
Projecting the response of carbon
sink potential to land use/land
cover change in ecologically
fragile regions

YeWang1, Jie Liu2*, Lirong Zhang1, Zhongcai Xue1 and Yue Yang1

1Colloge of Resources and Environmental Sciences, Hebei Normal University for Nationalities, Chengde,
Hebei, China, 2College of Teacher Education, Hebei Normal University for Nationalities, Chengde,
Hebei, China

Introduction: The carbon storage service of ecosystems in ecologically fragile
areas is highly sensitive to regional land use/land cover (LULC) changes.
Predicting changes in regional carbon storage under different LULC scenarios
is crucial for land usemanagement decisions and exploring carbon sink potential.
This study focuses on the Luan River Basin, a typical ecologically fragile area, to
analyze the impact of LULC changes on carbon storage.

Methods: The PLUS-InVEST model was employed to simulate LULC patterns for
the year 2030 under three scenarios: natural development, cropland protection
and urban development, and ecological protection. The model projected the
future carbon sink potential of the basin under these scenarios.

Results: From 2000 to 2020, carbon storage showed a trend of decrease
followed by an increase. By 2030, compared to 2020, carbon storage is
projected to increase by 16.97% under the ecological protection scenario and
decrease by 22.14% under the cropland protection and urban development
scenario. The increase in carbon storage was primarily due to the conversion
of cropland and grassland to forestland, while the decreasewasmainly associated
with the conversion of forestland to grassland and cropland, and the
transformation of grassland to cropland and construction land. In the
potential LULC scenarios of 2030, certain regions within the basin exhibited
unstable carbon sink potential, strongly influenced by LULC changes. These areas
were predominantly characterized by artificially cultivated forests, shrubs, and
agricultural land. Implementing appropriate forest management measures and
optimizing agricultural land management practices are essential to enhance
carbon sink potential in these regions. Population density, annual average
temperature, and DEM (Digital Elevation Model) were the dominant factors
driving the spatial variation of carbon sink potential in the Luan River Basin.

Discussion: The research results provide a theoretical basis for rational planning
of land use and the enhancement of carbon sink potential in ecologically
fragile regions.
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1 Introduction

The global issue of climate change caused by carbon dioxide
emissions has received attention from countries worldwide
(Sarkodie et al., 2020). With the ongoing process of
urbanization, China has become the world’s largest emitter of
carbon dioxide (Yu et al., 2021). At the 75th session of the United
Nations General Assembly in 2020, China pledged to reach its
peak carbon emissions by 2030 and achieve carbon neutrality by
2060 (Li et al., 2023). Terrestrial ecosystems play a crucial role in
carbon reduction and sequestration, making them important
components of the global carbon cycle (Liu et al., 2023). The
significance of terrestrial ecosystems in reducing carbon
emissions and mitigating global warming has made them a
major research hotspot worldwide in recent years (Tang et al.,
2018; Piao et al., 2022; Wang H. W. et al., 2023a). Research has
shown that LUCC is one of the important factors that influence
the carbon cycling process in terrestrial ecosystems and cause
regional changes in carbon balance (Zhao M. M. et al., 2019b;
Zhu et al., 2019; Aneseyee et al., 2022).

There are multiple methods for estimating regional carbon
storage. Traditional estimation methods such as the storage
accumulation method and biomass method have demonstrated
high accuracy in calculating carbon stocks at small spatial scales
(Fang et al., 2001; Brown, 2002; Boothandford et al., 2014). However,
traditional methods for estimating carbon stocks have limited
accuracy in large-scale studies, and is difficult to analyze the
dynamic changes and spatial distribution of regional carbon
stocks. As information technology advances, carbon stock
estimation methods primarily based on modeling have emerged.
In comparison to other model methods (McGuire et al., 1992;
Neilson, 1995; Sitch et al., 2003), the InVEST model has the
advantage of requiring less input data and having faster
computation speed (Bagstad et al., 2013). It allows for the spatial
mapping of carbon stock distribution and dynamic changes,
providing insights into the relationship between LULC changes
and carbon stocks (Posner et al., 2016). Currently, the InVEST
model has been widely applied in spatial planning, ecological
compensation, risk management, climate change adaptation, and
other environmental management decisions in various countries
and regions. Scholars have utilized the carbon stock module to
explore the impact of LULC changes on carbon stocks in terrestrial
ecosystems (He et al., 2016; Li Y. H. et al., 2022a; Xu et al., 2023).

