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Plastic pollution ranks among the most severe environmental disasters caused by
humans, generating millions of tonnes of waste annually. The extensive and
unregulated use of plastics has led to ecotoxicity and environmental imbalance.
Microplastics (MPs) are prevalent in aquatic environments, and these MPs further
degrade into even smaller particles known as nano-plastics (NPs). Both MPs and
NPs impact the environment by readily absorbing organic pollutants and
pathogens from their surroundings, owing to their bigger surface area to
volume ratio. This review focuses on the source of origin, bioaccumulation,
and potential impact of MPs and NPs on aquatic organisms and human health.
Additionally, the review explores variousmethods employed for identification and
quantification of these particles in aquatic ecosystems. Sufficient information is
available on their characteristics, distributions, and effects on marine ecosystems
compared with freshwater ecosystems. For plastic particles <10 μm, more
toxicological effects were observed compared with larger size particles, in
aquatic life. Understanding the mechanism of action and ecotoxicological
effects of micro/nano-plastics on the health of aquatic life across various
trophic levels, as well as human health, is of utmost importance. We address
knowledge gaps and provide insights into future research approaches for a better
understanding of the interactive mechanisms between binary pollutants.
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1 Introduction

Plastic debris has emerged as a global environmental issue, and
the improper handling of plastic waste has led to a rapid escalation of
its presence in ecosystems (Oliveira et al., 2019; Yu et al., 2019)

especially aquatic ecosystems (Han et al., 2024). The worldwide
annual production of plastic materials now exceeds 320 million
tonnes, with 40% dedicated to single-use packaging (Food and
Agriculture Organization, 2013). A staggering 70% of plastic
material, amounting to 5,800 million tonnes, has transformed

TABLE 1 Toxicological effects of various microplastics and nanoplastics on aquatic organisms.

Test
organism

Size (nm) Concentration
(mg/L)

Contaminant
type

Exposure
duration

Observations References

Ctenopharyngdon
idella

470 0.034 Polystyrene 20 days DNA damage, erythrocytes
mutagenic and cytotoxic
effect

Guimarães et al. (2021)

Daphnia pulex 60 76.69 Polystyrene 96 h Nanoplastics induce immune
defence and oxidative stress

Liu et al. (2021)

Macrobrachium
nipponense

75 40 Polystyrene 28 days Effects on reproduction Li et al. (2021)

Hydra viridissima 40 40 Polymethyl
Methacrylate

96 h Morphological alteration like
partial or complete loss of
tentacles

Venancio et al. (2021)

Daphnia pulex 75 .001 Polystyrene 21 days Effects on growth rate and
reproduction

Liu et al. (2020)

Danio rerio 1,000 50 Polystyrene NPs 12 h Nanoplastics induce immune
response in test organism

Brandts et al. (2020)

Phaedactylum
tricornutum

60 100 Carboxylated
polystyrene

72 h Reduction of intracellular
generation rate of ROS

Grassi et al. (2020)

Chlorella vulgaris 500 250 Polystyrene 12 h Deformation of cell wall,
cellular stress

Gomes et al. (2020),
Hazeem et al. (2020)

Rhodomonas
baltica

50 0.5–100 Polymethyl
Methacrylate

72 h Pigment overproduction,
membrane integrity lost, and
mitochondrial membrane
hyperpolarization

Artemia
franciscana

100 500 Polystyrene 24 h Greater bioaccumulation of
PS in stomach and gut

Qiao et al. (2019b),
Sendra et al. (2020)

Danio rerio 5,000 0.5 Polystyrene 3 weeks Inflammation and thinning
of intestinal wall, intestinal
damage 86%

Danio rerio 20,000–100000 0.01 Nano-plastics 21 days An increase in mast cells
based on intestinal
epithelium, Defects in the
intestinal mucosa

Qiao et al. (2019a)

Chaetoceros
neogracile

50 5 Polystyrene amino
modified

4 days Chlorophyll rate decrease due
to microplastic exposure

González-Fernández
et al. (2019), Sallam
et al. (2020)

Mytilus
galloprovincialis

2–4,000 µm 5×105 particles/L Polystyrene,
polypropylene,
polyethylene
terephthalate

3 days Sex and gametogenesis cycle
could influence contaminant
uptake and elimination or
biomarkers levels in molluscs

Pizzurro et al. (2024)

Isochrysis galbana 40 83.7 Polymethyl
Methacrylate

96 h Effects on growth rate Venâncio et al. (2019)

Phaeodactylum
tricornutum

50 50 Polystrene 72 h Population growth inhibition
and decrease in chlorophyll
content

Sendra et al. (2019)

Carassius auratus 700,000–5000000 100 Polystyrene 6 weeks Intestinal inflammation, liver
inflammation and infiltration

Jabeen et al. (2018)

