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Green innovation possesses dual externalities of “innovation” and “environmental
protection”, and enhancing energy efficiency serves as a crucial means to
promote high-quality economic development. Building upon the energy
rebound effect, we use the balanced panel data of cities at prefecture level
and above in China from 2008 to 2018 to explore the impact of urban green
innovation on total factor energy efficiency (TFEE). The findings of this study
indicate that, firstly, the impact of green innovation on TFEE exhibits a positive
U-shaped pattern, characterized by initial suppression followed by subsequent
promotion. This conclusion remains robust after undergoing a series of rigorous
robustness tests. Second, high-quality green innovation is found to reach the
turning point more quickly, implying that substantial green innovation can cross
the turning point in smaller quantities. Thirdly, on the whole, in comparison to
non-resource-based cities, resource-based cities are capable of reaching the
turning point at an earlier stage. Finally, the new energy demonstration cities have
not yet reached the turning point, while the non-new energy demonstration
cities have crossed the turning point. This study contributes novel insights into the
relationship between green innovation and TFEE, which holds significant
implications for the formulation and implementation of sustainable
development policies.

KEYWORDS

green innovation, total factor energy efficiency, energy rebound effect, U-shaped
relationship, fixed effects model

1 Introduction

In recent years, global climate change has garnered increasing attention, leading to a
growing consensus on the importance of energy conservation and emissions reduction
(Guo et al., 2023a; Guang et al., 2023). As China transitions into a phase of high-quality
economic development, the conventional model characterized by “high energy
consumption, high pollution, and low efficiency” has become unsustainable (Liu et al.,
2023; Wu et al., 2024a). Notably, the Chinese government has committed to international
objectives, targeting a carbon peak by 2030 and carbon neutrality by 2060, known as the
“dual carbon” goals. Against this backdrop, improving energy efficiency has emerged as a
key strategy for China to realize these goals (IEA, 2021; Zhao et al., 2022). Furthermore, the
14th Five-Year Plan explicitly sets forth the development goal of “more rational allocation of
energy resources and substantial improvement in energy utilization efficiency”. However,
given China’s continued prioritization of economic development and the persistent
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dominance of coal in its energy consumption landscape, achieving
these goals presents significant challenges (Ren et al., 2022; Xu and
Lin, 2022). Unlike developed nations, China’s process of
industrialization and urbanization remains incomplete, further
complicating efforts to meet the “dual carbon” goals within a
short timeframe (Zor, 2023a; Cui et al., 2023). As the world’s
largest energy consumer and carbon emitter, the Chinese
government faces unprecedented pressure to implement measures
for energy conservation and carbon reduction (Tang, et al., 2023;
Wu et al., 2024b; Tang et al., 2024).

Addressing the urgent need to enhance energy efficiency for
carbon emission reduction has become a pivotal concern for China
to uphold its international competitiveness (Wang et al., 2019). The
historical pursuit of GDP growth rate has shifted, with China’s
economy progressively transitioning towards green and low-carbon
development (Tang et al., 2022; Zor, 2023b; Jiang and Tang, 2023).
The 20th National Congress further emphasizes the need to
accelerate the green transformation of development patterns and
promote the formation of green and low-carbon production modes.
The pursuit of green development is increasingly gaining consensus
across all societal sectors and governmental levels, constituting a
vital driver for refining the energy mix and a focal point of academic
inquiry (Guang et al., 2022). Despite the Chinese government’s
significant emphasis on green development, the persistent challenge
of reconciling the reduction of energy intensity with the rise in total
energy consumption remains conspicuous. Navigating the transition
away from traditional development models and propelling cities
towards a green development trajectory has emerged as a critical
agenda under the “dual carbon” goals (Bu et al., 2022; Gao et al.,
2022). Presently, the emerging drivers of economic growth
increasingly hinge on the efficient allocation of resources,
necessitating the judicious utilization of energy resources. Green
innovation, as a distinctive form of innovation, effectively
harmonizes economic development with environmental
conservation, serving as a pivotal mechanism for bolstering
energy efficiency (Zhou and Qi, 2022).

