncertainty (e.g., SV [soil] versusOV [exp]).
Those cases require a well-defined method to compare studies with
different experimental designs to analyze the information and
improve our comprehension of the environmental fate.

4.3.1.5 Model performance
Sources of variability are helpful for exploring new predictor

variables and improving the AD of models in specific scenarios. The
high presence of SV [soil] in the literature may be used to improve
the predictability of QSAR models by incorporating soil descriptors
based on empirical trends when hydrophobic sorption is dominant
but not unique, while SV [treat] and SV [spatial] are helpful for
exploring the impact of physicochemical properties of soils on
pesticide sorption in agricultural contexts.

4.3.1.6 Scientific interpretation
We recommend explicitly assessing sources of variability within

the data and doing so from the simplest to the most complex (e.g.,
starting with OV [exp], finishing with soil variability). Thus, the first
(simple) findings act as a conceptual basis to contextualize and
simplify the exploration of later (more complex) trends.

4.3.1.7 Model implementation
Scientific interpretation should guide the decision-making

process (Figure 1) when selecting scientific information for
regulatory purposes. For example, if the agricultural impact of
sorption studies is required to propose, apply or evaluate an
environmental policy for soil productivity, then it is necessary to
consider SV [spatial] and SV [treat], i.e., models that explicitly
included those sources of variability and their interpretation,
both related to management practices and application of
amendments in agricultural soils. As a result, QSAR and PTF
models act as a bridge among scientific and regulatory
dimensions, involving complex and diverse decisions to help
environmental entities to promote and select strategies for
applying adequate models in proper scenarios.
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4.3.1.8 Adaptable proposal
Correlations C1 to C3 represent the most probable scenarios we

found in the literature, but other simplifications could be applied to
non-organic soil components if they are relevant in a subgroup of
pollutant-soil systems. To this end, we propose to assess (i) pollutant
properties that seem relevant (acid-base activity, chemical class,
etc.), (ii) a set of relevant soil components, and (iii) relevant
functional groups in the selected soil component. For instance,
an alternative sorption mechanism could consider correlations of
sorption coefficients and anionic pollutants (alternative C1) when
sorption occurs mainly in oxide minerals (alternative C2),
specifically in aluminum oxides (alternative C3), which fits with
Figure 4D if pollutant-soil interactions involving OC and non-oxide
minerals are negligible or less relevant.

4.3.2 How to interpret current QSAR models
It is interesting that current QSAR models are statistically

validated and offer mechanistic interpretations, even when their
assumptions do not necessarily fit with the empirical findings. We
propose three possible explanations (not mutually exclusive) related
to (i) subsets of data involving hydrophobic sorption, (ii) the
contrast between SV [soil] and OV [pollut], and (iii) overall
sorption mechanisms.

4.3.2.1 Subsets of data involving hydrophobic sorption
Let us suppose that non-hydrophobic interactions are relevant

(e.g., sorption of glyphosate). In that case, OC and pH do not
necessarily correlate with sorption coefficients. Moreover,
correlations may be positive or negative depending on the
pollutant-soil interaction. However, correlations C1 to C3 might
be applicable in a subset of data, given specific experimental
conditions (e.g., inclusion of ionizable compounds in their
neutral form, quantification of average KOC values based in soils
where sorption coefficients and OC correlates positively). Then,
pollutants with non-hydrophobic interactions may be included
within a diverse set of molecules for developing QSAR models.

From a QSAR perspective, sorption is independent of soils
and therefore, QSAR models are assumed to be generalizable (see
their assumption, Figure 4). In this case, the extrapolation of the
subset of data used for developing the model as if they represent
the entire dataset (or available information from the literature)
produces a hasty generalization fallacy, with the consequent risk
of bias when making decisions in soils whose properties were not
considered in the subset of data.

The data selection process may help us to address this issue. For
example, a wide interval of KOC values among soils has been
observed for the same pollutant when sorption involves different
mechanisms (Skeff et al., 2018; Caceres-Jensen et al., 2019; Cáceres-
Jensen et al., 2021). If this occurs, data will be chosen from a
subgroup that minimizes variability, reducing the diversity of
soils where the predictive model is applicable.

Data selection should be described in terms of soil
physicochemical properties instead of minimization of the
standard deviation only. Otherwise, this practice may support the
belief that sorption is strictly hydrophobic and unexplained
variability is attributable to incorrect experimental values instead
of other sorption mechanisms (Olguin et al., 2019). In this scenario,
the explicit description of mechanistic limitations should help

environmental agencies to use predictive models for regulatory
purposes in a narrow but valid group of pollutant-soil systems,
based on the methodological and environmental conditions used to
develop the model.

4.3.2.2 Soil versus pollutant variability
In the literature, both soil and pollutant properties produced

changes in sorption coefficients. Furthermore, most of the empirical
studies were focused on variability among soils, with only a few
addressing different pesticides (SV [soil] versus OV [pollut]) (see
Table 2). However, no study contrasted both sources of variability.