Caenorhabditis
elegans

5,000 0.01–10 Polystyrene 10 days Reproduction inhibition and
swollen abdomen in dead fish

Lei et al. (2018)

*ROS (Reactive oxygen species), PS (Polystyrene).
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into debris, and approximately 79% (4,900 million tonnes) has
amassed in ecosystems or landfills as of 2015 (Geyer et al., 2017).
The widespread use of plastics in various applications persists due to
their cost-effective manufacturing, utility, and durability (Barría
et al., 2020). Plastics have been the preferred material for many
years owing to their versatility, ubiquity, lightness, durability, and
adaptability (Nielsen et al., 2020). The use of plastics is also
increasing every day in agriculture benefitting agricultural
production. However, the misuse of plastics after agricultural
operations can lead to plastic waste and consequent
environmental contamination by plastic debris (Mongil-Manso
et al., 2023; Kudzin et al., 2024). Unfortunately, due to careless
and excessive use, improper management, and inadvertent disposal,
a significant volume of plastics has amassed in aquatic systems (Peng
et al., 2020). Thus, they can accumulate at higher trophic levels,
infiltrate the food chain, and pose a potential risk to ecosystems,
native and non-native species, and human health (Neves
et al., 2024).

Plastics of various types are globally produced, with
polyethylene, polyvinyl chloride, polystyrene, polypropylene,
polyethylene terephthalate, and polyurethane identified as the
most prevalent plastic varieties (Al-Thawadi, 2020). Through
processes like mechanical abrasion and biological deterioration,
plastics can undergo fragmentation, resulting in the formation of
secondary microplastics (MPs) and nano-plastics (NPs), (Alimi
et al., 2018; Oliveira et al., 2019). Micro/nano-plastics (MNPs),
owing to their capacity to absorb and accumulate co-
contaminants, exert a physical and chemical impact on the
environment. The attachment of metallic/organic toxins to MNPs
and their subsequent transport into animal bodies depend on
sorption mechanisms primarily influenced by the physico-
chemical characteristics of MNPs and the type of pollutants

(Thiagarajan et al., 2021). Nanoplastics and MPs are categorized
based on their size, with NPs measuring less than 1000 nm and MPs
being less than 5 mm (Frias and Nash, 2019). Although there is
currently no formal definition for NPs, they are generally considered
to share the same origin and composition as MPs but with a size of
less than 1,000 nm (Gigault et al., 2018; Ferreira et al., 2019; Barría
et al., 2020). Generally, MNPs are classified into primary and
secondary MNPs. Examples of primary MNPs include synthetic
fibers, cosmetics, pharmaceuticals, and raw materials (Li et al., 2018;
Wang et al., 2018; Wang et al., 2020). Primary MNPs, being smaller
in size, have a larger surface area, facilitating the adsorption of
hydrophobic constituents from marine systems, such as polycyclic
aromatic hydrocarbons (PAHs), perfluorooctanoic acid (PFOA),
dichlorodiphenyltrichloroethane (DDT), polybrominated diphenyl
ethers (PBDEs), polychlorinated biphenyls (PCBs), and metals (Li
et al., 2018; Ferreira et al., 2019).

Micro and nano plastics have caused significant pollution in
water bodies including drinking water (Li et al., 2023; Brancaleone
et al., 2023). Moreover, aquatic organisms are regularly being
exposed to pharmaceuticals nanomaterials (PC/NM prevalent in
industrial and urban areas (Naz et al., 2021; Fernandes et al., 2023).
Wastewater treatment plants appear to be a major source of
contamination in the aquatic ecosystem (Vaid et al., 2021; Gagné
et al., 2023). Consequently, investigations into the interactions
between MNPs and PC/NM, along with their ecotoxicological
effects on aquatic biota, have been conducted. Fish easily ingest
microplastic particles, both unintentionally due to their small size
and deliberately, due to resemblance to food sources (Zubair et al.,
2020; Naz et al., 2022). A study by Wang et al. (Wang et al., 2020)
revealed the presence of microplastics in over 150 fish species in
aquatic environments. In the Gorgan Bay of the Caspian Sea, various
types of microplastics, including polypropylene, polyester, nylon,

FIGURE 1
Different processes affecting microplastics in aquatic systems.
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TABLE 2 Toxicological effects of various microplastics and nanoplastics on mammals.

Animal
strain

Plastic
type

Particle
size (μm)

Route of
administration

Dose Exposure
duration

Changes References

BALB/c mice Polystyrene 5.0–5.9 Oral 0.01–1 mg/day 6 weeks Decrease in sperm no.,
motility, and serum
testosterone; increase in
sperm deformity rate;
oxidative stress

Xie et al. (2020)

ICR male
mice

Polystyrene 20 nm injected via tail vein 50 μg/kg·d 48 h Inhibited StAR mRNA and
protein expression in mice
testis and TM3 cells. and
induced mTOR/4E-
BP1 phosphorylation by
ERK1/2 MAPK and AKT
pathways.

