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Balancing various objectives and navigating uncertainties, reducing CO2

emissions and enhancing energy efficiency in industry presents a complex
challenge. While previous studies primarily focused on conventional
optimization methods, this research introduces an innovative approach: a
multi-criteria optimization framework tailored to address uncertainties. The
primary objective is to optimize energy consumption, minimize emissions, and
improve cost efficiency simultaneously within the petrochemical industry. To
effectively manage uncertain variables, this study integrates decision-making
simulations and expert insights through a hybrid methodology to yield optimal
outcomes. Employing three distinct preference categories, themodel formulates
comprehensive decision-making strategies. Empirical findings underscore the
model’s efficacy in reducing CO2 emissions, bridging crucial gaps in existing
research, and advocating sustainable practices in the sector. Departing from
conventional methodologies, this research leverages advanced decision-making
techniques adept at handling uncertainty. The framework identifies pivotal
emission sources and advocates economically viable reduction strategies. Its
adaptability enriches our comprehension of emission challenges by considering
diverse factors and expert perspectives. Professional assessments affirm the
model’s success and propose a Coding-Based Prototype as a strategic tool
for addressing uncertainties. These results underscore the imperative for
policy reforms, such as embracing carbon capture technologies, to bolster
global sustainability and foster enduring growth in the industrial domain.
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1 Introduction

The emission of carbon and other greenhouse gases is a critical global issue, significantly
affecting the Earth’s climate by increasing temperatures and contributing to air pollution,
which in turn affects public health (Fang G. et al., 2022). Factors such as rapid population
growth, widespread industrialization, and growing energy needs have led countries to focus
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as shown in Figure 1 on renewable energy sources and energy-saving
measures (Dong F. et al., 2022). It’s essential to recognize that
economic expansion, a key component of GDP, fuels energy
demand, especially in industrial activities, thereby increasing
carbon emissions (Wang et al., 2022). Moreover, globalization,
which makes it easier to enter new markets, has led to higher
production levels, further boosting energy use and emissions
(Fang T. et al., 2022). A lack of environmental consciousness
among both companies and individuals exacerbates the issue,

with economic motives often overriding the environmental
benefits of switching to cleaner energy sources (Zhong et al.,
2022; Pan et al., 2022). Tackling carbon emissions effectively calls
for a strategic and cost-efficient approach. This necessitates a
renewed investigation to enhance resource efficiency and create a
detailed framework for decision-making that identifies key factors
and their interconnections. The present study aims to reform the
management of carbon emissions in the petrochemical sector by
employing an innovative hybrid decision-making model. This

FIGURE 1
Graphical representation of distance measure and similarity measure.
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model overcomes the gap left by previous research, offering a
comprehensive strategy that accounts for uncertain data, focuses
on cost-effectiveness, and includes expert insights. It promotes
sustainable policies, validated through practical applications and
expert assessments, and underscores the importance of regulatory
measures, highlighting the role of carbon capture technologies in
achieving global sustainability.

The main contributions of this paper include:

1. Introduces an innovative fuzzy decision-making model
prioritizing financially viable emission reduction strategies.

2. Develops a Python-based prototype assessing factors and
techniques in the Petrochemical Industry.

3. Utilizes linguistic terms for precise evaluations, offering
heightened originality and efficacy.

4. Exploits Decision Making methodologies for uncertain data
analysis and multi-criteria decision-making, improving
result accuracy.

5. Introduces a comprehensive approach involving six
components to widen the analytical landscape.

The rest of the document is organized in the following manner:
The subsequent section involves reviewing the literature. Following
that, the second section focuses on the methodologies and findings
of the analysis. Ultimately, the concluding section expands upon the
discussions and draws conclusions.