We analyzed two studies with non-normalized sorption
coefficient values at comparable conditions (R2 ≥ 0.95, same
units) addressing SV [soil] and OV [pollut] for >2 soils
and >2 pesticides (Agbaogun and Fischer, 2020; García-Delgado
et al., 2020).

We calculated five KF(pest) (phenylurea herbicides) and eighteen
KF(soil) (alfisols, inceptisols and entisols) values based on findings in
the literature (Agbaogun and Fischer, 2020). The obtained COV
were 46 ± 6% for KF(pest) and 52 ± 4% for KF(soil), with OV [pollut]
slightly higher than SV [soil]. Additionally, this study found a
correlation between sorption coefficients and OC (Agbaogun and
Fischer, 2020), suggesting that normalize KF to OC (i.e., KOC)
reduces the soil variability. When we normalized KF (Agbaogun
and Fischer, 2020), the new COV values were 32 ± 6% for KOC(pest)
and 53 ± 7% for KOC(soil), increasing the relevance of OV [pollut]
versus SV [soil].

Another study quantified the sorption of four herbicides in two
soils, four amendment materials, and the amended soils (García-
Delgado et al., 2020). We quantified two KF(pest) per pesticide
considering (i) the untreated and treated soils, and (ii) the
isolated amendments. We also quantified fourteen KF(soil)
(2 control soils + 4 × 2 amended soils +4 isolated amendments).

Considering soils (control + amended), the obtained COV were
47 ± 24% and 87 ± 14% for KF(pest) and KF(soil), respectively.
Additionally, COV values for isolated amendments (excluding
sewage sludge, that showed a different behavior) were 22 ± 9%
and 56 ± 9% for KF(pest) and KF(soil), respectively. The relevance
of OV [pollut] is explained by the different chemical classes of
herbicides studied, while the low variability in SV [treat] is related to
a common sorption mechanism on amendments (hydrophobic
sorption on aliphatic and aromatic carbon) (García-Delgado
et al., 2020).

The applicability and performance of QSAR models increase
when (i) SV [soil] or COV value of KF(pest) are minimized (e.g.,
normalizing sorption coefficients to soil properties), and (ii) OV
[pollut] or COV value of KF(soil) are maximized. Therefore, the
variability among sorption coefficients is better explained by
changes in the molecular structure of pollutants than by soil
properties (OV [pollut] > SV [soil]), which supports the
assumption of QSAR models (Figure 4). Otherwise, PTF (OV
[pollut] < SV [soil]) or hybrid models (OV [pollut] ~ SV [soil])
become relevant. From studies one and 2, OV [pollut] > SV [soil]
when (i) sorption coefficients partially or completely follow the
correlation C2 and are then normalized to the corresponding soil
properties, or (ii) the sorbents share similar properties due to the
treatments, making their sorption mechanisms more similar
among sorbents.
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4.3.2.3 Overall sorption mechanisms
A third option is that QSAR models represent unrealistic but

useful overall trends using average values as outcomes. Consider the
following two studies.

A study quantified the sorption of four herbicides in four
Mexican soils (Alfonso et al., 2017). We quantified KF(pest) �
2, 0 ± 0, 3 (µg1−1/nmL1/ng−1) for sulfotep considering all the soils,
and KF(soil) � 2, 8 ± 0, 5 (µg1−1/nmL1/ng−1) for a soil from Chablekal,
using two structurally similar pesticides (sulfotep and dimethoate)
(Alfonso et al., 2017). The low COV (13% and 16%, respectively)
suggests that the use of average values based on similarities to reduce
or even neglect the variability is valid for both pesticides and soils (all
soils behave as one unique sorbent, while both pesticides behave as
one unique pollutant). In this case, the structural differences
between both pesticides were not enough to produce an
important change on sorption. Thus, both pesticides present the
same sorption coefficients when used in a QSAR model.

The opposite situation occurs when the structural variability
produces important changes on sorption. From another study
involving five pesticides and 18 soils (Agbaogun and Fischer,
2020), we obtained similar KF(pest) values for pesticide with
similar structure, such as diuron and linuron (9 ± 3 and 11 ± 5
(mgkg−1)(mgL−1)−1/n, respectively), or monuron and isoproturon
(4 ± 2 and 2 ± 1 (mgkg−1)(mgL−1)−1/n, respectively). Additionally,
we calculated KF(soil) values and observed a variability from 4 ± 2
(Ibd soil, alfisol) to 16 ± 8 (mgkg−1)(mgL−1)−1/n (Uib soil,
inceptisol). Interestingly, KF(pest) and KF(soil) values correlated
positively with lipophilicity of pesticides (e.g., log KOW) and the
OC content, respectively, probably due to hydrophobic sorption.
This supports the findings from QSAR models, where the
normalization of KF(soil) to OC makes sorption independent of
soils, while KF(pest) is described exclusively by hydrophobic
molecular descriptors.

