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The Inner Mongolia Reach of the Yellow River Basin is characterized by a relative
scarcity of meteorological stations. While satellite precipitation products can
complement observations from meteorological stations, their limited spatial
resolution restricts their efficacy in regional studies. This study utilizes the
GPM IMERG precipitation dataset, considering various factors that influence
the spatial distribution of precipitation, such as the Normalized Difference
Vegetation Index (NDVI), elevation, slope, aspect, and topographical relief, to
construct a multiscale geographically weighted regression (MGWR) model. A
spatial downscaling method for the GPM IMERG precipitation dataset is
proposed, and its reliability is validated through an accuracy assessment.
Moreover, the scale differences in the impact of different factors on the
spatial pattern of precipitation in the Inner Mongolia Reach of the Yellow River
Basin are scrutinized. The results indicate that: 1) The downscaled GPM IMERG
precipitation data (1 km × 1 km) exhibit enhanced accuracy compared to the pre-
downscaled data (approximately 11 km × 11 km). The correlation coefficient, Bias,
and RMSE of the annual precipitation data after downscaling of GPM IMERG are
0.865, 6.05%, and 68.50 mm/year, respectively. For the monthly downscaled
precipitation data, the correlation coefficient, Bias, and RMSE are 0.895, 6.09%,
and 16.25 mm/month, respectively. The downscaled GPM IMERG precipitation
dataset exhibit high accuracy on both annual and monthly temporal scales. 2)
Different factors demonstrate localized effects on precipitation in both dry and
wet years. Elevation is the dominant factor influencing the spatial heterogeneity
of annual precipitation. The findings from this study can provide technical support
for hydrological modeling, droughtmonitoring, andwater resourcemanagement
in data-scarce areas of the Inner Mongolia Reach of the Yellow River Basin.
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1 Introduction

Precipitation is a crucial component of the global water cycle
and a key driver of surface hydrological processes (Zhang et al.,
2014). Obtaining high temporal and spatial resolution raster
precipitation data is of great importance in fields such as ecology,
hydrology, and meteorology (Ma et al., 2021; Xue et al., 2022; Li
et al., 2023). Conventional approaches to precipitation data
collection rely on spatial interpolation of data from rain gauge
measurements. However, the accuracy of interpolation is limited
by the coverage and representativeness of the rain gauge stations,
making it difficult to obtain precise regional precipitation spatial
distribution information, especially in arid and semi-arid areas with
complex terrain and sparsely distributed stations (Fang et al., 2013;
Wang et al., 2022).

Satellite remote sensing-based precipitation estimation offers
comprehensive coverage, continuous time series, and convenient
data acquisition, making it an effective approach for regional or
global-scale precipitation measurements (Kidd and Levizzani,
2011; Tang et al., 2020). Using satellite remote sensing
technology, applications like the Tropical Rainfall Measuring
Mission Multi-satellite Precipitation Analysis (TMPA)
(Huffman et al., 2007), Integrated Multi-satellite Retrievals for
Global Precipitation Measurement (GPM IMERG) (Nan et al.,
2021), Global Satellite Mapping of Precipitation (GSMaP)
(Kubota et al., 2007), Multi-Source Weighted-Ensemble
Precipitation (MSWEP) (Beck et al., 2017), Climate Prediction
Center Morphing technique (CMORPH) (Joyce et al., 2004), and
Precipitation Estimation from Remotely Sensed Information
using Artificial Neural Networks-Climate Data Record
(PERSIANN-CDR) (Ashouri et al., 2015) have been developed.
However, the spatial resolution of the precipitation dataset is
coarse (approximately 11km–28 km) (Joyce et al., 2004; Huffman
et al., 2007; Kubota et al., 2007; Ashouri et al., 2015; Beck et al.,
2017; Nan et al., 2021), limiting its ability to accurately depict
precipitation distribution patterns at the scale of small
watersheds (Yu et al., 2020). Spatial downscaling methods can
be used to effectively overcome this limitation (Kofidou
et al., 2023).