2 Literature

The global challenge of rising carbon emissions has spurred
worldwide efforts for resolution, marked by intensified research
and heightened concerns (Lin and Guan, 2023; Pang et al., 2023;
Yu et al., 2023). Studies emphasize a direct link between economic
growth, driven by business investments, and increased carbon
emissions (Cui et al., 2022). While such investments create
employment opportunities, unregulated surges may worsen
emissions due to extensive energy consumption in production
processes (Li et al., 2022; Lin and Sai, 2022; Liu et al., 2022; Jin et al.,
2022; Navidi et al., 2022). Fossil fuel reliance in economic growth
amplifies emissions (Akadiri and Adebayo, 2021), observed
notably in India and top GDP countries (Zuo et al., 2022).
Globalization fuels emissions through increased international
trade, enabling multinational investments and necessitating
heightened production capacities to meet diverse consumer
demands (Xu et al., 2022; Lyu et al., 2022; Dong W. et al.,
2022; Ren et al., 2022; Tao, 2022). The global reliance on fossil
fuels intensifies emissions, particularly in G20 countries and
Argentina (Yuping et al., 2021; Sheraz et al., 2021; Xiaoman
et al., 2021; Qamruzzaman, 2022). Studies highlight
globalization’s reduced environmental sensitivity, leading to
heightened production, energy demands, and waste generation
(Akram et al., 2022; You and Zhang, 2022; Yunzhao, 2022;
Abushamah and Skoda, 2022). Advocating for heightened
environmental awareness, studies stress its pivotal role in
addressing carbon emission challenges (Zhang et al., 2021;
Razmjoo et al., 2021). Financial considerations contribute to
emissions, as businesses prioritize cost-effective fossil fuels over

renewables (Kuang et al., 2022; He et al., 2022). Mitigating this
requires enhancing the cost competitiveness of renewable energy
through research, development, and governmental incentives (de
Oliveira andMoutinho, 2022; Gu et al., 2022; Sun and Zhang, 2022;
Aihua et al., 2022; Guo et al., 2021). Efficient strategies, employing
fuzzy decision-making models, can minimize carbon emissions
(Guo et al., 2021). Refinery-chemical integration, particularly
focusing on reducing oil usage while increasing the production
of value-added chemicals, has emerged as a pivotal direction for
the sustainable advancement of the petrochemical sector (Wong
et al., 2023; Statista, 2023). While this integration offers the
advantage of efficient crude oil utilization, it presents challenges
in balancing increased petrochemical output with decreased
environmental impact. Following the US, China is recognized as
the second-largest nation in terms of oil refining capacity and
chemical consumption. By 2030, the number of refineries in China
is projected to rise from 220 in 2018 to 245, with processing
capacity escalating from 611.68 million tons to 956.30 million tons
(Simayi et al., 2021; Independent Commodity Intelligence Service,
2023). This underscores the tension between sustainable
development goals and industry expansion. Furthermore, in
2021, petrochemical production contributed to approximately
25.5% of the total industrial VOC emissions and 20.0% of the
total industrial carbon emissions (United Nations Environment
Programme, 2023). The situation concerning wastewater and solid
waste generation remains concerning. Additionally, China has
enacted a series of regulations aiming for the petrochemical
industry to reduce its energy intensity and CO2 emissions by
10.0% and 12.5%, respectively, from the 2020 levels (National
Development and Reform Commission of the People’s Republic of
China, 2022). Consequently, there is a pressing need for
collaborative reduction and optimization, given the homologous
nature of multiple pollutants and carbon emissions. Petrochemical
processes exhibit an inseparable elemental relationship across
various units due to energy-intensive production and feedstocks
that act as energy carriers. This complexity complicates the
quantification of material or energy loss, as well as waste
emissions, because of their intrinsic role in material-energy
coupling (Deng et al., 2023; Alazaiza et al., 2022). Therefore, a
precise integrated analysis is crucial for managing complex systems
and guiding pollution abatement. To elucidate the coupling
relationship within an integrated system, several studies have
been conducted on petrochemical production, especially in
refineries (Sun et al., 2020; Sarwer et al., 2022; Thanigaivel
et al., 2022). Ye et al. (2022) developed a simulation model that
established an inherent relationship between delayed coking and
hydrotreating in a refinery, quantifying the impact of upstream
reaction condition changes on downstream products. Mohseni
et al. (2019) employed an interpretive structural modeling
technique to identify interrelations between different refining
production modes, including setup reduction and pull
production. These models, within a multi-factor management
framework, enable the tracking of reaction pathways and
synergistic material-energy transformations. Nevertheless, with
the trend towards refinery-chemical integration, it is insufficient
to explore the refinery alone, as petrochemical manufacturing also
significantly influences material-energy interactions and system
stability (Zhang et al., 2023).
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2.1 Motivation/research gap