LULC scenario simulation plays a pivotal role in accurately
assessing and quantifying the impact of LULC change on ecosystem
carbon storage (Liu et al., 2023). Currently, the combination of the
InVEST model and LULC data has been used to calculate regional
carbon stocks. Furthermore, land prediction models have been
employed to forecast future LULC patterns and changes in
carbon stocks at the regional level. In existing land prediction
models, FLUS (Gu et al., 2022; Xiang et al., 2022), CLUE-S
(Islam et al., 2021; Kiziridis et al., 2023), and CA-Markov
(Alhameedi et al., 2022; Zhang et al., 2023) have been widely
used. However, these models primarily focus on improving
modeling techniques, model rules, and accuracy, while paying
less attention to exploring the underlying driving forces behind
land cover change (Sohl and Claggett, 2013). The PLUS model
integrates the Land Expansion Analysis Strategy (LEAS) and a

Cellular Automata (CA) model based on multi-type random
patch seeds. On one hand, LEAS incorporates the advantages of
traditional conversion analysis strategies, allowing for a better
exploration of the driving factors behind various LULC changes.
On the other hand, the CA model, combined with random seed
generation and threshold decay mechanisms, can simulate LULC
changes at the patch level more effectively. The PLUS model
possesses powerful data mining capabilities and the ability to
model land changes at the patch level, offering great potential for
applications such as optimizing land resource allocation and
defining urban expansion boundaries (Liang et al., 2021). The
coupling of the InVEST and PLUS models has been widely used
for the calculation and prediction of carbon stocks. Wang R. Y. et al.
(2023b) used the PLUS and InVEST models to simulate and predict
the spatial development pattern of LULC as well as the changes in
carbon stocks in the Greater Bay Area in China in 2030 under
multiple scenarios. Kulaixi et al. (2023) utilized the PLUS-InVEST
model to examine the spatiotemporal distribution and changing
patterns of carbon storage under multiple scenarios in an Arid
Inland River Basin in Xinjiang, China. Cui et al. (2023) used the
PLUS model to simulate the future four LULC scenarios and the
ecosystem carbon storage was assessed by the InVEST model in
Guangdong, China.

The Luan River Basin possesses abundant vegetation resources
and serves as an important ecological barrier in the Beijing-Tianjin-
Hebei region of China (Xu et al., 2020). Moreover, due to its location
in the agricultural-pastoral transitional zone and constraints
imposed by precipitation and temperature, it has become a
typical ecologically fragile area in northern China. Currently,
studies on carbon stocks in the Luan River Basin primarily focus
on the analysis of historical changes and the prediction of future
trends. He et al. (2022) explored and predicted the spatiotemporal
link between changes in LULC and carbon storage by coupling the
FLUS model and InVEST model in China’s Beijing-Tianjin-Hebei
region, including the Luan River Basin. Guo et al. (2022) simulated
the 2030 carbon storage and explored its spatial-temporal
characteristics under three different scenarios. The above results
provide scientific knowledge for the study of carbon storage in the
Luan River Basin. However, the quantitative impact of LULC change
on carbon storage remains uncertain, and there is a lack of
discussion on carbon sink potential.

In the above context, this study primarily analyzes the
following issues regarding the impact of LULC changes on
carbon storage and future carbon sink potential: 1) How will
potential LULC changes in 2030 affect the carbon storage in the
basin? 2) What impact do transitions between different LULC
types have on changes in carbon storage? Which LULC transitions
primarily affect changes in carbon storage? 3) Based on the
potential future LULC changes, what are the distribution
characteristics of carbon sink potential? Considering the
different characteristics of carbon sink potential zones, how can
carbon storage in ecologically fragile areas be enhanced?

1.1 Study area

The Luan River Basin is situated in the northeast part of the
North China Plain, spanning between 39°10′-42°35′ N and 115°20′-
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119°15′ E (Figure 1). It originates from Fengning County and flows
into the Bohai Sea in Leting County, covering a total length of
approximately 877 km and an area of 44,880 square kilometers. The
landforms within the basin are diverse and complex, with the upper
reaches being dominated by plateaus and mountainous hills, the
middle reaches by the Yan Mountains, and the lower reaches by the
flat Hebei Plain. The terrain slopes from northwest to southeast, and
there is a notable difference in climate between the north and the
south. The climate varies notably from north to south, with a
transition from cold-temperate arid and semi-arid climate to
warm-temperate semi-humid climate. The average annual
temperature is between 1°C and 11°C and the average annual
precipitation ranges from 400 to 800 mm (Zeng et al., 2012). The
Luan River Basin is characterized by interlaced zones of agriculture,
pastoralism, and forestry, leading to complex relationships among

ecosystem services. It is a typical ecologically fragile area in
northern China.

1.2 Data sources and processing

The LULC data for the Luan River Basin in the years 2000, 2005,
2010, 2015, and 2020 were obtained from the Geospatial Data Cloud
(https://www.gscloud.cn/), with a spatial resolution of 30 m. After
cropping and projection, the LULC data were reclassified into six
categories: cropland, forestland, grassland, water body, construction
land, and unused land. The ArcGIS 10.0 Hydrology tool was utilized
to delineate sub-basins in the Luan River Basin, based on DEM data.
Taking into account both natural and socio-economic conditions,
and based on the principles of driver accessibility, timeliness, and

FIGURE 1
The geographical location and elevation map of the Luan River Basin.

TABLE 1 Data and sources.

