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Reducing methane emissions in the oil and gas industry is a top priority for the
current international community in addressing climate change. Methane
emissions from the energy sector exhibit strong temporal variability and
ground monitoring networks can provide time-continuous measurements of
methane concentrations, enabling the rapid detection of sudden methane leaks
in the oil and gas industry. Therefore, identifying specific locations within oil fields
to establish a cost-effective and reliable methane monitoring ground network is
an urgent and significant task. In response to this challenge, this study proposes a
technical workflow that, utilizing emission inventories, atmospheric transport
models, and intelligent computing techniques, automatically determines the
optimal locations for monitoring stations based on the input quantity of
monitoring sites. This methodology can automatically and quantitatively
assess the observational effectiveness of the monitoring network. The
effectiveness of the proposed technical workflow is demonstrated using the
Shengli Oilfield, the second-largest oil and gas extraction base in China, as a case
study. We found that the Genetic Algorithm can help find the optimum locations
effectively. Besides, the overall observation effectiveness grew from 1.7 to
5.6 when the number of site increased from 1 to 9. However, the growth
decreased with the increasing site number. Such a technology can assist the
oil and gas industry in bettermonitoringmethane emissions resulting fromoil and
gas extraction.
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1 Introduction

Methane emissions account for more than 10 per cent of China’s total greenhouse gas
emissions, making it the second largest greenhouse gas after carbon dioxide (Omara et al.,
2023). The radiative forcing of methane is greater than that of all other non-carbon dioxide
greenhouse gases combined, and its global warming potential is over 80 times that of carbon
dioxide over a 20-year period (Kirschke et al., 2013). In recent years, the atmospheric
methane concentration has shown an accelerated growth trend, which has attracted great
attention from the international climatology community (Jacob et al., 2016; Kang et al.,
2016; Erland et al., 2022; Jacob et al., 2022; Peng et al., 2022). Reducing methane emissions
associated with petroleum extraction is considered the most cost-effective pathway for
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methane reduction, and it also brings about economic benefits
(Varon et al., 2019; Gong and Shi, 2021; Chen et al., 2022).
Zhang et al., 2020 indicated a significant underestimation of oil
and gas-related methane emissions in the Permian Basin of the
United States. Irakulis-Loitxate et al., 2021 utilized high-resolution
methane concentration anomaly inversion results from satellites
such as PRISMA and GF-5 to identify prominent oil and gas
methane emitters in the Permian Basin and quantified the
emissions from these sources. D. J. Varon et al. used methane
observation data from GHGSAT and TROPOMI to identify
super-emitters of methane in the Central Asian oil fields. These
smaller emission sources, though in smaller quantities, contribute to
over 60% of the total emissions (Varon et al., 2018; Varon et al.,
2019). Although high-resolution methane concentration anomalies
have made significant progress in identifying and quantifying super-
emitters of methane (Pei et al., 2023a), emissions from oil and gas
sources exhibit notable temporality (Shi et al., 2022; Shi et al.,
2023a). To accurately quantify their annual emissions, high-
frequency concentration observations remain crucial (Chen et al.,
2022; Schissel and Allen, 2022). Theoretically, TROPOMI’s
XCH4 product offers a high observation frequency (Hu et al.,
2018; Pei et al., 2020). However, studies have indicated
interference from clouds and aerosols, preventing it from
providing a sufficient frequency of observations in most regions
of China (Zhang et al., 2022). Therefore, the establishment of
ground-based monitoring networks plays an irreplaceable role in
capturing the temporal variations in methane emission intensity
from oilfields (Turner et al., 2016; Omara et al., 2023).

At present, China’s methane monitoring network is primarily
utilized to reflect large-scale methane background concentrations
(Wu et al., 2023), and a dedicated observational network for
methane emissions monitoring has yet to be established. These
two have fundamentally different design considerations. The former
requires avoiding local emissions to better reflect large-scale fluxes
(Laughner et al., 2023), while the latter needs to capture information
about local emissions in order to quantify emission intensity (Tu
et al., 2022). In 2021, under the supervision of the Ministry of
Ecology and Environment of China, several Chinese cities initiated
the construction of ground-based GHG monitoring networks to
reflect the greenhouse gas fluxes in their respective urban areas (Sun
et al., 2022; Zhang Y. et al., 2023). However, as of now, there have
been no publicly available academic publications on the design
methodology of such monitoring networks (Yang et al., 2024). In
this work, we will introduce a method for selecting ground-based
GHG monitoring site locations with the purpose of monitoring
methane emissions from oilfields. In this study, we focus on the
Shengli Oilfield, which is the second-largest oilfield in terms of
petroleum production in China (Pei et al., 2023b; Shi et al., 2023b).
In this study, we integrated TROPOMI’s XCH4 products to assess
the reliability of two common oil and gas emission inventories,
Global Fuel Exploitation Inventory (GFEI) and Emissions Database
for Global Atmospheric Research (EDGAR), within our research
area. Subsequently, using the Stochastic Time-Inverted Lagrangian
Transport driven by Weather Research and Forecasting model
(WRF-STILT) (Lin et al., 2003; Pei et al., 2022), we generated
footprints for each monitoring site, stratified by wind speed, and
rotated all footprints according to upwind conditions. Furthermore,
we utilized ERA-5 reanalysis data (Liu et al., 2024) to establish