Downscaling methods include dynamic and statistical
downscaling. Dynamic downscaling involves scale reduction by
simulating atmospheric physical processes using models (Sylla
et al., 2009; Hu et al., 2018). Although this method possesses a
clear physical basis, its applicability is limited due to high
computational costs and extensive data requirements. Statistical
downscaling relies on empirical statistical relationships between
the target variable and explanatory variables to achieve
downscaling (Kofidou et al., 2023). It is characterized by
relatively lower computational demands, flexibility in application,
and ease of operation. It is, therefore, widely used in downscaling
studies of satellite remote sensing precipitation products. Immerzeel
et al. through the analysis of the correlation between TRMM
precipitation and annual scale NDVI, established a regional
precipitation downscaling model based on an exponential
regression (ER) model, obtaining TRMM precipitation dataset for
the Iberian Peninsula in Spain with a spatial resolution of 1 km
(Immerzeel et al., 2009). Building upon the research by Immerzeel
et al., Jia et al. considered that the spatial distribution of precipitation

is influenced by more than a single variable. They included
topographic factors within the scope of their variables and
established a Multiple Linear Regression (MLR) model between
TRMM, NDVI, and topographic factors, enhancing the TRMM
precipitation dataset for the Qaidam Basin in China from a 0.25°

resolution to 1 km (Jia et al., 2011). Jing et al. demonstrated that
using the random forest (RF) model for precipitation downscaling
achieves higher simulation accuracy than both the exponential
regression and the linear regression models (Jing et al., 2016).
However, these models assume that the relationships between
precipitation and environmental variables are homogeneous in
space and do not account for the spatial non-stationarity between
precipitation and variable factors, because their relationship should
vary with changes in spatial location (Brunsdon et al., 1998). The
Geographically Weighted Regression (GWR) model can account for
the spatial non-stationarity between precipitation and explanatory
variables in downscaling studies of precipitation (Xu et al., 2015).
However, the GWR model assumes that all variable factors have the
same optimal bandwidth, neglecting scale differences in the effects of
different influencing factors on precipitation (Arshad et al., 2021).
Thus, Fotheringham et al. proposed the Multi-Scale Geographically
Weighted Regression (MGWR) model, based on the GWR model,
which considers different spatial bandwidths for various influencing
factors (Fotheringham et al., 2017). This model better reveals scale
differences in the mechanisms of various factors affecting
precipitation. Noor et al. applied the MGWR model and the RF
model to downscale the TRMM precipitation dataset (Noor et al.,
2023), while Arshad et al. used the MGWR model and the GWR
model for downscaling the TRMM precipitation dataset over the
Indus River Basin (Abdollahipour et al., 2021). The results showed
that the simulation accuracy of the MGWR model was superior to
the other two models. Therefore, the MGWR model can be widely
used in precipitation downscaling studies.

Currently, downscaling studies based on the MGWR model are
relatively scarce and primarily focused on the TRMM precipitation
dataset. The TRMM mission ceased operation on 8 April 2015, and
its successor, the Global PrecipitationMeasurement (GPM)mission,
has ushered in a new era of satellite precipitation measurement
(Tang et al., 2016). The GPM Core Observatory (GPMCO) is
equipped with a dual-frequency radar (Ku and Ka bands),
capable of detecting lower minimum echo intensities and
employing a high-sensitivity mode for staggered sampling (Hou
et al., 2014). Additionally, the microwave radiometer at the GPMCO
has four high-frequency channels, providing more accurate data for
light precipitation intensity and solid precipitation (Hou
et al., 2014).

Currently, there are relatively many studies on downscaling of
GPM IMERG precipitation datasets in humid areas (Ma et al., 2018;
Min et al., 2020; Yan et al., 2021a), but relatively few in arid and
semi-arid areas. The Inner Mongolia Reach of the Yellow River
Basin is located in an arid and semi-arid area, where the terrain is
diverse and complex, and precipitation exhibits distinct regional and
seasonal variations (Wang et al., 2023). In this study, we focused on
the Inner Mongolia Reach of the Yellow River Basin. We selected the
GPM IMERG precipitation dataset and used NDVI, elevation, slope,
aspect, and topographical relief as explanatory variables to construct
aMulti-Scale GeographicallyWeighted Regression (MGWR)model.
This model was used to generate precipitation data at a resolution of
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1 km at both monthly and annual scales for the years 2001–2019.
The resulting dataset offers essential support for meteorological and
hydrological research within the basin.