Similarity among pollutants and soils within the dataset affects
their variability and mechanistic interpretation. If sorption is
generally represented by one overall sorption mechanism, then
the use of average values reduces the variability. Moreover, the
normalization of sorption coefficients to relevant soil properties
(i.e., correlation C2) makes their variability dependent on pollutant
properties (case 2). In this scenario, QSAR models have an
interpretation and physicochemical meaning, despite their
conceptual issues: they represent a sum of unknown trends with
compensatory effects that hide specific sorption mechanisms and
methodological differences, showing general trends that do not
represent local pollutant-soil interactions but allow to
approximate them around a probable value. This might explain
the unclear impact of some molecular descriptors when complex
sorption mechanisms appear (Rybacka and Andersson, 2016).
Therefore, these QSAR models cannot predict sorption
coefficients in local contexts and should be useful as exploratory
analysis prior to the screening step in risk assessment.

4.4 Limitations

Regarding our findings, the main limitation is related to the
heterogeneity of information, affecting the extrapolation of our
findings and our conceptual proposal in three ways: (i) sources

of variability, (ii) distribution of data, and (iii) scarcity of
information.

SV [spatial] and OV [exp] involve the study of several samples,
which caused authors to simplify logistics, mainly by using one-
point sorption coefficients and/or assuming an equilibrium time of
24 h (Figure 5). As a result, we excluded most of these articles from
our review (Figure 5), affecting the confidence of the findings for
these sources of variability.

If we consider all combinations in which SV [soil] and OV
[pollut] were present (SV [soil], SV [soil, treat], SV [soil, spatial] or
SV [soil, treat, spatial] together with OV [pollut], OV [pollut, exp]),
we find that <20% of the articles studied SV [soil] and OV [pollut],
but they covered >60% of the pesticides (5 articles, 27 pesticides).
Therefore, the impact of SV [soil] and OV [pollut] might be
overrepresented.

Absent sources of variability such as SV [treat, spatial] and
those that involve OV [time] produce uncertainty with regard to
the generalizability of simplifications proposed during the data
treatment. For instance, we do not know if aging, seasonality, or
any other time-dependent source of variability is explained by
changes in the physicochemical properties of soils, just like SV
[spatial], or have more complex effects on sorption, like SV
[treat]. This information might help to understand if
predictive models are valid in the long term or require
empirical time-dependent descriptors to potentially be used in
environmental baseline studies or included in local
environmental policies.

Regarding the focus of our analysis, three issues affect the
interpretation and extrapolation of our results: (i) selection of
pollutants, (ii) correlational analysis of sorption mechanisms, and
(iii) strategy to unify QSAR and PTF assumptions.

We used pesticides as a globally relevant organic pollutant
model of focus due to their structural diversity and reactivity in
combination with the large amount of information available in the
literature (Neira-Albornoz et al., 2022). This approach is
supported by the equivalent findings from different QSAR
models using pesticides versus broader ranges of pollutants
(Table 1; Section 3.1). However, predictive models and
empirical trends for specific non-pesticides compounds might
have a different behavior. An example are pharmaceuticals that
generally were pH-dependent (PTF models), while pesticides used
to be non-ionic (QSAR and literature), affecting the
generalizability of our study.

We based our analysis on correlations and connecting both
interpretations from theoretical and experimental studies. However,
the distribution of data, different experimental designs and
collinearity among molecular and soil properties could produce
biases when using correlations in the interpretative layer. Biases also
have a social explanation, mainly related to global agricultural needs
(e.g., the heterogeneous distribution of pesticide usage and the
scarcity of studies made on variable charge soils). In this sense,
an exhaustive analysis of the context and validity of the empirical
trends on a case-by-case basis should minimize biases and
oversimplifications of sorption mechanisms.

We proposed hybrid models involving QSAR and PTF
assumptions. Considering the lack of mixed models and the lack
of experimental studies combining SV [soil] with OV [pollut], our
analysis was qualitative. Future research could include molecular
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and soil descriptors to quantitatively address the feasibility of our
proposal and the improvement in explanatory power (statistically
and contextually).

Considering the above, our proposal is a first endeavor to
understand the implementation of QSAR and PTF models for
decision-making considering the representational value of data
and should be tested and adapted in future studies according to
new evidence.

5 Conclusion

In this article, we developed a comprehensive contextualization
of QSAR and PTF models by evaluating the validity of their
assumptions and procedures from an evidence-based perspective
using empirical results from the literature. Based on our findings, we
proposed the analysis of different (i) requirements, such as the
selection of appropriate outcomes and kind of model before
developing the model itself, (ii) limitations related to the
representational value of data and the simplification strategies
followed by QSAR and PTF models, and (iii) applicability
conditions at local and global scale (Figure 1). This
contextualization involves experimental designs, sources of
variability, and methodological procedures used during the
quantification of empirical data used in the dataset, whose
explicit analysis is key to improve the reliability, interpretation
and applicability of predictive models. As a result, our work is
intended to help scientists and environmental agencies such as
OECD and REACH to (i) adapt the development and use of
future predictive models to individual contexts of environmental
relevance for regulatory purposes, and (ii) interpret and improve
current QSAR and PTF models.
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