probability distributions of wind speed and direction for each grid
cell. Through these steps, we efficiently computed annual average
footprints for every grid point across the entire study area.
Ultimately, based on the principle of maximum methane
concentration enhancement attributed to oilfield emissions and
minimum enhancement from other sources, we formulated a
quantified fitness function. This facilitated the optimization of
site locations using a Genetic Algorithm (GA). This framework
efficiently determines optimal site positions for varying site
quantities, offering a relatively straightforward yet quantitatively
characterized design strategy for greenhouse gas emission
monitoring networks.

The remaining parts of this work are organized as follow. In
Section 2, we describe the proposed optimization method for
determining locations of monitoring site as well as the data and
tools we used in this work. In Section 3, we demonstrate samples of
footprints generated by WRF-STILT. Besides, we also present the
optimization process and results of the proposed method in Shengli
oilfield. In Section 4, we discuss the potential limitations of this
method and directions for improvement. Finally, we summarize the
whole work in Section 5.

2 Methodology and data

2.1 Quantitative metrics for a single
observation site

To enhance the site selection process for the methane
observation network, it is imperative to establish specific
quantitative metrics that gauge the effectiveness of individual
sites. In this study, we introduce the pivotal concept of
“footprint,” extensively utilized in flux inversion, to precisely
characterize an observation site’s ability to capture nearby
emission information. The term “footprint” refers to a virtual
area or volume that delineates the source region or path of air at
a specific observation point (Lin et al., 2003; Pillai et al., 2012). A
meticulously planned observation site should possess a well-defined
footprint to ensure that the observed gas concentration is
predominantly influenced by the target area, without undue
interference from surrounding regions.

We used WRF-STILT to obtain footprints of sites. The
Lagrangian stochastic model effectively addresses the issue of
large-scale gas flux observations by simulating turbulence and
capturing sub-grid scale transport (He et al., 2018). The model
incorporates turbulence velocity statistics explicitly into the
trajectories of tracer particles to simulate advection and
dispersion in the Planetary Boundary Layer (PBL) (Qiu et al.,
2024), surpassing conventional mean wind trajectory models (Ye
et al., 2020). The distribution of particle positions is not constrained
by grid cells, allowing for the capture of fine-scale structures
resulting from small-scale heterogeneities in source distribution,
which grid-based transport models are unable to address
(Thompson and Stohl, 2014; Wu et al., 2018).

The footprint is defined as the upstream area that influences the
air arriving at a specific location. The surface influence footprint is
calculated based on the positions and height above ground of
particles at each time step. Footprints not only delineate the area

Frontiers in Environmental Science frontiersin.org02

Fan et al. 10.3389/fenvs.2024.1394281

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1394281


upstream from the receptor but also quantify the strength of
influence originating from any given location within the model
domain. These footprints can be readily convolved with surface flux
inventories to simulate the impact of near-field surface fluxes on
the receptor.

STILT is mainly modeled by Markov chains, and it has been
shown that the assumption that Markov chains can model turbulent
diffusion is reasonable, i.e., the particle velocity vector u can be
decomposed into an averaged component �u (expressed in units of
m/s) and a turbulent component u′ (expressed in units ofm/s), and
the turbulent component follows the following equation:

u′ t + Δ( ) � R Δt( )u′ t( ) + u″ t( ) (1)
where is the random vector u″ (expressed in units of m/s), R is the
autocorrelation coefficient, and Δt (expressed in units of s) is the
time step. The autocorrelation coefficient in Eq. 1 follows the
exponential form R(Δt) � exp(−Δt/TLi), where TLi (expressed
in units of s) is the Lagrangian time scale in the i direction (i =
u, horizontal; i = w, vertical) is a de-correlation time scale that
determines the degree to which the particle’s motion behaves like a
random wandering (TLi = 0) or an advection similar to a mean wind
(very large TLi). Where the random velocity u″(t) of Eq. 1 is defined
by the following relation:

u″ � λ 1 − R2 Δt( )[ ] 1 /

2 (2)

Where λ is usually taken from a Gaussian distribution with
mean 0 and standard deviation, σ i characterizing the propagation of
the random velocity. The trajectories of the moving particles are
obtained by integrating Eq. 2, while the trajectories of the entire
particle population exhibit properties commonly used to
characterize turbulent motion.