Previous investigations (Ignatius et al., 2016), (Yu et al.,
2014), (Dinçer et al., 2023), and (Ubando et al., 2013) have
encountered obstacles in identifying and implementing precise
methods for curbing carbon emissions, prompting the need for
this study to predict feasible reduction strategies and assess their
efficacy accurately. The cited works lack sufficient granularity for
thorough data analysis, hampering comprehensive
understanding and effective decision-making. Moreover, their
models struggle with managing non-membership values and
falter when parameters are subdivided into sub-parameters. To
overcome these limitations, we introduce an advanced
framework integrating intuitionistic fuzzy set theory with
hypersoft set theory, resulting in the Intuitionistic Fuzzy
Hypersoft Set (IFHSS) approach. This methodology offers two
key advancements: first, it expands the spectrum of membership
(truth) and non-membership (falsity) values, and second, it
enhances the management of parameters with nested sub-
parameters, enabling more nuanced and accurate analysis. Our
research focuses on devising effective emission reduction
strategies within the petrochemical sector by targeting energy
consumption, optimizing CO2 mitigation, and minimizing
operational costs. The objective is to pinpoint the most
economically viable solutions for achieving these goals. The
findings aim to provide actionable insights for policymakers
and industry stakeholders, empowering them to make
informed decisions on carbon reduction initiatives.

3 Methodology

Addressing carbon emissions, highlighted by globalization
and economic expansion (Fang G. et al., 2022; Ren et al., 2022;
Tao, 2022), necessitates considering environmental awareness
and financial factors (Qamruzzaman, 2022; Yunzhao, 2022).
However, simultaneous resolution proves impractical due to
associated costs, prompting a fresh investigation utilizing
three programming-based decision-making techniques (Al-
Kasasbeh et al., 2022). These methodologies offer a
comprehensive exploration of emission management,
introducing each with code demonstrations adaptable to real-
world scenarios. The study focuses on prioritizing contributors to
carbon emissions in the petrochemical sector, starting with the
Entropy-based approach. This method utilizes entropy to
identify significant emission contributors and recommends
cost-effective mitigation strategies across three phases (Al-
Kasasbeh et al., 2022). The study aims to guide further
research in integrating decision-making with artificial
intelligence and machine learning in emission reduction
within the petrochemical industry. In this study, three
methodologies are employed. First, a coding-based IHSS
entropy approach is used to identify the primary sources of
carbon emissions. Second, similarity measure techniques are
applied to determine the most cost-effective and beneficial
carbon emission reduction strategies. Lastly, a parametric
TOPSIS method is utilized to rank various carbon emission
reduction techniques.

Definition 1: (Saqlain et al., 2023) An Entropy (EN) function on
the IHSS (Intuitionistic Hypersoft Set), denoted by
E: IHSS(U) → R+ ∪ 0, satisfies:

• E(ϱ) � 0 if and only if ϱ ∈ IHSS(U).
• E(ϱ) � mn if uΨ(g)(x) � 0 for all g ∈ E and x ∈ U .
• E(ϱ) � E(ϱc) for all ϱ ∈ IHSS(U).
• E(ϱ)≤E(ς) if ς ⊆ ϱ, where ϱ � (Ψ1, G1) and ς � (Ψ2, G2).