Sui et al. (2023)

C57BL/6 mice Polyethylene 10–150 Oral 6, 60, and
600 μg/day

5 weeks Intestinal inflammation,
alterations in gut
microbiome at 600 μg/day,
changes in innate immunity
at all doses

Li et al. (2020a)

BALB/c mice Polystyrene 0.5, 4, and 10 Oral 10 mg/mL 24 h and 28 days Spermatogenic disorder,
testicular inflammation,
decreased testosterone
levels

Jin et al. (2021)

C57BL/
6NTac mice

Polystyrene 1, 4, and 10 Oral 1.49–4.55
3,107 particles

4 weeks No intestinal inflammation
or changes in body or
organ wt

Stock et al. (2019)

ICR mice Polystyrene 5 Oral 500 μg/mL 28 days Aggravation of dextran
sodium sulfate– based acute
colitis and increased
intestinal permeability

Zheng et al. (2021)

Mice Polystyrene 20 nm TM3 cells culture 50–150 μg/mL 24 h Mitochondrial impairment
and apoptosis in TM3 cells.
Compromised energy
metabolism and
testosterone synthesis in
TM3 cells. plasma
membrane integrity of
TM3 cells was Destructed

Sun et al. (2023)

CD-1 mice Polyethylene
and
Polystyrene

0.5–1 Oral 2 mg/L 90 days Increased toxicity to flame
retardants

Deng et al. (2018)

ICR mice Polyethylene ~16.9 Oral 0.125–2.0 mg/kg 90 days Changes in lymphocyte
subpopulation in spleen,
decrease in IgA in females,
alterations in live births per
dam and pup body wt

Park et al. (2020)

ICR mice Polystyrene 5 Oral 0.6–70 μg/day 35 days Sperm cell apoptosis and
expression of
proinflammatory cytokines

Hou et al. (2021)

Sprague-
Dawley rats

Polystyrene ~24 Intrajugular 1.3–1.95 million
beads/100 g
body wt

One-time
administration

Pulmonary embolism,
hypoxemia, increase in
alveolar neutrophil
chemotaxis and decrease in
survival

Zagorski et al.
(2003)

Sprague-
Dawley rats

Polystyrene 0.02 Intratracheal
instillation

2.64 3 1014 particles 24 h Particles present in
maternal lungs, heart,
spleen, placenta and fetal
lungs, heart, liver, kidney,
and brain

Fournier et al.
(2020)

(Continued on following page)
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and polystyrene, were detected in sediment, fishes, and benthic
organisms, ranging from 80 to 105 MP/kg (Bagheri et al., 2020).
Given that fish is a significant protein source for humans, the
existence of microplastics in fish and their ecotoxicological effects

could have adverse consequences for both aquatic food sources and
human health (Barboza et al., 2018). There is an urgent need to find
or develop various methods like the use of microorganisms (Herrera
et al., 2023) or the use of non-toxic, novel agglomerate (Peller et al.,

TABLE 2 (Continued) Toxicological effects of various microplastics and nanoplastics on mammals.

Animal
strain

Plastic
type

Particle
size (μm)

Route of
administration

Dose Exposure
duration

Changes References

Sprague-
Dawley rats

Polystyrene 0.01 Inhalation 0.75–3
3,105 particles/cm

14 days Male rats: decrease in
inspiratory time. Female
rats: decrease in inspiratory,
expiratory times and
respiratory frequency in
some groups; elevated
markers of lung fibrosis and
inflammation

Lim et al. (2021)

Mice Polystyrene 50 nm Oral 100 mg/mL 24 h weight loss, increased death
rate, alternated biomarkers,
and histological damage of
the kidney

Meng et al. (2022)

Wistar rat Polystyrene 25, 50 Oral 1–10 mg/kg 5 weeks Subtle changes in
neurobehavior

Rafiee et al. (2018)

Wistar rat Polystyrene 0.5 Oral 0.015–1.5 mg/kg/
day

90 days Ovarian fibrosis, decrease in
ovarian follicle and reserve
capacity

An et al. (2021)

Mice Polystyrene
MPs

- Oral 0.5, 4, 10 μm 28 days Decreased sperm quality
and testosterone level, and
testicular inflammation

Jin et al. (2021)

Rats Polystyrene
NPs

- Oral 1, 3, 6 and 10 mg
kg−1 day−1

5 Weeks thyroid endocrine
disruption, metabolic
deficit, decreased serum
levels

Amereh et al.
(2019)

C57BL/6 mice Polyethylene
MPs

- Oral 6, 60, and
600 μg/day

5 weeks Intestinal dysbacteriosis
and inflammation

Li et al. (2020b)