In this study, we employed the backward mode of the STILT
simulation to compute the transport of 500 particles released
every hour from the oilfield. Subsequently, we derived the
sensitivity of methane enhancements at these designated site
locations in relation to emission rates (expressed in units of
ppbv · (t · hr−1)−1) at those respective sites. This sensitivity was
computed by enumerating particle numbers in the surface layer
on a 0.1°×0.1° grid.

Particles transported forward in time provide a direct method
for quantifying the effect of the emitting source on downstream
concentrations. The total amount of tracer emitted is averaged into
the number of particles starting from the emitting location and the
concentration of tracer directly resulting from the particle density at
the designated location (receptor). Assuming that particle transport
is time-reversible, a backward time run from the receptor results in
the same number of particles being produced at the emission source.
Emission from an upstream region with more particles would
therefore result in a greater change in receptor concentration.
Particle densities from backward-time simulations provide
“impact densities”: changes in tracer concentration at the
receptor in response to fluxes at the location and time of
discovery of particles in a time-reversal model. Thus, backward-
time particle modeling enables a “receptor-oriented framework” that
defines the upstream effects of tracer observations at the receptor.
The backward time particle positions map an influence function
I(xr , tr |x, t) that quantitatively relates the source and sink S(x, t) to

the receptor concentration C(xr , tr) at the position xr and time tr
as follows:

C xr , tr( ) � ∫
tr

t0

dt∫
V
d3xI xr , tr |x, t( )S x, t( )

+ ∫
V
d3xI xr , tr |x, t0( )C x, t0( ) (3)

I(xr , tr |x, t) has the unit of density (1/volume), C(xr , tr) expressed
the unit of mixing ratio (ppm), and the unit of S(x, t) is the mixing
ratio per unit time (ppm·h-1). I(xr , tr |x, t) is given by the
following equation:

I xr , tr |x, t( ) � ρ xr , tr |x, t( )
Ntot

� 1
Ntot

∑Ntot

P�1
δ xp t( ) − x( ) (4)

WhereNtot is the total number of particles and the δ equation in
Eq. 4 simply represents the presence or absence of particles
in position.

Leveraging STILT to correlate measurements with emission
estimates presents a robust approach for mapping pollution,
refining emissions inventories, and monitoring changes in
emissions over time.

2.2 Design of optimization experiments for
selections site locations

After defining metrics to assess the effectiveness of individual
site monitoring, we further devised an experimental procedure to
determine the optimal site locations based on available site data. In
previous studies, scholars generated site locations randomly based
on the input quantity of sites and evaluated the overall observational
efficacy. Common strategies for site generation included random
generation and circular deployment. This work employed an
exhaustive method, assuming the possibility of any location being
a potential site. The specific implementation process is outlined
below (Figure 1).

1. Firstly, a feasible area of 1+ × 1+ was designed based on the
monitoring target, covering the entire oil field region and
representing the theoretically largest feasible area.

2. We divided this feasible area into 100 grids with a spatial
resolution of 0.1+ × 0.1+. For each grid, we needed to compute the
observational efficacy of having a site within that grid, resulting in
100 different footprints. Theoretically, calculating footprints on a
denser grid would yield more accurate results, but this would
significantly increase computational burden. Moreover,
preliminary trials and prior related studies indicated minimal
variation in footprints within the 0.1+ range. This influenced our
decision to compute footprints on grids with a 0.1+ resolution.

3. Subsequently, we further subdivided the 0.1+ grids into
10 × 10 fine grids of 0.01+ size. We assumed monitoring stations
could potentially appear on any of these 0.01+ fine grids.
Footprints corresponding to each fine grid retained the
morphology of the larger grid they belonged to, but we
applied a translation to the footprints based on the specific
position of the fine grid to ensure accurate alignment with the
positions of observation stations.
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4. At this stage, we have up to 10,000 feasible candidate positions for
observation stations within the entire feasible observation area.
Assuming our observation network comprises N stations, we need to
select the optimal solution from Cn

10000 different possibilities. Exhaustive
methods guarantee identifying the best solution but demand
computation beyond feasibility. Therefore, this work adopts a genetic
algorithm to facilitate the search for the optimal solution. Genetic
algorithms excel in navigating complex search spaces efficiently,
offering a feasible approach to finding the best solution within a vast
set of possibilities. The Genetic Algorithm (GA), originating from bio-
inspired computing, is a stochastic global optimization method that
simulates biological behavior in nature through computer technology. It
is based on Mendel’s laws of genetics, describing natural selection and
heredity, simulating phenomena such as replication, crossover, and
mutation in this process. This method initially generates an initial
population based on specific conditions. Through random selection,
crossover, and mutation operations, it evolves the population towards a
direction we set by obtaining individuals with higher fitness. Through
continuous iterations of evolution, the population of individuals
eventually reaches a threshold we define, converging to a group of
individuals best adapted to the environment, thus obtaining high-quality
solutions to the problem.