The beneficial impacts of green innovation are multifaceted,
with empirical evidence suggesting that it can contribute to
heightened energy efficiency. Green innovation has the potential
to foster the development of green and low-carbon production
methods and lifestyles, curbing resource consumption, and
fostering cleaner and more efficient production processes (Guo
et al., 2023b). Additionally, it can bolster production
technologies, diminish reliance on fossil fuels in production
activities, thereby curbing energy consumption and augmenting
energy efficiency. However, recent studies have indicated that
green innovation may be a “double-edged sword” (Chen et al.,
2023), and its impact on energy efficiency is not always positive. The
energy rebound effect posits that in the short term, the cost
reductions resulting from green innovation may spur an uptick
in energy consumption, countering some of the intended energy-
saving and emission-reducing benefits. Since green innovation
activities are characterized by greater randomness (Noailly and
Smeets, 2015; Xiang et al., 2022), large investments and low
returns (Ren et al., 2021), there is a possibility that they may
crowd out productive expenditures, ultimately undermining the
improvement of energy efficiency. Moreover, considering that the
positive externalities of green innovation are difficult to internalize

in the short term, and environmental performance does not
dominate the promotion process of local officials (Jiang et al.,
2020; Tang et al., 2021). Local governments are often reluctant to
invest excessive time and effort in green innovation, leading to a
weakened supportive role of green innovation in energy efficiency.

Research on the relationship between green innovation and
energy efficiency is one of the hot topics in the academic
community. This paper measures total factor energy efficiency
(TFEE) at the city level in China using the non-desired output
super-efficiency Slack Based Measure model, and demonstrates the
spatial and temporal distribution characteristics of TFEE using
Arcgis software. Based on balanced panel data of 284 prefecture-
level and above cities from 2008 to 2018, this paper empirically tests
the impact of green innovation on urban TFEE using a two-way
fixed effects model. The findings suggest that: (1) When the level of
green innovation is low, it imposes a burden on TFEE. However,
when urban green innovation reaches a certain level, green
innovation is beneficial to improve TFEE. And this conclusion is
quite robust. (2) Compared to strategic green innovation,
substantive green innovation can reach the turning point faster
and promote TFEE. (3) Overall, the observations of resource-based
cities are evenly distributed on both sides of the symmetry axis. The
level of green innovation in non-resource-based cities has not yet
reached the turning point, but the turning point comes faster in
resource-based cities. (4) The sample of new energy demonstration
cities generally falls on the left side of the symmetry axis, while the
opposite is observed for non-new energy demonstration cities.
Furthermore, the turning point of non-new energy
demonstration cities is significantly smaller than that of new
energy demonstration cities.

Compared to existing studies, the potential contributions of
this paper are as follows: First, this paper responds to the focus on
energy rebound effects in the resource and environmental
economics literature. Unlike previous studies that focus on
measuring energy rebound effect (Belaid et al., 2020; Du et al.,
2021; Chen et al., 2022), we validate the energy rebound effect in
the Chinese context based on a city-level sample. We find a
U-shaped relationship between green innovation and TFEE,
thus revealing the “black box” of how green innovation affects
TFEE. Second, this paper echoes the recent literature that focuses
on the economic and environmental effects of urban green
innovation (Singh et al., 2020; Chen et al., 2023; Bianchini
et al., 2023), thus expanding on the non-economic performance
of urban green innovation. By doing so, this research not only
enriches our understanding of the multifaceted outcomes of urban
green innovation but also broadens our perspective beyond its
traditional economic dimensions. Therefore, our paper enriches
the existing research on the consequences of green innovation
activities. Lastly, our study extends the understanding of energy
rebound effect from the resource dependence perspective, we
examine the moderating role of resource dependence on the
relationship between green innovation and TFEE. This study
enriches the resource curse theory and, in turn, provide
valuable insights for guiding both resource-dependent and non-
resource-dependent cities in improving TFEE. By studying this
urban character, the research sheds light on the role of resource
dependency in shaping the relationship between green
innovation and TFEE.
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The remainder of the paper is organised as follows: Section 2
provides the literature review; Section 3 outlines the research design,
including sample selection, data collection, model building and
variable definition; Section 4 presents the empirical results;
Section 5 provides further analysis; and Section 6 summarises the
findings and implications of the paper.