Mice Polystyrene
MPs

0.5, 50 Oral 1,000 μg/L 5 weeks Hepatic triglyceride (TG)
and total cholesterol (TCH)
levels decreased, modified
the gut microbiota
composition and induce
hepatic lipid disorder

Lu et al. (2018)

ICR mice Polystyrene 0.5, 5 Oral 0.024 and
0.24 mg/kg/day

3 weeks Disorders of fatty acid
metabolism were observed
in the offspring of mice that
consumed MPs

Luo et al. (2019)

ICR mice Polystyrene 5 Oral 0.024 and
0.24 mg/kg/day

6 weeks MP accumulates in the
intestine, causes a
disturbance of the intestinal
barrier, changes in the
intestinal microflora,
disturbances in the
metabolism of bile acids

Jin et al. (2019)

C57BL/6 mice Polystyrene 1–10 μm and
50–100

Oral 2.4 mg/kg/days 8 weeks MP consumption led to
overproduction of ROS, the
development of oxidative
stress, and impaired skeletal
muscle regeneration. MP
suppressed myogenic and
stimulated adipogenic
differentiation of
myosatellite cells. Muscle
regeneration was negatively
correlated with MP particle
size

Shengchen et al.
(2021), Li et al.
(2023b)
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2024) for degradation of micro and nano plastics for sustainable
plastic waste management. Furthermore, social responsibility and a
shift in consumer behaviours and habits in adopting low-risk
products should also be encouraged (Rashed et al., 2023). Despite
an abundance of research on the ingestion and consequences of
MNPs, there has been a scarcity of review publications on this topic
until recently. Therefore, this review specifically focuses on a
multidisciplinary approach, drawing upon insights from
environmental science, ecology, toxicology, and public health. It
covers various types of micro and nano-plastics, including
microbeads, microfibers, and nanoplastics, and their interactions
with different aquatic organisms ranging from plankton to fish.
Furthermore, the review considers diverse aquatic environments
such as oceans, rivers, lakes, and estuaries, acknowledging the
variability in plastic pollution levels and ecological dynamics
across these habitats. Additionally, the review highlights
uncertainties and information gaps in understanding the fate,
distribution, and harmful mechanisms of MNPs and PC/NM to
aquatic organisms.

2 Toxic effects of MNPs on
aquatic organisms

Microplastics (MPs) may have detrimental effects on aquatic
ecosystems, impacting various organisms such as phytoplankton,
invertebrates, mollusks, and fish, as they enter freshwater networks
in substantial quantities (0.12–387 items/m3) (Brandts et al., 2018;
Triebskorn et al., 2019). Numerous studies have been conducted to
investigate the toxic effects of MNPs on water-dwelling organisms.
A study conducted by Chae et al. (Chae et al., 2018) observed the
trophic transfer and effects of 51 nm polystyrene nano-plastics (PS-
NPs) on four freshwater species, including the alga Chlamydomonas
reinhardtii. Despite exposure to concentrations as high as 100 mg/L

resulting in little to no mortality, confocal laser microscopy revealed
the attachment of NPs to the zoospores’ surface and outer layer
penetration during cell division. Nano-plastics also led to reduced
locomotor activity and induced histological abnormalities in the
livers of fish directly exposed to them. Furthermore, the study
observed that NPs could pass through embryonic walls and
persist in hatched larvae yolk. In another investigation (Sökmen
et al., 2020), the effects of short-term (24 h) exposure to negatively
charged fluorescent PS-NPs (50 nm), aggregated with gold
nanoparticles (Au ions), were explored in Danio rerio.
Comparing the impacts of individual exposure to PS-NPs and Au
ions, the study found increased mortality and deformation rates in
the exposed organisms. Additionally, there was a stimulated
immunological response, indicated by elevated expression of IL-6
and IL-1 β. Exposure to PS NPs or Au ions individually resulted in
higher levels of reactive oxygen species (ROS), formation of
intracellular vacuoles, and mitochondrial damage (Lee et al., 2019).

Exposure to 45 nm polymethyl methacrylate nanoparticles
(PMMA-NPs) at concentrations of ≤20 mg/L was found to affect
the immune system of fish, with an observed increase in mRNA
transcripts associated with lipid metabolism (Brandts et al., 2018). In
Sebastes schlegelii samples exposed to 0.5 and 15 μm PS-NPs
(190 μg/L) exhibited clustering, reduced swimming speed,
increased oxygen consumption, and ammonia excretion, as well
as lower protein and lipid contents (Yin et al., 2019; Jiang et al.,
2023a). Despite ingesting more than 90% of microalgae containing
polystyrene nanoparticles (PS-NPs), brine shrimp (Artemia
franciscana) did not show any significant effects (Sendra et al.,
2020). Zebrafish exposed to secondary nanoparticles showed a 54%
increase in cell death through skin diffusion compared to
microplastics (Enfrin et al., 2020; Jiang et al., 2023b). Sökmen
et al. (Sökmen et al., 2020) explored the impacts of NPs on
zebrafish (D. rerio), revealing that 20 nm diameter PS-NPs
reached and accumulated in the zebrafish brain, causing