2 Materials and methods

2.1 Study area

The Inner Mongolia Reach of the Yellow River Basin is situated
in the upper reaches of the Yellow River (37°37′–41°50′N,
106°28′–112°50′E), covering a total area of approximately
149,029 km2. This accounts for about 18.63% of the total area of
the Yellow River Basin, with elevations ranging from 843 to 2,315 m
(Figure 1). The study area is located in an arid and semi-arid region,
characterized by drought and scarce rainfall, strong evaporation,
large diurnal temperature variations, and is typical of a mid-
temperate continental climate (Wang et al., 2023). It has an
annual average precipitation of 305 mm and an average annual
temperature of 6.5°C (Zhang et al., 2023). Annual average
Precipitation gradually decreases from east to west (Table 1). In
the basin, grasslands account for 74.20%, cultivated land for 18.95%,
and forests for 6.85% (Zhang et al., 2023).

2.2 Data preparation

2.2.1 GPM IMERG
IMERG is a new generation of multi-satellite combined

precipitation data introduced through the GPM program. It offer
three types of products (Early, Late, and Final) based on different
data inversion algorithms. The IMERG Final product is considered
more accurate owing to its incorporation of rain gauge data from the
Global Precipitation Climatology Centre (GPCC) (Wang et al.,
2017). The IMERG V06 integrates information from available
GPM and TMPA sensors. This integration involves mutual
calibration, merging, interpolation, and fusion to generate
consistent precipitation estimates from June 2000 to the present
(Yu et al., 2022). For this study, we selected IMERG V06 (IMERG_
Final) daily data for the period 2001–2019, which we obtained from
the official NASA website (https://www.nasa.gov/). This dataset has
a spatial resolution of 0.1 ° × 0.1 ° (approximately 11 km × 11 km),
and annual and monthly precipitation data were derived from the
daily dataset.

2.2.2 Environment variables
Shuttle Radar Topography Mission (SRTM) data, accessible at

http://www.gscloud.cn, were utilized to derive a Digital Elevation

FIGURE 1
Location of the Inner Mongolia Reach of the Yellow River Basin and the meteorological stations in the study area.
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Model (DEM) with a spatial resolution of 90 m × 90 m. Within
ArcGIS 10.7, topographic factors such as elevation, slope, aspect, and
topographical relief were extracted from the DEM data. NDVI data,
sourced from the Moderate Resolution Imaging Spectroradiometer
(MODIS) on the Terra satellite, were obtained from NASA at https://
ladsweb.modaps.eosdis.nasa.gov/. MOD13A3 monthly composite
NDVI data, with a spatial resolution of 1 km × 1 km, were used.
The MOD13A3 data underwent preprocessing using the MODIS
Reprojection Tool (MRT) software, and annual NDVI data were
derived was generated using a maximum value composite method. To
maintain consistency with the GPM IMERG precipitation dataset and
MGWR downscaling, NDVI, elevation, slope, aspect, and
topographical relief data were resampled to two spatial scales, 0.1°

and 1 km, in ArcGIS 10.7. This resampling was performed using the
cubic convolution method because it offers good smoothing
performance, detail preservation, and edge sharpening. Cubic
convolution yields more satisfactory results compared to the
Nearest Neighbor and Bilinear Interpolation methods (Molinaro
et al., 2005).

2.2.3 Rain gauge data
Meteorological station precipitation data from 2001 to

2019 were acquired from the China Meteorological Data
Network (http://data.cma.cn) to validate the accuracy of both the
original GPM IMERG precipitation data and the downscaled
precipitation data. A total of 24 meteorological stations were
chosen, with observed precipitation data having an accuracy of 0.
1 mm. Daily data from these stations were aggregated into monthly
and annual precipitation values. Basic information about these
stations is available in Table 1.

2.3 Methods

2.3.1 Multiscale geographically weighted
regression (MGWR)

The Multiscale Geographically Weighted Regression (MGWR)
model is a regional regression model, that is widely used to study
dynamic relationships between target and explanatory variables

TABLE 1 Basic information of meteorological stations in the study area.