5. Formulating the fitness function, a pivotal parameter guiding the
iterations of the genetic algorithm, entails its maintenance at a
perpetually positive value. This ensures the maximization of the
aggregate received emissions at monitoring stations, constituting the
fundamental precondition. The initial sub-condition strives to optimize
the apportionment of received emissions towards those emanating from
emission sources rather than background emissions, while upholding
the premise of maximizing the aggregate received emissions. The
secondary sub-condition involves normalizing the fitness function
within the unit interval [0, 1], serving as a subsequent evaluative
criterion. In consideration of these multiple criteria, the fitness
function is defined as articulated in Eqs 4, 5.

I � abs dif f tan sig
ε

log 1 + X1*H − log X2*H( )( )( )( )( ) (5)

� abs 1 − tan h
ε

log 1 + X1*H − log X2*H( )( )( )( )
2)( (6)

In this context, ε � X1*H − X2*H,X1 (expressed in units of
t · hr−1) signifies the fraction of emissions originating from the
oil and gas sector as stipulated in the GFEI inventory, whereas
X2 (expressed in units of t · hr−1) denotes the background emissions
computed by subtracting the oil and gas-related component from
the overall inventory. The term H (expressed in units of
ppbv · (t · hr−1)−1) refers to the footprint. Applying a convolution
operation in the spatial domain to both X1 and X2 with the footprint,
we derive the natural logarithm of the fitness function’s independent
variable by subtracting the convolution of the background difference
inventory and footprint from the convolution of the oil and gas
inventory with the footprint.

2.3 Emission inventory

The location of methane monitoring stations needs to
consider the spatial distribution characteristics of methane

emissions, and the current Dongying region has not yet
carried out special work on the preparation of methane
emission inventories. For this reason, this collected two
emission inventories, the Global Fuel Exploitation Inventory
(GFEI) and Emissions Database for Global Atmospheric
Research (EDGAR), which are commonly used in studies
regarding monitoring methane emissions.

The GFEI was developed by Harvard University to assess
methane emissions. The inventory has been compared to results
from satellites with Global Observations of Atmospheric Methane
(GOSAT) and the In-Situ Observation Platform (GLOBALVIEW).
The GFEI maps methane emissions from the oil, gas, and coal
sectors and subsectors by utilizing national emissions data reported
by individual countries to the United Nations Framework
Convention on Climate Change (UNFCCC) and mapping them
to infrastructure locations to assigned to a 0.1+ × 0.1+ grid.
Harvard’s updated GFEI v2 provides annual emissions data from
2010 through 2019, including the latest UNFCCC country reports,
new oil and gas well locations, and improved spatial distribution of
emissions for Canada, Mexico, and China.

EDGAR (Emissions Database for Global Atmospheric
Research) is a global emissions database used to estimate
emissions of various greenhouse gases and other atmospheric
pollutants. The database collects emissions data for individual
countries and regions and provides detailed analyses and
estimates. The EDGAR database provides emission data for
different years, sectors, and countries to help researchers and
policymakers understand the trends and distribution of global
and regional emissions. For this work, the EDGAR v7.0 was used,
the first product of the new EDGAR Community GHG
Emissions Database.

FIGURE 1
Site selection method.
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3 Results

3.1 Selection of the methane
emission inventory

The GFEI emissions inventory focuses solely on the energy
industry, primarily divided into two sectors: coal mining and oil
development. In the Dongying area, there is almost no methane
emissions associated with the coal mining industry. Therefore, the
GFEI inventory can directly represent the emissions related to the oil
industry in the Dongying area, as shown in Figure 2B.

On the other hand, EDGAR covers a wider range of sectors. To
ensure comparability between the two inventories, we extract
emissions related to the oil and gas sector from the complete
EDGAR inventory, as shown in Figure 2A. This extraction
process allows for comparison between these two different
emissions inventories.

Figure 2 displays that in the Dongying area, a qualitative analysis
of the spatial distribution of the two inventories indicates that the
GFEI inventory (expressed in units of t·km-2·year−2) better reflects
the actual spatial distribution of methane emissions in the region.
Direct evidence of this is that EDGAR allocates excessive emissions
to the offshore area, with the highest value allocated reaching
669.5 t km-2·year−2. This difference may be related to EDGAR
using the location of oil and gas extraction facilities as spatial
proxies. Offshore drilling platforms may be given greater
importance, resulting in excessive emissions being allocated to
the offshore area, deviating significantly from the actual situation.
Additionally, we also carried out quantitative calculations to analyze
the statistical differences between the two inventories. First,
compared to the GFEI inventory, the EDGAR inventory
(expressed in units of t·km−2·year−2) has a noticeable
concentration of emissions allocation. We established a research
area with a radius of 50 km centered around oil fields. Within this
area, the range of values for the GFEI inventory is 3.86–50.7, while
for EDGAR it is 0.17–124.3. Based on this, we separately calculated
the means and mean squared errors (MSE) for both inventories,
with mean values of 17.42 and 15.39 respectively. Comparing the
means, there seems to be no difference between the two. However,
when calculating the MSE, we found that the values for GFEI and