FIGURE 2
Effects of microplastics on mammals.
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oxidative DNA damage. Other organs were also reported to be
affected by NPs, establishing zebrafish as a valuable model for
studying NP toxicity (Bhagat et al., 2020a; Sarasamma et al.,
2020). The hydrophobicity of tetracycline-incubated NPs
contributed to variations in toxic effects observed in the marine
microalgae Skeletonema costatum (Feng et al., 2020a). Nano-plastics
adsorption on microalgae has been documented in several studies,
with some cases showing a reduction in algal growth while others
did not (Bergami et al., 2017; Heinlaan et al., 2020).

The aggregation behaviour of globular PS-NPs is influenced by
the chemical conditions of the solution, which may be enhanced by
increasing ionic strength and electrolyte valence (Cai et al., 2021).
In freshwater biofilms, PS-NPs (positively charged amide-
modified) are more hazardous to photosynthesis and
extracellular enzymatic activity than negatively charged particles
(Miao et al., 2019). Eutrophication may be aggravated by

freshwater NPs and marine rotifer Brachionus koreanus showed
elevated stress effects from NPs, and the related oxidative stress
caused damage to the lipid membranes (Jeong et al., 2018; Feng
et al., 2020b). Since their ingestion has been seen in numerous
aquatic species (marine mammals, turtles, and fish) as well as
invertebrates (zooplankton, bivalves, and crustaceans), plastic
particles have raised some serious environmental concerns
(Botterell et al., 2019; Wang et al., 2019; Huang et al., 2020;
Zitouni et al., 2020; Naz et al., 2023a). Aside from particle
features, the environment also has an impact on how NP
pollution affects aquatic species. Exopolymeric substances (EPS)
are the aggregation agents produced by microorganisms;
nevertheless, when synthesized by diatoms and algae, they have
been proven to inhibit NP harmful effects (Grassi et al., 2020; Mao
et al., 2020). Apart from that various toxicological effects of MNPs
are also reported in different species (Table 1).

TABLE 3 Effect of microplastics and nanoplastics on human health.

Plastic type Size Effect Target cell line References

Polypropylene
MNPs

1–2 μm and
400–500 nm

Caused the death of 76.70% and 77.18% of human
embryonic kidney cells after exposure of 48 and 72 h,
respectively

HEK293T human embryonic kidney cell line Hussain et al. (2023)

Polystyrene NPs 100 nm and
500 nm

500 nm PS-NPs bound to the surface of cell membranes
causing cell membrane damage. 100 nm PS-NPs
aggregated in the cytoplasm and blocked the autophagic
flux in HUVECs

Human umbilical vein endothelial cells
(HUVECs)

Lu et al. (2022)

Polystyrene MPs 1 and 10 μm Caused a significant reduction in cell proliferation and
changed the morphology of cells exposed

Cultured human alveolar A549 cells Goodman et al. (2021)

Polystyrene MPs 50 nm Caused genotoxicity through different mechanisms of
DNA damage

Three human leukocytic cell lines: Raji-B
(B-lymphocytes), TK6 (lymphoblasts) and
THP-1 (monocytes)

Rubio et al. (2020)

Polystyrene MPs 5 and 20 μm Induced inflammation Induced adverse effects on
neurotransmission

Liver cells Deng et al. (2017)

Polystyrene NPs 60 nm Strong interaction and aggregation with mucin.
Induced apoptosis

Intestinal epithelial cells Inkielewicz-Stepniak
et al. (2018)

Polystyrene NPs 60 nm Induced ROS generation and ER stress Induced
autophagic cell death

Lung epithelial cells Xia et al. (2008)

Polystyrene MPs 5 µm Changes in amino acid and bile acid metabolism.
Induced gut microbiota dysbiosis and intestinal barrier
dysfunction

Intestine Jin et al. (2019)

Microplastics 0.5 and 5 µm Metabolic disorder associated with gut microbiota
dysbiosis and gut barrier dysfunction

Gut cells Luo et al. (2019)

Polystyrene 44 nm induced strong upregulation of IL-6 and IL-8 genes Human gastric adenocarcinoma cells (AGS) Forte et al. (2016)

Polystyrene 50, 100 nm Size dependency regarding particle translocation Human colon carcinoma cells (Caco-2) Walczak et al. (2015)

Polystyrene 57 nm Binding of mucin and induction of adoptosis Human colon carcinoma cells Inkielewicz-Stepniak
et al. (2018)

Polystyrene 20,40, 100 nm 40 nm particles internalized faster than 20 or 100 nm
particles in both cell line

human lung carcinoma cells (A549), human
astrocytoma 132

Varela et al. (2012)

Polystyrene 116 nm Cellular uptake Human lung carcinoma cells Deville et al. (2015)

Polystyrene 40, 50 nm Cellular uptake irreversible, intracellular concentration
increased linearly

Human lung carcinoma cells Salvati et al. (2011)

Polystyrene 60 nm Amino-functionalized polystyrene particles induce
autophagic cell death through the induction of
endoplasmic reticulum stress

Human bronchial epithelium Chiu et al. (2015)
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TABLE 4 Identification and quantification of microplastics and nanoplastics.