Data type Data name Resolution/m Data source

Climate environmental factors DEM 30 Resource and Environment Science and Data Center, Chinese Academy
of Sciences (https://www.resdc.cn/)

Slope 30

Annual average precipitation 1,000

Annual average temperature 1,000

Soil type 1,000

Distance to water body system 1,000

Socio-economic factors Population density 1,000 Resource and Environment Science and Data Center, Chinese Academy
of Sciences (https://www.resdc.cn/)

GDP 1,000

Distance to main road 30 Openstreetmap (https://www.openstreetmap.org/)

Distance to highway 30

Distance to government office 30
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significance, 11 driving factors were selected to predict the LULC
distribution in the Luan River Basin under different scenarios for the
year 2030 (Table 1).

1.3 Research methodology

1.3.1 Ecosystem carbon storage assessment based
on the InVEST model

Carbon storage was calculated based on the InVEST model,
which simulates carbon storage based on the LULC data of each
period and the corresponding carbon density using the following
formula (Li Y. X. et al., 2022b) (see Eqs 1, 2).

Ci � Cia + Cib + Cis + Cid (1)
Ctot � ∑

n

i�1Ci × Si (2)

Where i represents the land-use type; Ci indicates the carbon
density of land utilization type i; Cia, Cib, Cis, and Cid indicate the
carbon density of terrestrial biogenic carbon, subsurface biogenic
carbon, soil carbon, and dead organic carbon of LULC type i,
respectively. The unit of all carbon densities is megagrams per
hectare (t/ha). Ctot indicates the total carbon storage in the
region(t); Si indicates the area of land utilization pattern i (ha); n
indicates the total number of LULC types.

The construction of the carbon density database primarily relied
on measured data from existing literature. Priority was given to
carbon density values obtained from field surveys conducted in the
Luan River Basin (Xu et al., 2019). For data where reference
literature was lacking, it was supplemented using research
literature from neighboring areas (Li et al., 2004; He et al., 2022).
If there were still gaps, carbon density data for six land types could be
obtained based on the following carbon density correction formula
(Zhang and Zhang, 2009; Alam et al., 2013) (see Eqs 3–6).

CBP � 6.789 × e0.0054×MAP (3)
CSP � 3.3968 × MAP + 3996.1 (4)

KBP � CBP1/CBP2 (5)
KSP � CSP1/CSP2 (6)

Where MAP represents the annual average precipitation(mm);
CBP represents the biomass carbon density after correction (t/ha);
CSP represents the soil carbon density after correction (t/ha); KBP

represents the precipitation factor correction coefficient for biomass

carbon density; KSP represents the precipitation factor correction
coefficient for soil carbon density. By comparing the calibrated
carbon density results with actual carbon density, the RMSE was
0.83, indicating that the calibration results are fairly accurate and can
be used as input for the InVEST model parameters. Finally, the
carbon density dataset for land utilization categories in the Luan
River Basin was obtained (Table 2).

1.3.2 Future LULC simulation (PLUS) model
The PLUS model is a fine-scale LULC prediction model

developed based on the FLUS model, taking into account the
policy-driven guidance effect in LULC planning (Liang et al.,
2021; Gao et al., 2022). Based on LULC data from 2010 to
2020 in the Luan River Basin, this study utilized the driving
factors as predictor variables to calculate the suitability
probabilities for different LULC types. Using the 2010 LULC
data as the baseline, the PLUS model was employed to simulate
the LULC data for 2020. The simulated results were compared with
the actual data for 2020, resulting in a Kappa coefficient of 0.81,
indicating a high level of reliability in the simulation results
(Zadbagher et al., 2018; Liu et al., 2022).

The neighborhood weights represent the expansion capacity of
different LULC types. In this study, the neighborhood weights were
calculated using the dimensionless values of the LULC-type area
changes in the Luan River Basin from 2010 to 2020 (Table 3).

1.3.3 The setting of different future scenarios
The “Land and Spatial Planning Announcement of Hebei

Province (2021-2035)" was released in September 2021. It
proposed the establisent of the ecological security barrier,
implementation of cropland protection measures, and promotion
of coordinated urban development. The Luan River Basin has
irrigated nearly 21% of the irrigated areas in Hebei Province and
has supported about 20% of the population, accounting for nearly
30% of the province’s GDP. Therefore, based on the ecological and
economic role played by the Luan River Basin, different LULC
scenarios for the year 2030 were simulated using the PLUS model to
meet various development needs. The LULC transition matrix
represented the conversion rules between different LULC types.
When one LULC type could be converted into another, the
corresponding value in the matrix was 1; otherwise, it was 0. The
three scenarios are shown in Table 4. Parameters and weights used
in the simulation of suitability maps are shown in Supplementary
Table S1. These scenarios are as follows:

TABLE 2 Carbon density of different LULC types (t/ha).

LULC Aboveground carbon
density

Underground carbon
density

Soil carbon
density

Carbon density of dead organic
matter

Cropland 3.21 0.32 50.82 0.00

Forestland 69.63 21.00 133.82 1.95

Grassland 1.18 13.6 79.87 2.00

Water body 3.42 12.1 8.64 0.00

Construction
land

0.41 6.91 28.82 0.00

Unused land 9.13 1.82 34.08 0.00
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1) Natural Evolution Scenario (S1). Based on the transition
probabilities from 2010 to 2020, the LULC structure for the
year 2030 was predicted, allowing for free conversion between
different LULC types.