The expression for E(ϱ), the IHSS entropy for ϱ � (Ψ1, G1), is
given by:

E ϱ( ) � ∑n
j�1

∑m
i�1

1( − uΨ1 gj( ) xi( )( )
This formula defines the IHSS entropy for the specified IHSS

ϱ � (Ψ1, G1). Consider a universal set X. Define
G � Q1 × Q2 ×/× Qn, where n≥ 1, and Qi represents sets of
valuable features. The steps for the IHSS-based EN are as follows
as shown in Algorithm 1:

1: Express data linguistically.

2: Input each IHSS.

3: Transform IHSS using 1
2 (1 + Tε

s(r)−Fε
s(r)

Tε
s(r)+Fε

s(r)+1) (Atanassov,

1986), where T and F denote truth and non-

membership respectively.

4: Compute IHSS values for factors related to carbon

emissions in the petrochemical industry.

5: Utilize Table 1 to interpret factors contributing to

carbon emissions.

6: Determine entropy (EN) for each IHSS using 3.

7: Select IHSS with minimum entropy for optimal outcome.

8: If multiple IHSS exhibit low entropy, choose any.

Algorithm 1. IHSS entropy based algorithm.

Factors’ IHSS computation using 1
2 (1 + Tε

s(r)−Fε
s(r)

Tε
s(r)+Fε

s(r)+1) (Atanassov,
1986), yields: Fuel = 0.5, Processes = 0.1, Efficiency = 0.3,
Compliance = 0.75.

In Table 1, values (0.5, 0.4) relate to carbon emissions for g1 �
(Investment, Processes Market Dynamics, Process Safety Incidents):

Note: Feedstock Processing contributes 50% to carbon emissions
for g1.
Feedstock Processing does not contribute in 40% of g1 cases.

3.1 Example

In the petrochemical industry, rising carbon emissions pose
challenges amid increasing global demand driven by population
growth and technological advancements. Current methods fall
short in addressing the need for sustainable solutions.
Identifying primary emission factors and proposing effective
reduction techniques is crucial, despite complex implementation
risks. Six carbon emission factors (X � a, b, c, d, e, f) are
studied: Feedstock Processing (a), Energy Consumption (b),
Combustion of Fossil Fuels (c), Chemical Reactions (d), Waste
Management (e), and Transportation (f). These factors are
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examined alongside unique attributes (Q1, Q2, Q3), such as
Economic Development, Industrial Structure, and Operational
Risk. A combination space G1 results from Q1 × Q2 × Q3. Expert
opinions (∂1, ∂2, ∂3, ∂4) are sought to determine influential
emission factors. Management plans to integrate evidence
using IHSS implementations outlined in Tables (Fang G.
et al., 2022; Dong F. et al., 2022; Wang et al., 2022; Fang T.
et al., 2022; Zhong et al., 2022; Pan et al., 2022). IHSS will be
transformed into fuzzy hypersoft sets, denoted by 1

2 (1 +
Tε
s(r)−Fε

s(r)
Tε
s(r)+Fε

s(r)+1) (Atanassov, 1986). Entropy values for different
sources (e.g., Feedstock Processing, Energy Consumption) are
calculated using Python programming. For instance, the entropy
of Feedstock Processing is 13.10. The optimal solution with the
least entropy (E(Feedstock Processing)� 13.10) suggests it as the
primary contributor to carbon emissions in the petrochemical
industry. Although only a limited number of Tables 1, 2 have
been depicted here, the remaining ones will be managed with the
aid of programming. Please see the supplementary material for
the Python code as shown in Algorithm 2.

1: Insert each IHSS.

2: Establish similarity for each IHSS using a

defined method.

3: Choose the IHSS with the most similarities.

4: Select one optimal if multiple are obtained.

Algorithm 2. IHSS similarity measure based algorithm.

3.2 Carbon emission reduction technique
selection based on similarity measure

Discussion revolves around IHSS distance measures and a
specific definition for similarity measure in IHSS.

Definition 2: (Saqlain et al., 2023) Defines IHSS ξ � (Ψ1, G1) and
ζ � (Ψ2, G2) within an initial universe development U .