Number Name Latitude (E°) longitude (N°) Elevation(m) Annual mean precipitation (mm)

1 Wuyuan 41.05 108.28 1023.3 177.9

2 Dayutai 41.01 109.08 1078.7 241.4

3 Guyang 41.02 110.03 1360.4 308.1

4 Wuchuan 41.05 111.28 1637.3 354.4

5 Dengkou 40.20 107.00 1055.3 143.9

6 Haggin Rear 40.51 107.07 1024.0 137.4

7 Urad Front 40.44 108.39 1020.4 219.8

8 Baotou 40.32 109.53 1004.7 301.0

9 Tumd Right 40.33 110.32 998.6 381.1

10 Dalad 40.24 110.02 1011.0 326.2

11 Hohhot 40.51 111.34 1153.5 418.2

12 Tumed Left 40.43 111.10 1042.7 402.3

13 Suburb of Hohhot 40.45 111.42 1045.4 405.4

14 Togtoh 40.15 111.15 1015.9 372.3

15 Zhuozi 40.52 112.34 1451.7 390.0

16 Liangcheng 40.31 112.28 1268.9 410.9

17 Ikwusu 40.03 107.50 1180.3 189.1

18 Etuoke 39.05 107.58 1381.4 284.4

19 haggin 39.49 108.43 1414.0 304.5

20 Dongsheng 39.50 109.59 1461.9 393.2

21 Ejin Horo 39.34 109.43 1367.0 375.7

22 Wushenzhao 39.06 109.02 1312.2 437.7

23 Jungar 39.52 111.13 1221.4 426.3

24 Qingshuihe 39.55 111.40 1208.0 437.4

Note: The annual mean precipitation is the annual mean precipitation during 2001–2019.
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(Fotheringham et al., 2017). It allows each explanatory variable to
vary at different spatial scales, facilitating the capture of spatial non-
stationarity relationships among them. The MGWR model is
expressed as follows:

Yi � β0 μi, ]i( ) +∑n

i�1βbwj μi, ]i( )Xij + εi (1)

where Yi represents the target variable; β0(μi, ]i) is the intercept; n is
the number of observation points; βbwj(μi, ]i) is the regression
coefficient for the jth variable at location i, with bwj being the
bandwidth used for calibrating the jth variable; Xij is the jth
explanatory variable; and εi is the error term. The regression
coefficient is calculated as follows (Noor et al., 2023):

β μi, ]i( ) � XT W μi, ]i( )X(( )−1 XTW μi, ]i( )Y( ) (2)

where β(μi, ]i) denotes the regression coefficient to be estimated at
the location (μi, ]i); X and Y represent the vectors of the explanatory
and target variables, respectively; andW(μi, ]i) is the weight matrix.

Based on previous studies, the adaptive bi-square was chosen to
solve the weight matrix, with the AICc (corrected Akaike
information criterion) as the bandwidth selection criterion, and
the golden section search method was used to determine the
bandwidth (Chao et al., 2018; Arshad et al., 2021). All processes
were conducted using MGWR 2.2 software. The formula for the
adaptive bi-square is as follows:

wij � 1 − d2
ij

θi k( )
( )2

, dij < θi k( )

0, dij > θi k( )

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (3)

FIGURE 2
Flowchart of GPM IMERG downscaling process.
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where wij represents the weight of the jth observation point for
estimating the coefficient at location i; dij represents the Euclidean
distance between the jth and ith points; and θi(k) represents the size
of the adaptive bandwidth for the kth nearest neighbor distance,
determined by the AICc.

2.3.2 Precipitation downscaling process based
on MGWR

Previous research indicates that NDVI, elevation, slope, aspect,
and topographical relief are important factors influencing
precipitation (Wang et al., 2022; Bai et al., 2023). Considering
the spatial non-stationarity between precipitation and factors
such as vegetation and topography, and the considerable scale
differences in the spatial impact of NDVI, elevation, slope,
aspect, and ruggedness on precipitation, this study used the
MGWR model to downscale the GPM IMERG precipitation
dataset at both monthly and annual scales. The specific steps
were as follows (Figure 2):

(1) Data preparation: Environmental variables with spatial
resolutions of 0.1° and 1 km, as well as the original GPM
IMERG precipitation data at a resolution of 0.1°, were
prepared. The GPM IMERG data spanned the period from
January 2001 to December 2019, and was summarized at both
monthly and annual scales. Environmental variables included
NDVI, elevation, slope, aspect, and topographical relief, with
NDVI aligned with the temporal scale of the GPM IMERG
precipitation data.