Technique Advantages Disadvantages References

FTIR • Simple and reliable • High concentration for NPs Wang et al. (2018), Strungaru et al. (2019),
Granek et al. (2020), Cai et al. (2021)

• Particle quantification • Water interference

• Identifying polymeric microplastics (>10–20 μm
size)

• Unable to adequately characterize very
small particles or fibers (<20 μm)

• Non-destructive • A time-consuming work

• Aliphatic compounds and polyesters are well
detectable

• Limited size (~25 μm) and thickness
(<100 μm)

• Operative for thin film NPs • Contaminants may overlap polymeric
bands

Roman Spectroscopy • Higher resolution • Fluorescent interference Wang et al. (2018), Prata et al. (2019), Strungaru
et al. (2019), Alprol et al. (2021), Cai et al. (2021),
Zhou et al. (2021)• Identify trace PS-NPs • Trade-off between measurement time as

well as representativeness

• Non-destructive chemical characterization of
microplastics

• Lacks a high lateral resolution

• Lower water interference • Low signal intensity

• Effective for polymer chemical composition,
organic and inorganic fillers

• Are unable to adequately characterize
very small particles or fibers <1 μm

• Aliphatic and aromatic compounds, are well
detectable

• Time needed for characterization is
highly limiting for environmental
samples

• Characterization of microplastics <20 μm • Polymer heating as well as degradation

• Not reserved for sample thickness or shape • Affected by colour, additives,
fluorescence, and contaminants adsorbed
on microplastics

• Good for spatial resolution • Long time measurement

• More sensitive to non-polar groups

Mass spectrometry • Less mass sample • Preconcentration of sample needed Fu et al. (2020), Cai et al. (2021), Vega-Herrera
et al. (2022)

• Numerous polymers for a single run • Lack morphological information

• Purification and vaporization of polymers • Not popular owing to severe extraction
and purification

• Determine Mass/number concentration

Pyrolysis GC/MS • Analysis of polymers and additives at a time • Expensive Prata et al. (2019), Alprol et al. (2021)

• Chemical characterization of microplastics (single
or bulk sample)

• Need pre-selection

• Not effective for large quantity of sample

• Lack information of number, size or
shape

• Time consuming

TED–GC/MS • Effective for complex matrices • Identify few polymers as PE and PET Prata et al. (2019), Alprol et al. (2021)

• Use high sample masses and measure complex
heterogeneous matrices for polymer
identification and quantification

• Costly

• Need more time

XPS • Surface characterization • No polymer type information Cai et al. (2021)

• Expensive

SEM/TEM • Size and number of particles • Polymer identification required Wang et al. (2018), Strungaru et al. (2019), Fu
et al. (2020), Cai et al. (2021)

• Provide high resolution topography images and
enable microplastics differentiation from other
plastics

• Costly

(Continued on following page)
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3 Ecological toxicity and human
health risk

3.1 Effect on organisms

In addition to their small size, physical and chemical properties
of M NPs, can have a significant impact on aquatic species and

human health. Adsorption of harmful chemicals on the MNPs raises
concerns about how various lethal chemicals may interact with these
particles, desorbing into animal tissues and causing harmful effects
(Yu et al., 2019; Zhang et al., 2020). Nano-plastics have a greater
surface area than MPs, allowing them to adsorb contaminants such
as hazardous compounds or heavy metals at higher concentrations
(Al-Thawadi, 2020; Naz et al., 2023b). These can be ingested by

TABLE 4 (Continued) Identification and quantification of microplastics and nanoplastics.

Technique Advantages Disadvantages References

• Examine surface characteristics of microplastics • Not valid for bulk samples

• High-resolution image require laborious
preparation steps

• Representativeness issue

• For NPs, sample preparation needed

MALS • Online connection with AF4/CF3 • Nano-plastics separation needs
perfectness

Cai et al. (2021)

• Particles size distribution • Polymer identification required

DLS • Simple, easy and reliable • Not appropriate for polydisperse
particles

Fu et al. (2020), Cai et al. (2021)

• Effective for nano-sized particles and size
distribution

• Need polymer identification

• Facile sample preparation, high throughput and
reproducibility

• Cause significant bias on determination
of size

• Merely for spherical particles

Nanoparticle
Tracking Analysis

• Simple, reliable and easy to use • Complex in operation Fu et al. (2020), Cai et al. (2021)