Distances for ξ and ζ are determined as follows:

1. Hamming distance
2. Normalized Hamming distance
3. Euclidean distance
4. Normalized Euclidean distance

Properties:

• For Hamming and normalized Hamming distances:
0≤ dHIHSS(ξ, ζ)≤mn, 0≤ dnHIHSS(ξ, ζ)≤ 1

• For Euclidean and normalized Euclidean distances:
0≤ dEIHSS(ξ, ζ)≤

���
mn

√
, 0≤ dnEIHSS(ξ, ζ)≤ 1

The proposed DM can define similarity measure between Fuzzy
Hypersoft sets, characterizing various similarity measure between
IHSS ξ and ζ .

•SHIHSS(ξ, ζ) � 1
1+dHIHSS(ξ,ζ)

•SEIHSS(ξ, ζ) � 1
1+dEIHSS(ξ,ζ)

•SnHIHSS(ξ, ζ) � 1
1+dnHIHSS(ξ,ζ)

•SnEIHSS(ξ, ζ) � 1
1+dnEIHSS(ξ,ζ)

3.2.1 Example
In the realm of petrochemical industries: The pursuit of techniques

to curtail carbon emissions has become paramount. Innovative
technologies like Carbon Capture and Storage (CCS), Renewable
Feedstocks, and Energy Efficiency measures are revolutionizing the
sector. CCS involves capturing carbon dioxide emissions from
industrial processes and storing them underground to prevent their
release into the atmosphere. Process Intensification aims to optimize
chemical processes to minimize energy consumption and waste
generation. Renewable Feedstocks focus on using sustainable raw
materials instead of fossil fuels to produce chemicals. Energy
Efficiency measures concentrate on reducing energy consumption
during petrochemical production processes. Embracing these
advancements holds immense potential to significantly mitigate
carbon footprints in the petrochemical industry, fostering
sustainability and environmental responsibility. To simplify, we
provide data solely for two Carbon Capture Storage and ideal
carbon emission reduction technique. Detailed materials related to
these methods are available in the supplementary files for further
review. Python programming can facilitate this process; please see
1 and the supplementary material for the Python code for the
specific code involved.

1. Our objective is to identify the ideal sustainable energy source
based on established standards within the petrochemical
industry. Within this framework, the concept of IHSS plays
a pivotal role in our exploration and evaluation of potential
carbon emission reduction techniques.

Carbon Capture and Storage ξ � (φ,F ) �
Ψ1(g1) � {〈u1, (0.3, 0.1)〉, 〈u2, (0.2, 0.4)〉, 〈u3, (0.6, 0.4)〉},
Ψ1(g2) � {〈u1, (0.2, 0.3)〉, 〈u2, (0.5, 0.1)〉, 〈u3, (0.6, 0.4)〉},
Ψ1(g3) � {〈u1, (0.7, 0.3)〉, 〈u2, (0.3, 0.2)〉, 〈u3, (0.5, 0.2)〉},

TABLE 1 Experts’ views on feedstock processing using IHSS and sub-
parameters.

Expert evaluation/
Parameters

g1 g2 g3 g4

∂1 (0.5,0.3) (0.1,0.5) (0.9,0.1) (0.1,0.4)

∂2 (0.9,0.1) (0.4,0.2) (0.7,0.1) (0.1,0.5)

∂3 (0.6,0.2) (0.2,0.1) (0.1,0.1) (0.3,0.2)

∂4 (0.5,0.3) (0.1,0.4) (0.7,0.2) (0.7,0.3)

TABLE 2 Experts’ views on feedstock processing using IHSSES and sub-
parameters.