EDGAR are 101.3 and 1163.4 respectively, indicating that the degree
of dispersion in value allocation is much higher in the GFEI
inventory than in EDGAR. Referring to the aforementioned
EDGAR inventory, which disproportionately allocates
contributions from most oil field areas to the offshore area, we
believe that under the premise of comparability between the two, the
comprehensive spatial distribution and numerical statistical results
demonstrate that GFEI is more suitable to represent emissions
related to the oil industry in this area.

In addition, in this study, we also collected information about
the distribution of local oil field facilities through private
communication. However, due to confidentiality agreements in
the Chinese oil and gas industry, we are unable to disclose this
information in the published work. Through comparison, it was
found that the spatial distribution of methane emissions
presented by GFEI aligns more closely with the location of
local oil and gas extraction and refining facilities. Therefore,
in this study, we chose to use the GFEI inventory to describe
methane emissions related to the oil and gas industry. At the
same time, we use the EDGAR inventory to describe methane
emissions from other sectors, separating the EDGAR inventory
from the aforementioned reports related to the oil and gas
industry, which are the same as the GFEI inventory. The
results of the two inventories overlaid can be seen in Figure 2C.

3.2 Footprints under different wind speeds

To calculate the observational effectiveness at specified site
locations throughout the year, it’s necessary to compute the
annual average footprint for each point. However, conducting
extensive simulations using WRF-STILT is practically unfeasible.
To derive the annual average footprint for a particular location,
we’ve employed a simplified strategy. Initially, we used
meteorological reanalysis data to determine the frequency of
different wind speeds and directions at a given location.

Subsequently, based on these frequencies, we rotated and
weighted precomputed footprints of various levels, ultimately
yielding the annual average footprint for that location. This
strategy assumes that the shape of the footprint is primarily

FIGURE 2
Comparisons of different inventories and fusion of two inventories. (A–C) are EDGAR, GFEI and EDGAR combined with GEFI respectively.
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determined by both wind speed and direction, with geographical
location playing a relatively minor role. While this assumption
might not hold in areas with complex terrain, Dongying is
situated in a plain near the mouth of the Yellow River and lacks

significant hills or elevation changes. Given the flat nature of this
region, we consider this assumption reasonable.

Therefore, our focus involves calculating typical footprints for
each wind speed level per grid, while accounting for wind direction

FIGURE 3
Scenario of footprints at different wind speed levels in a northerly wind direction.
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by rotating all precomputed standard footprints to align with an
assumed due north wind direction. Wind direction changes can
distort footprint shapes, so selecting periods of stable wind
conditions becomes crucial to obtain standardized footprints.

In this study, we identified periods corresponding to specific
wind speeds based on statistical analyses of wind field data.
Subsequently, we selected periods with wind direction stability
lasting over 36 h to compute footprints for each wind speed level.
Finally, we rotated the computed footprints according to wind
direction, with the rotation angle being the angle between the
wind direction and true north. Figure 3 displays the situation of
standard footprints for various wind speed levels in a 0.1-degree
resolution grid, with annotated sampling dates for each wind
speed level.

Figure 3 illustrates that as wind speed increases, footprints
appear more elongated, and conversely, slower wind speeds result
in broader footprints. With higher wind speeds, methane signals
captured by observation stations are more concentrated within a
narrow area in the upwind direction. Conversely, lower wind speeds
make observation stations more susceptible to receiving signals from
nearby areas. These characteristics align with the fundamental
theory of atmospheric transport, validating the representativeness
of footprints computed across different wind speed levels.

It’s crucial to note that, for visualization purposes, Figure 3
employs an exponential scale for the intensity of footprints. This
implies that even neighboring color gradients represent differences
in footprint intensity of over tenfold. During the computation of
observational effectiveness, only the strongest color gradient plays a
dominant role. The next strongest gradient, when covering a
substantial area, might exert some influence, while the remaining
gradients have minimal impact on the computed results.

According to Figure 5, the observational effectiveness (emission
inventory convolved with footprint, i.e., methane increase) of a site is
greater than 150 ppb. It is known from the previous section that the
range of GEFI inventory values at the site is from 3.86 to 50.7. As can
be seen from Figure 3, when the order of magnitude of the footprint
is less than 10−7, the effect on the observational effectiveness is less
than 10−2 ppb, and we consider that such an effect on the
observational effectiveness of the site can be negligible. In
Figure 3 the footprint with a wind speed of 1.375 m/s has 85.3%
of the data greater than 10−7, and the footprint with a wind speed of
1.875 m/s has 91.7% of the data greater than 10−7, these two low
wind speed footprints cover a large area and have larger values of
footprints, compared to the two very large footprints covering an
area with wind speeds of 4.75 m/s and 5.25 m/s, which have 36.4%
and 22.8% of the data greater than 10−7 respectively. We believe that
it is easier to receive the impact of emissions from areas other than
the oil field area at low wind speeds.