2) Cropland Protection and Urban Development Scenario (S2).
The priority was given to the development of construction land
while strictly controlling the conversion of cropland to LULC
types other than construction land. This scenario aimed to
meet the demands of economic development while ensuring
the protection of agricultural land.

3) Ecological Protection Scenario (S3). Under the requirements
of ecological conservation, strict control measures were
implemented for the conversion of forestland, grassland,
and water bodies. Forestland and grassland could be
converted into each other but could not be converted into
other land types. On the other hand, other land types could be
converted into forestland and grassland.

1.3.4 Driver analysis
The spatial distribution patterns of the input driver parameters

for LULC change, along with the corresponding changes in carbon
sink, were analyzed using an exploratory spatial data analysis
(ESDA) technique, specifically spatial autocorrelation through
GeoDa-1.20.0 software (Hoque et al., 2019b; Zhang et al., 2019).
Spatial autocorrelation, as assessed by Local Indicators of Spatial
Association (LISA), reveals four distinct types of spatial clusters at
the local level: High-High (HH), High-Low (HL), Low-High (LH),
and Low-Low (LL) (Hoque et al., 2019b; Zhang et al., 2019).

Geodetector is a set of statistical methods used to detect spatial
heterogeneity and reveal the underlying drivers. Its core idea is based
on the assumption that if a certain independent variable significantly
influences a dependent variable, then the spatial distribution of both
variables should exhibit similarity (Wang et al., 2016; Lin et al.,
2019). Discrimination and factor detection involve comparing the
total variance of the study area with the sum of variances in the

classified sub-regions to detect spatial heterogeneity in Y or
determine the extent to which a factor X explains the spatial
heterogeneity of attribute Y. The results are measured using the
q-statistic. We utilized discrimination and factor detection in
Geodetector to analyze the explanatory power of different drivers
on the spatial heterogeneity of carbon sink potential.

2 Results

2.1 Temporal and spatial analysis of LULC

Figures 2, 3 respectively illustrate the overall changes in total
area and transfer directions of various LULC types from 2000 to
2020 and in 2030 under different scenarios. From 2000 to 2020, the
area of cropland, grassland, water bodies, and unused land
decreased, while the area of forestland and construction land
increased. During the period from 2000 to 2010, the area of
cropland decreased, while the areas of forestland increased. This
was mainly due to the implementation of the national policy of the
Grain for Green Project (Zhao A. Z. et al., 2019a), which resulted in a
notable transfer of cropland to forestland. Additionally, the rapid
process of urbanization led to a large-scale encroachment of
cropland for construction purposes. From 2010 to 2020, the area
of forestland continued to increase, while the area of cropland
further decreased. This can be attributed to the further
development of the Grain for Green Project and the strong
promotion of the “Three-North’ Shelterbelt by the government
(Mu et al., 2017), which led to a continuous transfer of cropland
to forestland. According to the set features of potential LULC
scenarios in 2030, S1 continued the LULC change characteristics
from 2000 to 2020, with a continuous decrease in cropland and
grassland areas and a consistent increase in forestland and
construction land. In S2, driven by socio-economic development
as a force for LULC change, the areas of cropland and construction

TABLE 3 The neighborhood weights of different land use types.

LULC Cropland Forestland Grassland Water body Construction land Unused land

Neighborhood weight 0.50 0.17 0.13 0.18 0.19 0.07

TABLE 4 LULC transfer matrix under different scenarios.

Land use S1 S2 S3

L1 L2 L3 L4 L5 L6 L1 L2 L3 L4 L5 L6 L1 L2 L3 L4 L5 L6

L1 1 1 1 1 1 1 1 0 0 0 1 0 1 1 1 1 0 0

L2 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 0 0 0

L3 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 0 0 0

L4 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 1 0 0

L5 1 1 1 1 1 1 1 0 0 0 1 0 1 1 1 1 1 0

L6 1 1 1 1 1 1 1 0 0 0 1 0 0 1 1 1 1 1

Note: L1: cropland, L2: forestland, L3: grassland, L4: water body, L5: construction land, L6: unused land.
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land experienced increases, while the areas of forestland and
grassland decreased accordingly. In S3, agricultural land and
urban land were strictly restricted, and ecological land saw
development, mainly reflected in the increase of forestland and
grassland areas.

From the spatial distribution perspective (Figure 4), cropland is
primarily distributed in the upstream and downstream areas of the
basin, specifically in the North China Plain. Grassland is mainly
located in the higher-altitude Inner Mongolia Plateau region in the
upstream of the basin. Forestland is distributed in the YanMountain

FIGURE 2
The LULC area change from 2000 to 2030. (A) Corpland, (B) Forest land, (C) Grassland, (D) Water body, (E) Construction land, (F) Unused land.