Expert evaluation/Parameters g1 g2 g3 g4

∂1 0.5 0.37 0.7 0.4

∂2 0.7 0.56 0.66 0.37

∂3 0.61 0.53 0.5 0.53

∂4 0.55 0.4 0.63 0.6
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Ψ1(g4) � {〈u1, (0.2, 0.4)〉, 〈u2, (0.4, 0.2)〉, 〈u3, (0.2, 0.1)〉},
and ideal carbon emission reduction technique in the form of

IHSS is ζ � (ψ,F ) �
Ψ2(g‴1) � {〈u1, (0.5, 0.2)〉, 〈u2, (0.5, 0.4)〉, 〈u3, (0.2, 0.1)〉},
Ψ2(g‴2) � {〈u1, (0.5, 0.4)〉, 〈u2, (0.5, 0.1)〉, 〈u3, (0.1, 0.4)〉},
Ψ2(g‴3) � {〈u1, (0.4, 0.5)〉, 〈u2, (0.1, 0.6)〉, 〈u3, (0.4, 0.1)〉},
Ψ2(g‴4) � {〈u1, (0.3, 0.5)〉, 〈u2, (0.1, 0.6)〉, 〈u3, (0.2, 0.5)〉},

Using Programming,

(a) Hamming distance: 4.8
(b) Normalized Hamming distance: 0.39999999999999997
(c) Euclidean distance: 1.2328828005937953
(d) Normalized Euclidean distance: 0.3559026084010437
(e) Similarity function (Hamming): 0.1724137931034483
(f) Similarity function (Normalized Hamming):

0.7142857142857143
(g) Similarity function (Euclidean): 0.4478515396034525
(h) Similarity function (Normalized Euclidean):

0.7375160972507133

2. Select the options that exhibit the highest similarity measure,
consequently identifying the most effective technique for
reducing carbon emissions in the petrochemical industry.
Although only a limited amount of data is provided here,
additional data will be processed using programming tools.

3.3 Using a TOPSIS-Based optimised IHSS
classifier for evaluations of carbon emissions
in the petrochemical industry

The petrochemical industry faces a critical challenge in reducing
carbon emissions to combat climate change. To address this, a
multifaceted approach is crucial, exploring various strategies from
energy-efficient practices to technological advancements. The
introduction of a Multi-Criteria Decision Making (MCDM)
system centered on the Technique for Order of Preference by
Similarity to Ideal Solution (TOPSIS) offers a holistic strategy to
evaluate and rank carbon emission reduction methods. This
evaluation considers social, institutional, technological, financial,
and environmental factors. Eight types of resources for reduction
techniques, such as carbon capture, energy efficiency, and bio-based
alternatives, are explored. To practically apply these methods, a
Python-based prototype utilizing the TOPSIS algorithm (Please see
supplementary material for the Python code), allow for efficient data
analysis, prioritization of strategies, and informed decision-making.
This coding prototype showcases Python’s effectiveness in
addressing complex environmental challenges within industrial
domains. To simplify, we’ll showcase solely Tables 3, 4, while
utilizing programming to manage the others.

3.4 Numerical example

Let X � {a, b, c, d, e, f, g, h} denote alternatives such as Carbon
Capture and Storage (a), Energy Efficiency Improvements (b),

Optimization of Processes (c), Emission Control Technologies (d),
CarbonOffsetting and Renewable (e), Energy Efficiency Improvements
(f), Carbon Capture and Storage (g), and Emission Control
Technologies (h). A group of experts δ1, δ2, δ3, δ4 evaluates these
using weights (0.2, 0.3, 0.1, 0.05, 0.15, 0.05, 0.05, 0.1)T. Features a1 �
Environmental, a2 � Quality of Energy Source, and a3 � Economic
contain sub-parameters Q1 � {η1, η2, η3, η4}, Q2 � {η5, η6}, and
Q3 � {η7}. These form a set Q1 × Q2 × Q3 � Zi, i � 1, 2, 3, . . . 8.
The decision-making process comprises the following steps as shown in
Algorithm 3.

1. Generate a decision average matrix based on expert opinions
and normalize it.

2. Obtain weighted decision matrices for each alternative.
3. Determine positive and negative ideal solutions.
4. Calculate the distance of each alternative from these solutions.
5. Compute preference values for each alternative based on the

calculated distances.

1: Input IHSS.

2: Transform IHSS into a fuzzy hypersoft set using

3: 1
2 (1 + Tε

s(r)−Fε
s(r)

Tε
s(r)+Fε

s(r)+1) (Atanassov, 1986).