• Size resolution • Only for spherical particles

• Size distribution and particles concentration • Data analysis affected by analysis factors

• More sensitive

• Effective for nano-sized particles

• Operative for single particle counts

Impedance
Spectroscopy

• Fast measurement of size and concentration of
microplastics

• Need to expand this method to cover a
greater (1–1,000 μm) size range

Colson and Michel (2021)

• Characterize electrical properties of individual
particles

• No visual sorting or filtration required

Fluorescence
Spectroscopy

• Little detection limit • Sample preparation need fluorescent
dyes or labels

Fu et al. (2020)

• Provide single absorption or emission line, and a
linear standard curve

• Less elemental sensitivity

• More sensitive

Visual Sorting • Cheap • Unable to characterize to
molecule <500 µm

Alprol et al. (2021)

• Suitable for pre-sorting of samples • Underestimation of small or transparent
elements

• Classify particles by shape, size, and colour • Non-chemical composition

• Less the particle size more will be the
error

• Over-estimation owing to mis-
identification

*FTIR (Fourier transform infrared spectroscopy), TED–GC/MS (Thermoextraction and desorption coupled with gas chromatography-mass spectroscopy), XPS (X-ray photoelectron

spectroscopy), SEM/TEM (Scanning electron microscopy or Transmission electron microscopy), MALS (Multi-angle light scattering), DLS (Dynamic light scattering).
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organisms and then transported and accumulated in their different
organs. Aquatic life at all trophic levels, including bacteria, bivalves,
algae, echinoderms, rotifers, arthropods, and fish, can be affected by
NPs in terms of reproduction, mortality, multiple molting, growth,
feeding, immunological responses, and antioxidation (Liu et al.,
2019; Bibi et al., 2023). Once NPs enter the aquatic environment,
they are easily transported down the food chain, posing a major
threat to the ecological environment’s long-term growth, as well as
food safety and human health (Zhang F. et al., 2020; Shi et al., 2020).

The interaction of NPs with heavy metals, polycyclic aromatic
hydrocarbons, medicines, organic halogens, and pesticides, has
become a major concern of environmental risks (Jacob et al.,
2020). Extensive research has been conducted on the ecological
toxicity of NPs, but few have been conducted on the combined
toxicity induced by compound pollution (Bhagat et al., 2020b; Zhu
et al., 2020). Interactions with co-pollutants can modify the uptake
and accumulation of plastics and/or contaminants in exposed
organisms, causing significant changes in the surface
characteristics of plastics (Ghaffar et al., 2018; Zhang et al.,
2020). The toxicity of MPs to organisms is determined by their
aggregate size (Zhang et al., 2019). Because particle toxicity was
inversely related to size in general, the aggregated MPs could be less
bioavailable to aquatic organisms (Wang et al., 2020; Choi et al.,
2020). Outside the organisms, MPs aggregates may have a harmful
effect. MPs aggregates, for example, impeded photosynthesis and
limited the transfer of nutrients and energy by microalgae in marine
ecosystems. Furthermore, MP-biota hetero-aggregates may cause
physical harm to organisms, such as splits and oxidative stress (Wu
et al., 2019; Zhu et al., 2019; Choi et al., 2020).

There is still a lack of knowledge about the hazardous
contaminants, additives, and infections found in fish and shellfish,
as well as their potential consequences on human health. According to
the Food and Agriculture Organization (FAO) essential food risk
evaluations are lacking, with no information on metabolism and
nothing on the excretion of MPs and NPs after intake (Al-Thawadi,
2020). Accumulation and biomagnification of hazardous compounds
connected with MPs in marine trophic webs is another harmful
impact (Figure 1). When top predators and humans consume
species polluted with MPs or chemicals released from these
particles after ingestion, this magnification raises the danger of
harmful effects of these chemicals (Gallo et al., 2018; Vedolin
et al., 2018). As a result, it is been suggested that plastic debris
raises the global risk of human and animal diseases by creating new
contamination/infection pathways, introducing pathogens through
the environmental spread of MPs, or migrating organisms
contaminated with MPs linked to pathogens (Bhagat et al., 2020a;
Al-Thawadi, 2020; Haroon et al., 2022).