(2) MGWRmodel establishment: Duan et al. have found that the
lag time of vegetation response to precipitation in the study
area is approximately 10 days (Duan et al., 2019). Therefore,
at a monthly scale, the current month’s NDVI data was
selected as the explanatory variable for the monthly
precipitation scale model. At monthly and annual time
scales, the GPM IMERG data with a resolution of 0.1°

were used as the target variable, and NDVI, elevation,
slope, aspect, and topographical relief of the same
resolution and time scale were used as explanatory
variables. The MGWR model was constructed at monthly
and annual scales to obtain the regression coefficients
β(μi, ]i), intercept term β0(μi, ]i), and residuals εi for each
explanatory variable at these scales. MGWR 2.2 software was
used to establish the MGWR model.

(3) Parameter interpolation: Using the Kriging method,
intercepts, slopes, and regression residuals from step (2)
were interpolated. This yielded high-resolution (1 km)
raster data of regression coefficients, intercept terms, and
residuals at monthly and annual scales.

(4) Downscaling completion: Based on Eq. 1, monthly and
annual precipitation values at a 1 km resolution were
obtained after downscaling using the MGWR model.

2.3.3 Simulation accuracy assessment
Using the MGWR downscaling approach outlined in Section

2.3.2, downscaled GPM IMERG data for the years 2001–2019 were
generated. The accuracy of the downscaled results (1 km) and the
original GPM IMERG precipitation data (0.1°) at annual and
monthly scales was validated using observed data from

24 meteorological stations in the study area. Three
indicators—correlation coefficient (R), Bias, and root mean
square error (RMSE)—were employed for the validation (Wang
et al., 2022), with the following formulas:

R � ∑n
i Mi − �M( ) Pi − �P( )�������������������∑n
i Mi − �M( )2 Pi − �P( )2√ (4)

Bias � ∑n
i Pi∑n
i Mi

− 1 (5)

RMSE �
�����������∑n

i Pi −Mi( )2
n

√
(6)

WhereMi (mm) and �M (mm) represent the measured precipitation
amount and its average value corresponding to the meteorological
station, respectively; Pi and �P (mm) represent the original or
downscaled GPM IMERG precipitation raster value and its
average value corresponding to the meteorological station,
respectively; n is the number of meteorological stations.

3 Results

3.1 Accuracy of downscaled GPM IMERG
precipitation

Observed precipitation from 24 meteorological stations in the
study area for the period 2001–2019 were used to validate the GPM
IMERG precipitation data that were downscaled using the MGWR
method. Figures 3, 4 represent the validation results of annual and
monthly downscaled and original precipitation, respectively.

The accuracy of annual precipitation from 2001 to 2019 is
shown in Figure 3 The accuracies of the downscaled precipitation
are better than that of the original precipitation. The annual trends
of three accuracy indicators for the original GPM IMERG and the
downscaled precipitation data were consistent (Figure 3). Overall,
on an annual scale, the downscaled data maintained a certain level of
accuracy while providing an improved reflection of the distribution
of precipitation in the study area. The correlation coefficient of the
downscaled annual precipitation varied from 0.648 to 0.937, with an
average of 0.843, indicating good correlation between the annual
downscaled precipitation and the measured data from the
meteorological stations. The Bias varied from −0.219 to 0.177,
with an average of 0.059. Except for the year 2013, the Bias was
less than 0.2, and Bias values were mostly positive, suggesting that
the simulated annual precipitation was generally overestimated
compared to the measured data from the meteorological stations.
The RMSE ranged from 45.53 mm to 99.88 mm, with an average
of 66.33 mm.

As shown in Figure 4, at a monthly scale, the trends of the three
accuracy indicators for both the original GPM IMERG and the
downscaled precipitation remained consistent. Overall, the accuracy
of the downscaled precipitation was greater than that of the original
precipitation from February to November. However, from
December to the following January, the accuracy of the
downscaled precipitation was lower than that of the original
GPM IMERG. The correlation coefficient for the downscaled
precipitation ranged from 0.552 to 0.932, with an average of
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0.758. Precipitation estimation accuracy in spring and autumn was
higher than that in summer and winter. This was attributed to
higher amount of precipitation in summer and the predominance of
snowfall in winter. The Bias was positive from April to October,
peaking in August (0.134), and negative from November to March,
reaching its lowest value in January (−0.538). This suggested that
increased vegetation growth and precipitation contribute to an
overestimation of monthly downscaled precipitation results. The
RMSE exhibited a unimodal variation pattern correlated with the
amount of monthly precipitation, ranging from 1.075 mm to
31.333 mm, with an average of 12.528 mm.