4: Generate average decision matrices for alternatives

using standardized precipitation fuzzy conceptual

framework and employ TOPSIS to assess efficiency.

5: Calculate weighted normalized fuzzy control matrix:

yij � wirij.

6: Formulate optimal positive and negative solution

matrices:

7:

8: Positive: A+ � (y+
1 ,y

+
2, . . . ,y

+
n).

9: Negative: A− � (y−
1 ,y

−
2, . . . ,y

−
n).

10: Compute disparity between alternative attribute

values and ideal solutions:

11: Distance to positive ideal solution: D+ ���������������∑n
j�1(y+

i − yij)2
√

.

12: Distance to negative ideal solution: D− ���������������∑n
j�1(y−

i − yij)2
√

.

13: Assign preference values to alternatives: Vi � Di−
Di−+D+

i
.

14: Arrange options based on preference values and

choose the most suitable one.

Algorithm 3. IHSS TOPSIS based algorithm.

3.4.1 Limitation
1. The study is ineffective when the combined total of the

membership and non-membership functions exceeds one.
2. Although the proposed study involves extensive calculations,

employing software could potentially address this issue
effectively.

3.4.2 Comparative studies
This segment assesses the effectiveness and benefits of our ENT-

driven approach, which integrates SM and TOPSIS within the IFHSS
framework, through multiple comparisons. These comparisons
underscore both the strengths and limitations of our strategy
compared to conventional techniques. We benchmarked our
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method against several widely-used approaches in the field. A notable
limitation of existing techniques is their inability to efficiently categorize
attributes into discrete values and handle non-membership elements

(falsity). Our proposed methodologies adeptly overcome these
challenges, distinguishing themselves from the shortcomings typical
of traditional methods. For detailed insights, refer to Table 5.

TABLE 3 The combined viewpoints of all specialists.

Carbon emission reduction technique/Criteria 1 2 3 4 5 6 7 8

Carbon Capture and Storage 0.04 0.98 0.78 0.41 0.22 0.54 0.31 0.8

Energy Efficiency Improvements 0.15 0.75 0.25 0.72 0.46 0.79 0.61 0.12

Optimization of Processes 0.27 0.57 0.92 0.39 0.37 0.87 0.33 0.42

Emission Control Technologies 0.52 0.12 0.24 0.58 0.51 0.42 0.63 0.71

Carbon Offsetting and Renewable 0.83 0.99 0.42 0.21 0.39 0.62 0.61 0.64

Bio-based Alternatives 0.11 0.71 0.66 0.89 0.38 0.87 0.48 0.62

Improved Manufacturing Processes 0.63 0.67 0.78 0.06 0.6 0.07 0.89 0.38

Product Innovation and Recycling 0.75 0.44 0.89 0.16 0.67 0.46 0.48 0.45

TABLE 4 Final ranking matrix.

Carbon emission reduction technique/Criteria 1 2 3 4 5 6 7 8 Rank

Carbon Capture and Storage 0.04 0.98 0.78 0.41 0.22 0.54 0.31 0.8 5

Energy Efficiency Improvements 0.15 0.75 0.25 0.72 0.46 0.79 0.61 0.12 7

Optimization of Processes 0.27 0.57 0.92 0.39 0.37 0.87 0.33 0.42 8

Emission Control Technologies 0.52 0.12 0.24 0.58 0.51 0.42 0.63 0.71 1

Carbon Offsetting and Renewable 0.83 0.99 0.42 0.21 0.39 0.62 0.61 0.64 6

Bio-based Alternatives 0.11 0.71 0.66 0.89 0.38 0.87 0.48 0.62 2

Improved Manufacturing Processes 0.63 0.67 0.78 0.06 0.6 0.07 0.89 0.38 3

Product Innovation and Recycling 0.75 0.44 0.89 0.16 0.67 0.46 0.48 0.45 4

TABLE 5 Evaluating the FHSS method against existing approaches (S-P=Sub-parameters, MEM = Membership, FAL = Falsity).