3.3 Annually-averaged footprints

After computing 11 different footprints for each 0.1-degree grid
at various wind speed levels, the next step involves further analyzing
the wind field characteristics for each grid.Wind rose diagrams serve
as standard tools for illustrating the frequency of wind speed and
direction in a specific region. In Figure 4, we present the annual wind
rose diagram for the coordinates (118.55E, 37.55N). Figure 4A

illustrates that southerly winds prevail at this location, often
associated with lower wind speeds, while northerly winds tend to
bring higher wind speeds.

Utilizing the wind rose diagram allows us to acquire information
on the proportion of wind speed and wind direction combinations in
a particular area. For instance, if we know that the probability of a
wind field with a speed of 3.75 m/s and a direction of WNW is 3%,
we would retrieve the standard footprint corresponding to 3.75 m/s
wind speed and rotate it counterclockwise by 67.5°. Then, we would
multiply this footprint by 0.03. By iterating through all wind speed
and wind direction combinations across the grid, we obtain the
annual average footprint, as depicted in Figure 4B.

Taking the scenario shown in Figure 4B as an example, we
observe that the annual average footprint at this location isn’t a
uniformly distributed circular shape but rather a complex pattern
primarily aligned along the northwest-southeast axis. This indicates
that using methods like inverse distance weighting interpolation to
generate footprints for observation station locations is unreasonable,
as many areas have predominant wind directions, and wind speed
and direction aren’t uniformly distributed across all directions.

Moreover, it’s crucial to emphasize that the simplified strategy
employed in this study doesn’t account for terrain factors. If, for
instance, there are mountains in the southern part of a region, the
coverage of different locations towards the south would evidently
vary due to their proximity to the mountains. Figure 4C displays
satellite imagery of the Dongying vicinity, revealing the eastern part
of the North China Plain with only Mount Tai, approximately
200 km southwest of Dongying, amidst vast plains and sea. This
issue deserves particular attention for readers seeking a brief
overview of this study’s approach. For areas with complex
terrain, careful consideration of terrain factors impacting
footprints is imperative.

3.4 Site location optimization

Figure 5 illustrates the convergence of the optimization
algorithm under different numbers of observation sites (1, 3, 5, 7,
9). The graph indicates that fewer observation sites lead to faster
convergence in the optimization process, showing a clear trend: as
the number of observation sites decreases, the optimization
converges more rapidly, and vice versa.

This phenomenon is straightforward to explain: when there’s
only one observation site, the optimization program needs to select
the best location from 10,000 possible scenarios. However, when the
number of sites increases to 3, the feasible solutions drastically
expand to C (10, 3) = 1.67 × 1011 possible scenarios. This highlights
the challenge in designing observation networks, where the number
of feasible solutions escalates rapidly as the number of sites
grows—not linearly, but exponentially by orders of 10.

Consequently, the current design of urban observation networks
often relies on human judgment and experience, making it difficult
to employ quantitative methods for calculation.

In previous studies, researchers employed a random approach to
generate a specific number of observation sites and computed the
observational effectiveness through multiple iterations. However,
this strategy isn’t suitable for site selection, which is the problem
addressed in this paper.
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With just one observation site, the optimization algorithm finds
the best solution within 5 iterations. Yet, with 3 observation sites,
convergence requires 25 iterations. As the number of sites increases
to 5, 7, and 9, the required iterations for convergence further rise to
41, 128, and 162, respectively. These numbers aren’t fixed due to the
stochastic nature of the GA algorithm—repeated runs may yield
varying convergence times—but the overall trend remains
consistent.

It’s advisable to set an iteration limit for the GA algorithm based
on the number of sites, aiding in faster computation results.
Generally, as the number of sites increases, a higher maximum
iteration count is needed to ensure the algorithm finds the
optimal solution.

Our experiments were conducted on a standard personal
computer. Optimizing the most complex scenario with 9 sites
required approximately 100 min over 200 iterations, a timeframe
deemed acceptable for us. However, for larger observation networks
or increased grid resolutions, optimization time might significantly
increase. At such times, setting a reasonable maximum convergence
count becomes a crucial consideration.

Figure 5 demonstrates that as the number of observation sites
increases, the overall observational effectiveness improves. However,
the degree of improvement diminishes with a rising number of
observation sites. The observational effectiveness achieved by the
optimal solutions with 1, 3, 5, 7, and 9 sites are 1.7, 3.1, 4.2, 5, and 5.6,
respectively.