3.2 Downscaling results of GPM IMERG
precipitation datasets

Figures 5, 6 present a comparison of the spatial distribution of
annual and monthly average precipitation in the study area from
2001 to 2019, before and after downscaling. Downscaling using the
MGWR model considerably improved the spatial resolution of the
annual and monthly average GPM IMERG images compared to the

original GPM IMERG images. While the spatial distribution
remained consistent before and after downscaling, the
representation of precipitation distribution became more refined
post-downscaling. The multi-year average precipitation
demonstrated a decreasing trend from the southeast to the
northwest of the study area. Multi-year average precipitation
ranged from 145.4 to 475.4 mm before downscaling and from
138.8 to 481.3 mm after downscaling. Compared to the original
GPM IMERG data, the range of the downscaling simulation results
increased. While enhancing the spatial resolution, the precipitation
information became more comprehensive. The maximum monthly
average precipitation occurred in July, and the minimum in January.
The spatial distribution trends of monthly average precipitation and
annual average precipitation are consistent.

3.3 Analysis of variable effect scale based on
the MGWR model

To investigate scale differences in the impact of terrain and
vegetation factors on the spatial distribution of precipitation at an

FIGURE 3
Correlation coefficient (R) (A), Bias (B), and root mean squared error (RMSE) (C) of the observed and downscaled annual precipitation from 2001 to
2019. D represents the downscaled precipitation and O denotes the original GPM IMERG precipitation, similarly hereinafter.

FIGURE 4
Correlation coefficient (R), Bias, and root mean squared error (RMSE) values between measured precipitation and monthly precipitation from
2001 to 2019 before and after Downscaling.
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annual scale, this study selected the years 2005 and 2016 as typical
dry and wet years, respectively. The bandwidths in the MGWR
model were used to understand the range of influence of terrain and
vegetation factors in each typical year. Smaller bandwidths indicated
that the variable had a more localized influence on precipitation,
designating it as a local influencing factor, whereas larger
bandwidths suggested that the variable had a regional influence,
designating it as a regional influencing factor (Fotheringham et al.,
2017). Table 2 presents the bandwidth sizes of each variable obtained
from the MGWR model, revealing relatively small differences in the
scale of impact of variables in the dry year and comparatively larger
differences in the wet year. However, variables in each typical year
demonstrated localized impacts. Overall, precipitation in the Inner
Mongolia Reach of the Yellow River Basin exhibited considerable
spatial variation across different terrain and vegetation
cover intervals.

Regression coefficients indicate the extent of the impact of
vegetation and terrain factors on the spatial distribution of
precipitation. The trend of the regression coefficients (RC) of
variables in each typical year was generally consistent (Figure 7).
In dry and wet years, The areas in which NDVI had a positive effect
on the spatial variation in annual precipitation accounted for 59.73%
and 61.88% of the total area in the dry and wet years, respectively.
The positive effect of NDVI on annual precipitation was greater in
wet years than in dry years. This was because the presence of ample
soil moisture in wet years allowed plants to absorb more water from
the soil and release it into the atmosphere through their leaves,
increasing the atmospheric moisture content and promoting
precipitation (Vicente-Serrano et al., 2013). In dry years, areas
where topographical relief, aspect, and slope had a positive effect
on the spatial variation in annual precipitation accounted for
68.05%, 50.40%, and 53.96% of the total area, respectively. In wet
years, these areas where topographical relief, aspect, and slope
positively influenced the spatial variation in annual precipitation
accounted for 68.93%, 55.77%, and 69.53% of the total area,

respectively. Elevation primarily exerted a negative effect on the
spatial variation of annual precipitation, affecting 86.38% and
84.43% of the total area in dry and wet years, respectively. As
elevation, topographical relief, and slope increased, their impact on
annual precipitation gradually diminished due to the weakening
distribution of spatial precipitation influenced by terrain on the
transport and vertical movement of atmospheric moisture (Sokol
and Bliznák, 2009).

Utilizing the absolute values of standardized regression
coefficients to identify the primary factors influencing spatial
precipitation differences, Figure 8 illustrates that, irrespective of
dry or wet years, elevation emerges as the predominant factor in
shaping precipitation variations in the Inner Mongolia Reach of the
Yellow River Basin, encompassing approximately 50% of
the basin area.