FIGURE 3
Sankey map of LULC type transfer from 2000 to 2030.
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range in the middle reaches of the basin, while construction land is
mainly concentrated in the urban clusters in the middle and lower
reaches of the basin. In the LULC scenarios for 2030, in S1 and S2,
there was a notable expansion of construction land in the central and
southern regions of the basin, while grassland exhibited varying
degrees of degradation. In S3, grassland in the northern and central
parts experienced recovery.

2.2 Temporal and spatial analysis of
carbon storage

Figure 5 presents carbon storage and its changes from 2000 to 2030.
In the years 2000, 2010, and 2020, carbon storage was 588.79 × 106 t,
588.06 × 106 t, and 591.17 × 106 t, respectively, showing an overall weak
trend of change. In 2030, compared to 2020, in S1, carbon storage was

FIGURE 4
Spatial distribution of LUCC from 2000 to 2030.

FIGURE 5
The carbon storage changes from 2000 to 2030.
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592.39 × 106 t, with a small change. In S2, carbon storage underwent a
decrease to 569.03 × 106 t, with a change rate of −22.14%. In S3, carbon
storage increased markedly to 608.14 × 106 t, with a change rate
of 16.97%.

The spatial distribution of carbon storage in the Luan River Basin
exhibited a pattern of higher values in themiddle region of the basin and
lower values in the northern and southern parts (Figure 6). This spatial
distribution pattern remained relatively stable over time with minimal
changes. The areas with high carbon storage in the Luan River Basin
were concentrated in the middle region, specifically in the Yan
Mountains. This region experienced slower urban development and
lower land development, resulting in higher vegetation coverage.

Conversely, the areas with low carbon storage were concentrated in
the northern and southern parts. The northern part, belonging to the
southern edge of the Inner Mongolia Plateau, had higher altitudes and
lower precipitation. It was economically developed in agriculture and
animal husbandry, featuring widespread cropland and grassland. The
southern part, mainly situated in the northern part of the North China
Plain forming the Luan River Delta, had a flat terrain, high urbanization
level, intense land development and utilization, dense population, and
high demand for construction land. This region included parts of the
Bohai Sea urban agglomerations where ecological space was notably
encroached upon due to urbanization. Consequently, areas with high
carbon storage, such as forestland, cropland, and grassland, were
relatively scarce and scattered in this urbanized region. Taking into

account the changes in LULC structure in the Luan River Basin, the
spatial distribution pattern of carbon storage was closely related to the
LULC types in the region. LULC changes had a substantial impact on
regional carbon storage, with ecological land playing a more prominent
role in the variation of carbon storage.

To explore spatial autocorrelation, Moran’s I values were
calculated and found to be 0.5912 (2020), 0.5833 (2010), 0.5921
(2020), 0.5933 (2030-S1), 0.5929 (2030-S2), and 0.5934 (2030-S3).
All the computed results are greater than 0, indicating that there is a
certain degree of spatial clustering in carbon storage across the Luan
River Basin. The distribution of carbon storage hot spots in the Luan
River Basin shows minimal variation, with hot spots predominantly
found in the middle and upper reaches of the basin, while cold spots
are concentrated in the upstream and downstream regions
(Figure 7). In 2030, the scenario S3 showed the largest increase
in the area of carbon storage hot spots, while the scenario S1 had the
smallest increase in the area of carbon storage hot spots.

2.3 Effects of LULC changes on
carbon storage

Figure 8 illustrates the proportion and changes in carbon storage
of various LULC types from 2000 to 2030 under different scenarios.
The sum of carbon storage in forestland, grassland, and cropland

FIGURE 6
Spatial distribution of carbon storage from 2000 to 2030.
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FIGURE 7
Hot spot distribution of carbon storage from 2000 to 2030 in the Luan River Basin.

FIGURE 8
Carbon storage percentage and change rate for each LULC type.
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exceeded 96%, making them the main contributors to the basin’s
carbon storage, while water bodies contributed less than 0.5%. The
changes in carbon storage in each period indicated a increase in
carbon storage in construction land from 2000 to 2010 and 2010 to

2020, with the most noticeable decrease in carbon storage in unused
land. In 2030 under different scenarios, there was a increase in
carbon storage in construction land in S1 and S2, while the carbon
storage in cropland for S1 and grassland for S2 decreased markedly.

FIGURE 9
Carbon storage transfers between LULC types from 2000 to 2030.
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The carbon storage in water bodies increased markedly in S3, while
the carbon storage in cropland decreased notably.

The transfer of carbon storage between different LULC types
(Figure 9) showed that from 2000 to 2010, the increase in carbon
storage mainly came from the conversion of cropland and grassland
to forestland, while the decrease was mainly due to the conversion
from forestland to grassland. From 2010 to 2020, the increase in
carbon storage mainly came from the conversion of grassland to
forestland, while the decrease wasmainly due to the conversion from
forestland to grassland and cropland.

From 2020 to 2030, the increase in carbon storage in S1 mainly
came from the conversion of cropland and grassland to forestland,
while the decrease was mainly due to the conversion from grassland to
construction land. The increase in carbon storage in S2 and S3 mainly
came from the conversion of grassland and cropland to forestland. The
conversion from forestland to cropland and grassland to construction
land was the main reason for the decrease in carbon storage in S2. The
main reason for the decrease in carbon storage in S3 was the conversion
from cropland to construction land. Overall, the increase in carbon
storage at each period mainly came from the conversion of other LULC
types to forestland, while the conversion from forestland, grassland, and
cropland to other low carbon density LULC types was the main reason
for the decrease in carbon storage.