SN References S-P MEM FAL Numerical results/Key findings

1 Mishra et al. (2021) No Yes Yes No numerical results. Lacks sub-parameters but aligns with FHSS on membership

2 Das and Roy (2019) No Yes Yes No numerical results. Focuses on challenges but omits detailed parametric analysis, reinforcing FHSS’s
novelty

3 Du et al. (2024) No Yes No No numerical results. Partially aligns but lacks falsity parameter

4 Pawanr et al. (2023) No No No No numerical results. A soft computing approach without membership or falsity tracking

5 De et al. (2021) No Yes No No numerical results. Text similarity focuses on membership but excludes falsity

6 Mohsen and Abbassi
(2020)

No Yes No No numerical results. ANN-based approach aligns on membership but lacks falsity

7 Vinotha et al. (2021) No Yes No No numerical results. Uses adjustable similarity but excludes falsity, unlike FHSS.

8 Pavičević et al. (2020) Yes Yes Yes Opt Ent = 7.12, Opt SM= 0.92. TOPSIS: 5 > 7 > 8 > 1 > 6 > 2 > 3 > 4. Close alignment with FHSS, covering all
parameters

9 Mishra et al. (2021) Yes Yes Yes Opt Ent = 7.31, Opt SM = 0.88. TOPSIS: 5 > 7 > 8 > 1 > 6 > 2 > 3 > 4. Similar to FHSS with consistent
entropy-similarity results

10 Proposed (FHSS +
TOPSIS)

Yes Yes Yes Opt Ent = 7.29, Opt SM = 0.92. TOPSIS: 5 > 7 > 8 > 1 > 6 > 2 > 3 > 4. Demonstrates comprehensive
parameter coverage and efficiency
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4 Discussion and concluding remarks

This study aims to thoroughly investigate the key factors driving
carbon emissions, develop effective strategies for reducing these
emissions, and strike a balance between maintaining
competitiveness and controlling costs. To achieve these objectives,
the research utilizes three expert-driven decision-making approaches.
First, an entropy-based IFHSS (Intelligent Fuzzy Hybrid System)
calculation is employed to pinpoint the primary sources of carbon
emissions, revealing that Feedstock Processing stands out as a crucial
contributor within the petrochemical sector. This insight underscores
the importance of focusing on specific processes that significantly
impact overall emissions. Second, a similarity measure method is
applied to assess various carbon emission reduction techniques,
identifying carbon capture and storage (CCS) as one of the most
promising strategies for mitigating emissions. This technique is
highlighted for its potential effectiveness in the sector. Third, the
study utilizes a TOPSIS-based IFHSS approach to prioritize strategies
such as Carbon Offsetting and Renewable Energy initiatives for
emission reductions in the petrochemical industry. This method
evaluates multiple parameters and scenarios, ensuring a
comprehensive assessment of the most viable options for achieving
lower emissions. The findings from this research carry important
implications for procurement strategies, management practices, and
policy development within both corporate and governmental
contexts. The study emphasizes the urgent need for a shift toward
sustainable practices, particularly in light of how globalization
influences emissions and the management of increasing trade
volumes. To facilitate the petrochemical industry’s efforts in
understanding and addressing emission factors, a tailored
prototype has been developed. This tool assists in evaluating
emissions and testing various mitigation strategies. Among the
recommended actions are the implementation of stringent
regulations, including the adoption of carbon capture technologies,
while carefully considering associated costs. The study also suggests
that governmental incentives should be established to encourage
compliance with these regulations. Furthermore, the research
advocates for the development of dynamic technological policies
that can adapt to emerging advancements and regulatory changes
in the field. Looking ahead, future studies could expand their focus
beyond the petrochemical sector to encompass other significant
carbon-emitting industries such as steel, cement, and power
generation. These sectors face similar challenges regarding
emissions and energy consumption. By applying lessons learned
from the petrochemical industry, it is possible to devise innovative
strategies and enhance carbon management practices across these
other domains. This interdisciplinary approach could serve as a
blueprint for promoting a broader transition towards sustainable
operations throughout various industrial sectors.
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