FIGURE 4
Wind rose map and annually-averaged footprint map for a given site location. (A–C) are annually-averaged Wind Rose Map at 118.55E,37.55N,
annually-averaged footprint case at 118.55E,37.55N, Satellite imagery of the study area respectively.

FIGURE 5
Convergence of optimization processes for different number of sites.
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It’s expected that with further increases in the number of
observation sites, the enhancement in observational effectiveness
will continue to decrease, possibly reaching a maximum value. The
construction cost of the observation network grows linearly with the
number of observation sites. Therefore, it’s essential to determine a
balance point that achieves a compromise between cost and
observational capability.

3.5 Optimized solution for monitoring
networks of different sites

Figure 6, Figure 7, and Figure 8 respectively display the positions
of five, seven, and nine optimized stations generated by the
optimization algorithm, along with the annual average footprints
(We only show the fraction greater than 1 ppbv·(t·hr-1), since the
previously mentioned fraction less than this value is negligible for
the observational power of the site) at each station based on GFEI
emission inventory. The background is a satellite image of the
Dongying oil field. Among them, different colored squares
represent different methane concentrations in the GEFI
inventory, the darker the color the higher the methane
concentration. The green origin represents the optimized site
location. The irregular cloudy portion represents the annual
average methane backward footprint of the site. We utilize the
GFEI inventory to represent methane concentration in the area,
combined with the annual average footprints to assess the
observational capabilities at each station. It’s evident that the
stations are primarily located in areas with higher methane

concentrations (>10 t km-2·year−2) according to the GFEI
inventory. The alignment between the annual average footprints
and the GFEI inventory is relatively comprehensive, particularly
concentrated in the southern part of Dongying (Shengli Oilfield). As
the number of stations increases, the distribution becomes more
stable. The addition of stations from five to nine doesn’t alter the
general positions of the existing stations but rather includes stations
in areas with higher methane concentrations according to the GFEI
inventory, with more stations distributing in the southern part of
Dongying. Because emissions are more concentrated and intense in
the southern part of Dongying, which is the main location for the
placement of oil field facilities, it makes perfect sense to place more
sites there.

As depicted in Figure 5, the increase in observational
effectiveness gradually diminishes with a rise in the number of
stations, the number of stations increased from 5 to 7 to 9, and the
observational effectiveness increased from 3.1 to 4.2 to 5. In Figure 6,
the stations are mainly situated in regions with darker colors in the
GFEI inventory, while with an increase in station numbers, the
locations of the stations correspond to lighter colors, indicating
lower methane concentrations in those areas. Consequently, the
original stations are presumed to have higher observational
capabilities compared to the newly added stations. This could be
attributed to the overlapping observation ranges between the new
and original stations, where the methane concentration at the new
station locations is lower than that of the original stations. Figure 7
adds Site 6 (118.57E, 37.93N), Site 7 (118.55E, 37.45N), and an
increase in observational effectiveness of 1.1 compared to Figure 6.
Site 6 has a 3.4 percent average annual footprint coverage (How

FIGURE 6
Optimum solution for 5 sites.
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FIGURE 7
Optimum solution for 7 sites.

FIGURE 8
Optimum solution for 9 sites.
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much the footprints overlap) with the original site, and Site 7 has a
31.2 percent average annual footprint coverage with the original site.
Figure 8 adds Site 8 (118.72E, 38.01N), Site 9 (118.65E, 37.48N), and
an increase in observational effectiveness of 0.8 compared to
Figure 7. Site 8 has 2.1 percent annual average footprint coverage
with the original site, and Site 9 has 67.5 percent annual average
footprint coverage with the original site. The above results are
consistent with a decreased increase in observational effectiveness
due to the overlap of site observation ranges.

Considering the coverage range of station observations and the
actual deployment costs, we can roughly determine the required
number and positions of stations. Under the premise of
guaranteeing the basic observation range, the selection of more
stations with better observation effectiveness is an urgent problem to
be solved. The change in observational effectiveness from seven to
nine stations is not a significant improvement, so seven stations can
be considered the basic placement standard when considering costs,
and a number of stations lower than seven may result in an
incomplete range of observations, which can be increased if the
budget is sufficient.

The optimized station locations correspond well with reality,
mostly positioned in areas with higher methane concentrations
according to the GFEI inventory. Additionally, with an increase
in optimized station quantity, the station distribution becomes
more stable.

4 Discussion

Given the extensive dispersion of oil field infrastructure
throughout the entire region rather than concentrated layouts,
the feasible range for monitoring points is considerably broad.
This necessitates narrowing down the feasible range of
monitoring points before numerical optimization due to the
high spatiotemporal complexity, which could lead to
optimization difficulties and potential non-convergence. The
wind field data used in this study originated from hourly 10 m
wind field data from ERA-5 reanalysis. However, due to the
0.25°×0.25° grid accuracy of ERA-5 reanalysis data, which cannot
match the precision of the footprints, interpolation methods were
applied to adapt the wind field data to a 0.1°×0.1° grid. Kriging
interpolation was utilized for this study, and it’s essential to note
that the precision of the 0.1° wind field vector speed might be
influenced by the interpolation method chosen.