2.4 Prediction of carbon sink
potential zoning

At the sub-basin scale, the rate of carbon storage changes between
each scenario in 2030 and the year 2020 was calculated (Figure 10). The
sub-basins with an average carbon storage change rate exceeding 10%

are classified as high carbon sink potential areas (H), those ranging
from −10% to 10% are categorized as medium carbon sink potential
areas (M), and those below −10% are designated as low carbon sink
potential areas (L). By comparing the three scenarios, this study found
that the high carbon sink potential area was the largest in S3. This was
mainly due to ecological activities such as vegetation restoration and
intensive LULC in some sub-basins, increasing the area of forestland
and grassland, and consequently an increase in regional carbon storage.
On the other hand, the S2 had the smallest high carbon sink potential
area, mainly due to drastic LULC changes, extensive vegetation
destruction, and continuous expansion of construction land, leading
to a reduction in carbon sink areas and a decline in carbon storage.

Based on the carbon sink potential under three potential LULC
scenarios in 2030, the Luan River Basin is divided into seven carbon sink
potential zones (Table 5). The High Growth Zone (Z1), located in the
northern part of the basin, exhibits consistently high carbon sink potential
under all scenarios, with a change rate ranging from 13.99% to 21.37%,
indicating stable growth in carbon storage in this region. The Moderate
Growth Zone (Z2) shows relatively high carbon sink potential under
S1 and S3, with a change rate of 10.78%–14.18%. However, excessive
expansion of cropland and urban land areas may impact the stability of
carbon storage growth in this zone. The Low Growth Zone (Z3) only
exhibits high carbon sink potential under S3, with a change rate of 7.66%–
13.72%, indicating that an increase in forestland and grassland areas will
effectively enhance carbon storage in this region.

The Balance Zone (Z4), located in the central part of the basin,
shows amoderate level of carbon sink potential under all scenarios, with
a change rate ranging from −9.45% to 12.17%. This suggests that carbon
storage in this zone tends to stabilize, with relatively minor impacts from
future LULC changes. The LowDecline Zone (Z5) has lower carbon sink
potential under S2, with a change rate of −11.77% to−7.31%, indicating a

FIGURE 10
Carbon sink potential distribution and area proportions in different scenarios in 2030.
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slight declining trend in carbon storage due to excessive expansion of
cropland and urban land areas. The Moderate Decline Zone (Z6)
exhibits lower carbon sink potential under S1 and S2, with a change
rate of −15.11% to −11.07%. However, an increase in forestland and
grassland areas will alleviate the decline in carbon storage in this zone.
The High Decline Zone (Z7), mainly located in the central and southern
parts of the basin, shows consistently lower carbon sink potential under
all scenarios, with a change rate of −25.22% to −16.22%, indicating a
continuous decline in carbon storage in this region (Figure 11).

2.5 Analysis of the drivers of carbon sink
potential heterogeneity

The spatial auto-correlation analysis (Figure 12) revealed a
distribution pattern characterized by clear clustering, with
predominant occurrences of High-High (HH) and Low-Low (LL)
types of clusters, and only a few instances of High-Low (HL) or
Low-High (LH) spatial outliers Supplementary Figure S2).

Figure 13 illustrates the ranking of the importance of driving factors.
Except for factors such as soil type, distance to highway, distance tomain
road, and distance to government office, all other driving factors are
greater than 25%. After screening, the driving factors with relatively high
importance are obtained: population density, annual average
temperature, DEM, GDP, slope, annual average precipitation, and
distance to water body system have relatively high q values, with the
q value of population density reaching 0.775. This indicates that natural
environmental factors such as population density have strong
explanatory power for the spatial distribution of carbon sink potential.

3 Discussion

3.1 The impact of LULC changes on the
carbon storage

This study indicated that the carbon storage in the Luan River
Basin showed an overall increasing trend from 2000 to 2020,
primarily due to the conversion of cropland and grassland into
forestland. These research findings were consistent with the results
of some other scholars’ studies. Cui (Cui et al., 2019) showed that
although carbon storage in the BTH (Beijing-Tianjin-Hebei) region

decreased year by year from 1990 to 2015, there was an increase in
the northern part, specifically in the Luan River Basin. He (He et al.,
2022) demonstrated through scenario simulations that the main
reason for the increase in carbon storage in the BTH region was the
expansion of forestland and grassland areas.