3.1.1 Effects on mammals
One of the most prominent classes of non-natural products made

by humans that have pervaded earth’s surface environment is plastics,
somuch so that these durable synthetic organic polymers are heralded
as a defining stratigraphic marker for the Anthropocene (Zalasiewicz
et al., 2016). Geyer and colleagues (Geyer et al., 2017) recently
estimated that 8.3 billion metric tons of virgin plastics have been
produced up to the year 2017, and with the continuation of current
production and waste management practices, about 12 billion tons of
plastic waste would be found in landfills and the natural environment

by 2050. Plastic wastes are persistent environmental pollutants. Larger
pieces of plastic waste present well-publicized ecological problems in
terms of physical entanglement and entrapment (Gündoğdu et al.,
2019). In the past 3 years, a good number of studies have examined the
effect of pristine MNPs in mammalian models (largely mice). These
studies are summarized in Table 2 and are broadly recapped below. In
mice, ingested MNPs could be found in the gut (Deng et al., 2017),
liver and kidney (Yang et al., 2019). Pathological changes to the gut
include a reduction in mucus secretion, gut barrier dysfunction (Jin
et al., 2019), intestinal inflammation, and gutmicrobiota dysbiosis (Lu
et al., 2018; Li B. et al., 2020). Figure 2 shows the effects of microplastic
on mammalian model species (mouse).

3.2 Effects on human health

Studies on the toxic effects of M NPs on human health are
mainly focused on gastrointestinal and pulmonary toxicity, which
includes oxidative stress, metabolic problems, and inflammatory
reactions. Furthermore, it is crucial to know whether MPs can be
destroyed further after ingestion in the gut’s acidic environment or
inside cells’ lysosomes. As a result, greater research into the long-
term fate of ingested MPs and NPs in the human body is required
(Yee et al., 2021).

Micro-plastics have been found in a variety of seafood species,
including bivalves, fish, and shrimp as well as in sea salt and food
packaging (Peixoto et al., 2019; Li et al., 2020; Jacob et al., 2020).
These are thought to be bio-persistent, causing unfavourable
biological responses in humans such as oxidative stress,
inflammation, cell apoptosis, genotoxicity, and tissue necrosis, as
well as localized cell and tissue damage, fibrosis, and even
carcinogenesis (Peixoto et al., 2019). Ingestion, oral inhalation, or
skin contact with NPs may occur as a result of the usage of plastic
items or through unintended methods (Lehner et al., 2019). As a
result, human exposure to NPs has been attributed to the ingestion
of NP particles, which can be easily ingested through the
consumption of contaminated seafood or water. If NPs enter the
gastrointestinal tract, they can cause tissue inflammation or enter
the circulatory system via the mesenteric lymph, where they can
build up in the liver. Furthermore, oxidative stress, the gut
microbiome, and lipid metabolism have all shown significant
modifications. As a result, NPs may affect the central nervous
system in humans (Mattsson et al., 2017). Most of the reported
studies used polystyrene due to its ease of synthesis and processing
into nanoparticles, whereas polyurethanes, polyolefins (e.g.,
polyethylene and polypropylene), polyesters, and are the most
often used commercial plastics (Gunasekaran et al., 2020). The
hazardous effects of different forms of MNPs on human health
are mainly unknown due to variations in the shape, particle size, and
chemical composition of plastics (Leslie and Depledge, 2020; Khan
et al., 2023). Table 3 shows various studies related to the effect of
micro and nano-plastics on human beings. Recent studies showed
that various types of MNPs can affect the survival of human foetus
during early embryonic development (Hussain et al., 2023).
Likewise, the MNPs can cause severe damage to cell membrane
(Lu et al., 2022), alter the morphology of the exposed human alveolar
cells (Goodman et al., 2021) and cause genotoxicity in human blood
cells (Rubio et al., 2020).
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As a result, we recommend that future research needs focus on
determining the potential risks associated with chronic exposure to
various M NPs at appropriate concentrations. Unfortunately, the
assessment of human exposure to NPs is still a scientific challenge
owing to inappropriate methods, practiced reference materials, and
standard analytical techniques (Brachner et al., 2020; Paul et al.,
2020). Some common techniques used for the identification of M
NPs are listed in table (Table 4).

4 Conclusion

Micro and nano-plastics are significant sources of plastic
contamination in marine ecosystems and the production of M NPs
has increased due to biodegradation, thermo-oxidative degradation,
thermal and hydrolysis processes, and also photodegradation. The
effects of MPs on marine life are well explored. However, their effects
on freshwater species have very little literature as data on freshwater
species is insufficient. So, freshwater systems are suffering from severe
contamination compared with marine systems and the ecotoxicological
effects of M NPs on freshwater species need more research efforts. The
development of analytical methods for M NPs, as well as their
standardization, is becoming more important to allow the detection,
identification, and quantification of polymers in environmental matrices.
While research on micro and nano-plastics is advancing rapidly, several
significant limitations and gaps like lack of standardized methods for
detection and characterization, limited understanding of fate and
behavior of MNPs, ecological effects of MNPs on different trophic
levels, long-term effects of MNPs, and ingestion and trophic transfer
of MNPs still exist. Addressing these limitations and filling these
knowledge gaps is essential for developing effective mitigation
strategies, informing policy decisions, and safeguarding both aquatic
ecosystems and human health from the impacts of micro and nano-
plastic pollution. Furthermore, New ways to study the impacts of MNPs
on the biota and humans (in vitro) are also required.
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