4 Discussion

The downscaled simulation data, generated through the MGWR
model, were consistent with the GPM IMERG data in terms of
spatial distribution of precipitation and exhibited improved spatial
resolution and more detailed precipitation information. This is in
agreement with the findings of Arshad et al., who employed the
MGWR model for downscaling TRMM data in the Indus Basin
(Arshad et al., 2021). However, at the monthly scale, the accuracy of
some of the downscaled precipitation data was lower than that of the
GPM IMERG data. Arshad et al. used the Geographically Weighted
Regression Disaggregation Approach (GDA) to implement
corrections based on meteorological station data for downscaled
data with lower accuracy than the original data, and the accuracy of
the resulting downscaled data was superior to that of the original
data (Arshad et al., 2021). In the InnerMongolia Reach of the Yellow
River Basin, the scarcity of meteorological station data and difficulty
in obtaining this data have precluded the possibility of interpolation

FIGURE 5
Spatial distributions of the (A) original and (B) downscaled mean annual precipitation from 2001 to 2019.
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corrections based on meteorological station data for downscaled
simulation data. This highlights the fact that the accuracy of
downscaled data obtained only through linear downscaling may
not consistently be superior to that of the original data. Therefore,
the development of new downscaling algorithms is imperative to

obtain more accurate and reliable precipitation datasets at high
spatial resolution.

The selection of appropriate explanatory variables plays a crucial
role in the precipitation downscaling process and the performance
of the MGWR model. In this study, five explanatory variables were

FIGURE 6
Spatial distributions of the (O) original and (D) downscaled mean monthly precipitation from 2001 to 2019.
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TABLE 2 Differences in factor bandwidths in MGWR.

Variable Total bandwidth
MGWR

NDVI Topographical relief Aspect Slope Elevation

Dry year (2005)
1490

43 47 47 70 43

Wet year (2016) 44 70 99 154 43

FIGURE 7
Variation patterns of regression coefficients of each variable with respect to the variables in typical years.

FIGURE 8
Proportion of Variable Impacts on Precipitation in the MGWR Model. TR represents topographical relief.
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chosen for precipitation downscaling: NDVI, elevation, slope,
aspect, and topographical relief. These variables were selected
based on their regional importance and overall influence on the
spatial variation in precipitation (Lu et al., 2020). The five chosen
explanatory variables are commonly employed in precipitation
downscaling studies across various global basins (Chen et al.,
2014; Zhang et al., 2017; Zhang et al., 2018). It is noteworthy
that additional environmental variables, such as surface
characteristics (soil moisture and evapotranspiration) (Chen
et al., 2019; Yan et al., 2021b) and meteorological factors
(temperature, humidity, radiation, atmospheric circulation, and
cloud cover) (Arshad et al., 2021) can impact the spatial
distribution of precipitation. Future studies should consider
incorporating these environmental variables to further assess the
downscaling performance of precipitation.

5 Conclusion

Analysis of the spatial distribution of data before and after
downscaling indicated that the detailed features were better
represented post-downscaling. Following downscaling, the GPM
IMERG precipitation dataset exhibited a relative increase in
correlation coefficient, Bias, and RMSE when compared to the
values calculated from the measured precipitation data. Overall,
the accuracy of the data after downscaling was somewhat enhanced
and the data reflected the actual precipitation information and
distribution patterns across various time scales in the study area
with greater accuracy.

The MGWR model adopted different bandwidths for different
variables, thereby demonstrating the varying scale of influence of
different factors. The findings of this study indicate that the patterns
of spatial variation in both dry and wet years in the Inner Mongolia
Reach of the Yellow River Basin are determined by multiple spatial
scale processes of several variable factors. The impact of NDVI,
elevation, aspect, slope, and topographical relief displayed a localized
effect on precipitation in both wet and dry years. The MGWR
regression results highlighted elevation as the primary factor
influencing the spatial differentiation of precipitation in both wet
and dry years.

In summary, for the GPM IMERG precipitation dataset, the
application of the MGWR model enhances the spatial resolution
of precipitation data, revealing more detailed features. It also
ensures the consistency of data accuracy and spatial distribution.
This can provide a relatively reliable high-resolution
precipitation dataset for drought monitoring, hydrological
modeling, and water resource management in the Inner
Mongolia Reach of the Yellow River Basin.
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