Starting from the year 2000, various ecological projects, such as
reforestation, protection of natural forests, and afforestation, have
been extensively carried out in China. As a result, the forestland
vegetation has entered an early stage of succession, leading to a
enhancement in carbon storage capacity. With rapid socio-
economic development, the expansion of cropland and
construction land has led to a decrease in the area of forestland,
grassland, and other land types in some areas of the Luan River
Basin, resulting in a decline in carbon storage. The lower reaches of
the Luan River Basin had lower elevations and gentle slopes, making
them suitable for human habitation. However, excessive land
development has led to a lower ecological environment quality,
consequently reducing carbon storage. In contrast, the middle
reaches of the Luan River Basin consisted of higher elevations
and steeper slopes in mountainous areas, with less human
disturbance and higher vegetation coverage, primarily dominated
by forestland. The favorable ecological environment promoted plant
growth, leading to higher carbon storage in this region. The upper
reaches of the Luan River Basin were characterized by higher
elevations, and limited precipitation, and predominantly
consisted of shrub forests and grasslands with lower water
demands. The rapid development of agriculture and animal
husbandry in this area has resulted in a decline in habitat
quality, indirectly affecting carbon storage.

3.2 Carbon sink potential zoning based on
future LULC changes

Carbon sink potential refers to the potential increase in carbon
storage in a given region compared to its historical carbon stocks.
Predicting carbon sink potential is beneficial for effective carbon
emissions management and plays a crucial role in achieving
sustainable development (Meng et al., 2023). This study
determined the carbon sink potential of the Luan River Basin for
the year 2030 at the sub-basin scale. A sub-basin is a closed area
where local surface water and groundwater naturally converge

TABLE 5 Characteristics of carbon sink potential zoning in 2030.

Code Carbon sink potential zoning Carbon sink potential Average carbon storage change rate (%)

S1 S2 S3

Z1 High Growth Zone H H H 17.71

Z2 Moderate Growth Zone H M H 12.74

Z3 Low Growth Zone M M H 10.26

Z4 Balance Zone M M M −0.46

Z5 Low Decline Zone M L M −9.86

Z6 Moderate Decline Zone L L M −13.22

Z7 High Decline Zone L L L −19.92
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within a watershed. At the sub-basin scale, spatial differences in
climate and underlying surface characteristics are relatively small,
making it more suitable for managing carbon sink potential
compared to administrative divisions. The Luan River Basin is
located in the transitional zone between agriculture and animal
husbandry in China and is considered an ecologically fragile area.
Carbon storage in this region is sensitive to future changes in land-
use structures (Vizcaino et al., 2020). Economic development leads
to the expansion of agricultural and urban land, resulting in a decline
in regional carbon sink potential (He et al., 2016). The increase in
ecological land improves regional carbon sink potential but may
impact socio-economic development to some extent (Yang et al.,
2020). Economic development and population growth should not
only pursue speed but also aim for high-quality development,
maintaining coordination between the economy and the
ecological environment, enhancing the value of regional
ecosystem services, and increasing regional carbon sink capacity
(Babbar et al., 2021). Therefore, a carbon sink potential zoning based
on future land-use changes is conducive to the sustainable
development of regional carbon storage services and
socio-economics.

This study assessed the carbon sink potential under three typical
land-use scenarios for 2030, resulting in the identification of seven
carbon sink potential zones. The High Growth Zone exhibited stable
growth in carbon storage under all scenarios, but being located in the
Inner Mongolia Plateau area, vegetation growth is highly influenced
by climate conditions. The Balance Zone, located in the
mountainous area in the middle of the basin, has the largest
proportion of carbon storage in the basin. With extensive
original forests and strict ecological protection policies limiting
the conversion of forestland to other LULC types, the carbon
storage in this area tends to remain stable. The High Decline
Zone showed a declining trend in carbon storage under all
scenarios, mainly located in the southern and central parts of the

basin, characterized by high population density and economic
development. Due to the high proportion of agricultural and
construction land, which is expected to further expand in the
future, there is a risk of further decline in carbon sink potential
in this region. The Moderate Growth Zone and Low Growth Zone,
mainly located in the northern part of the basin, feature extensive
artificially planted forests and shrubs. They possess a certain
potential for improving carbon sequestration and are crucial for
raising the upper limit of basin carbon storage (Li et al., 2023; Liu
et al., 2023). The Moderate Decline Zone and Low Decline Zone face
the risk of declining carbon sink potential, crucial for raising the
lower limit of basin carbon storage. This region, mainly located in
the central and southern parts of the basin, has a high proportion of
agricultural land. Improper measures in the agricultural production
process can lead to severe damage to the planting conditions of
cultivated land, reducing soil carbon density and, consequently, the
carbon sink potential. Although under the policy of returning
cropland to forestland, the restoration of vegetation on cultivated
land increases both above-ground and below-ground biomass,
extensive farming practices still affect the carbon cycling process
in cultivated land systems (Wang et al., 2023).