Regarding the generation of annual average footprints, we
divided it into 12 wind field levels based on wind speed and
frequency. Footprints were rotated under each of the 12 wind
levels and eventually combined to form the annual average
footprint. To adapt each footprint level’s wind speed
selection, we attempted to select 12 wind field intervals with
approximately the same frequency. The wind speed was set at the
midpoint of each frequency interval. However, finding periods
with stable wind speeds and directions, especially in summer,
particularly for wind speeds below 6 m/s, was challenging.
Considering that approximately 80% of the wind field in the
oil field region is concentrated below 6 m/s, evaluating the
stability of the wind field data, particularly at 10m,
becomes crucial.

The emission inventory utilized in this study is a combination of
GFEI and EDGAR data. GFEI mainly represents the energy
industry, while EDGAR provides more comprehensive coverage.
The site selection process focuses on maximizing the observational
benefits while ensuring maximum oil and gas content in the
observed emissions. As per the comparison between the GFEI
and EDGAR inventories, the former is selected for oil and gas
emissions, while the latter represents the background emissions after
subtracting oil and gas emissions. Errors in both inventories
accumulate spatially and sectorally following the law of error
propagation. Both inventories have a spatial resolution of
0.1°×0.1°, which needs to be adapted to 0.01°×0.01° to match the
footprints’ resolution. Unlike the wind field reanalysis data, the
emission inventory does not exhibit spatial correlation; hence,
resampling was used during the interpolation, causing limitations
in the accuracy of emission fluxes at each 0.01° grid point.

Increasing the number of stations leads to a linear increase in
computational burden, which is also influenced by factors like
algorithm iteration counts, study area size, and the spatial
resolution of the emission inventory and footprints. The
maximum station count in this experiment was nine, taking
approximately 10 min. For instance, increasing the station count
to 90 or 900 would lead to computation times of 100 min or
1000 min, respectively. However, this computational burden is
manageable within realistic scenarios, considering the upper limit
of 9600 for the station locations, where linear computational
increments occur for station counts below this limit. Realistically,
under limited funding, the actual station count is unlikely to reach
this upper limit, thus making the increased computational burden
acceptable.

Expanding the diffusion range of footprints, enlarging the study
area, or enhancing the spatial resolution of emission inventories and
footprints on the existing experimental basis will result in amultiple-
fold increase in computational burden. Due to practical research
considerations and budget constraints, such a high computational
burden might not be feasible. Hence, considering these factors,
planning a station optimization strategy with an acceptable
computational burden is entirely plausible.

At present, only in situ measurement equipment will be
deployed at each site. However, there are plans to supplement
this with Differential Absorption LiDAR (Shi et al., 2021; Zhang
H. et al., 2023) in the future. This technology is capable of measuring
range-resolved atmospheric CH4 concentrations (Han et al., 2017;
Shi et al., 2020), thereby extending coverage over a larger area.
Besides, The main oil production area of the Shengli Oilfield is
located near the mouth of the Yellow River. Distance-resolved
observational data helps distinguish methane emissions from
natural ecosystems and anthropogenic processes (Qiu et al., 2023).

5 Conclusion

This study employed multisource remote sensing and
geographic data to conduct an initial screening of methane
emission areas. Meteorological reanalysis data was used to drive a
high-resolution atmospheric transport model, which calculated the
footprints of specified observation points. A Monte Carlo method
was utilized to randomly generate a designated number of
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observation points. The Boltzmann-GA optimization model was
then employed to iteratively adjust the positions of these observation
points until fitness convergence was achieved. By integrating
atmospheric transport modeling, Boltzmann-GA optimization
algorithm, and remote sensing environmental monitoring data,
this study successfully designed and optimized a methane
monitoring network for oil fields, providing technical support for
methane emission monitoring in the energy industry.

In the current scenario where reference examples and guidelines
for designing methanemonitoring networks are lacking, the findings
of this study fill the gap and have the potential to become an industry
standard for effective site selection in methane monitoring in oil
fields. The designed monitoring network, which leverages multiple
data sources and advanced optimization algorithms, exhibits high
accuracy and coverage in methane emission monitoring.
Furthermore, the proposed methodology is applicable to methane
monitoring and environmental surveillance tasks in other regions.

In conclusion, this study provides an effective approach for
designing and optimizing methane monitoring networks in oil
fields. Future research can further enhance and expand upon this
methodology to cater to monitoring requirements in different
regions and application scenarios. By continuously improving
monitoring technologies and methodologies, we will be better
equipped to manage and control methane emissions in the
energy industry, thereby achieving sustainable energy
development and environmental protection goals.
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