Based on the findings of this study, the following
recommendations are provided: The carbon sink potential in the
Luan River Basin exhibits uneven spatial distribution, with a
significant proportion of forest carbon sinks and high carbon
sequestration rates in the upper and middle reaches. Horizontal
carbon compensation and trading can be conducted with
downstream areas to strengthen low-carbon exchanges and
cooperation. While leveraging their own resource advantages for
economic benefits, efforts should be made to address potential
“ecological deficits’ in downstream areas. Conversely, the
downstream areas, characterized as low-value carbon sink zones
in the Luan River Basin, have fewer forest carbon sinks. Therefore,
measures such as afforestation or increasing urban green spaces

FIGURE 11
Carbon sink potential zones and the change rate of carbon storage in each zone in 2030.
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should be implemented to enhance the region’s carbon
sequestration capacity. In future scenario projections, there are
considerable differences in the carbon sink potential structure of
the Luan River Basin, particularly under S2, where there is a notable
decline in carbon sink potential. To address this, optimizing the land
use structure for carbon sinks and adjusting the proportions of

various carbon sink land types are recommended. Forests are the
main contributors to carbon sinks in the Luan River Basin but face
the risk of shrinking in size. Planning and establishing forest nature
reserves, implementing afforestation programs, and practicing
reforestation can stabilize and enhance the carbon sequestration
capacity of regional forests. Additionally, grassland resources should

FIGURE 12
Spatial heterogeneity LISA cluster map of drivers.

FIGURE 13
Rank of the importance of drivers. Note.X1: Population density, X2: Annual average temperature, X3: DEM, X4: GDP, X5: Slope, X6: Annual average
precipitation, X7: Distance to water body system, X8: Distance to government office, X9: Distance to main road, X10: Distance to highway, X11: Soil type.
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be protected to prevent further degradation trends in the northern
part of the basin. Unused land, due to its weak carbon sink potential
and prevalence in areas unsuitable for large-scale development (such
as the Inner Mongolia Plateau), can be managed for sustainable
carbon sequestration by restoring vegetation on unused land while
simultaneously prioritizing ecological conservation efforts.

3.3 Limitations and future work

Based on the InVEST model to assess carbon storage, the
accuracy of its estimates is primarily influenced by input
parameters. Selecting appropriate carbon density data is crucial
to ensuring the precision of model simulations. In this study,
carbon density was corrected based on the research findings of
previous scholars. However, due to factors such as climate change
and human activities, carbon density values can also change. The
correction of carbon density solely based on temperature and
precipitation introduces a level of uncertainty (Liu et al., 2021).
Therefore, it is necessary to further strengthen the timeliness of
acquiring and validating carbon density data, conduct local
calibration, perform field measurements of key indicators,
accurately estimate regional carbon storage changes, optimize
model operating structures, improve model validation accuracy,
and ensure the scientific rationality of the data. Based on this
foundation, explore internal land structure differences, consider
the impact of vegetation temporal scales on carbon storage, select
more scientifically reasonable natural and human-driven factors,
enhance the predictive accuracy of multi-model simulations, aiming
for better maintenance of regional ecosystem carbon balance.

Additionally, while the InVEST model effectively assessed the
spatiotemporal changes in carbon storage in the Luan River Basin
from 2000 to 2020 and projected scenarios for 2030 in response to
land-use changes, it overlooks the impacts of biochemical processes
on carbon sequestration capacity. This limitation introduces some
errors in the spatial distribution pattern of carbon storage. In future
research, a combined macro and micro approach could be employed
to provide a data foundation and scientific basis for estimating
carbon storage, thereby enhancing the precision of carbon storage
assessments.

4 Conclusion

In this study, we assessed the historical changes in carbon
storage in the typical ecologically fragile area, the Luan River
Basin. Additionally, we predicted the spatial distribution
characteristics of carbon sink potential in 2030 based on three
potential land-use scenarios. The main conclusions are as follows:

1) From 2000 to 2020, the main LULC changes were
characterized by an increase in forestland and construction
land, accompanied by a decrease in cropland. By 2030, under
the natural development scenario, the areas of forestland and
construction land will continue to increase, while cropland and
grassland will continue to decrease. Under the urban
development and cropland protection scenario, the areas of
forestland and grassland will experience a considerable

decrease, while cropland and construction land will witness
a notable increase. Under the ecological protection scenario,
the areas of cropland and construction land will decrease,
while forestland and grassland will see a marked increase.

2) From 2000 to 2020, carbon storage showed a trend of decrease
followed by an increase. In 2030, under the ecological
protection scenario, carbon storage will increase by 16.97%,
while under the urban development and cropland protection
scenario, carbon storage will decrease by 22.14%.

3) Changes in carbon storage are mainly related to the conversion
between forestland, grassland, cropland, and construction
land. The increase in carbon storage is mainly caused by
the conversion of cropland, grassland, and construction
land to forestland, while the conversion of forestland to
grassland and cropland, and grassland to cropland and
construction land, are the main reasons for the decrease in
carbon storage.

4) The distribution of carbon sink potential exhibits spatial
heterogeneity, with high-value areas located in the
grasslands and mountainous forests of the northern part
of the basin, while low-value areas are predominantly urban
land and unused land in the southern part of the basin.
Therefore, in the future, actions in the Luan River Basin
should be based on an ecological protection scenario,
optimizing land use structure, protecting forest land
within the basin, limiting excessive expansion of urban
land and degradation of cropland while ensuring the
quantity of basic farmland, and promoting sustainable
development in the Luan River Basin.
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