2 Literature review

Green innovation has important practical significance for
improving energy efficiency and achieving green economic
development. The literature closely related to the research topic
of this article mainly includes the following two branches:

2.1 The economic and environmental effects
of green innovation

In recent years, there has been considerable academic interest in
green innovation as an effective strategy for simultaneously pursuing
economic growth and environmental protection. Scholarly
discourse has predominantly focused on analyzing the outcomes
of green innovation, particularly in terms of its economic and
environmental impacts.

Numerous prior literature reviews have explored the correlation
between green innovation and economic performance, yet definitive
conclusions remain elusive. The “compliance cost hypothesis”
theoretically argues that achieving concurrent economic
performance and environmental preservation is arduous. This
challenge arises due to the low return rate, extended return cycle,
and substantial investment associated with green innovation.
Additionally, green innovation frequently involves local
governments responding passively to environmental regulatory
pressures imposed by higher-level governmental (Ren et al.,
2021). In scenarios marked by resource constraints, the
engagement in green innovation activities necessitates local
governments to redirect a portion of their existing resources
away from conventional production towards initiatives aimed at
environmental preservation. This redirection disrupts the initial
deployment of resources within the city’s production framework,
curbing industrial production activities and thereby instigating a
“crowding out effect” on economic performance (Pan et al., 2019).
Therefore, the allocation of resources by local governments towards
environmental protection inevitably crowds out productive
investments in the city, ultimately impeding the improvement in
economic performance.

The “Porter Hypothesis” proposes a completely different
viewpoint from “compliance cost hypothesis” (Porter and Van
der Linde, 1995). According to the “Porter Hypothesis”, green
innovation can optimize resource allocation efficiency, thereby
exerting a positive impact on economic performance. To address
the ever-increasing pressure on resources and the environment,
governments can implement proactive green innovation
development strategies to enhance the overall competitiveness of
cities. Green innovation serves as an effective solution to promote
clean production and enhance production efficiency, which can
further enhance the economic sustainability of cities (Yan et al.,

2020). Furthermore, green innovation substantially diminishes
societal production costs through the adoption of
environmentally sustainable technologies, optimization of
production processes, and enhancement of product designs.
Additionally, green industries represent a pivotal trajectory for
future development, offering the potential to generate a plethora
of employment opportunities and catalyze economic advancement
within urban areas. Cities that prioritize green innovation often
enjoy a pronounced advantage in attracting skilled personnel and
investments, thereby yielding significant benefits for bolstering
economic performance. Within this framework, involvement in
green innovation endeavors does not signify a trade-off between
economic performance and environmental preservation. Rather, it
has the potential to foster a mutually beneficial outcome for both
ecological integrity and economic prosperity (Huang et al., 2021;
Zhao et al., 2022b).

Indeed, the academic community has produced numerous
studies examining the environmental performance of green
innovation. Positioned as a pivotal approach toward sustainable
development, green innovation is widely acknowledged as a
foundational strategy for fostering high-caliber development.
With the global promotion of the concept of sustainable
development, green innovation has become an inevitable choice
for achieving a “win-win” situation of economic growth and
environmental protection (Yildirim et al., 2022). As a critical
means to achieve the dual carbon goals, green innovation can
help break away from traditional economic development model
and steer the economy towards a green and low-carbon direction. It
goes without saying that green innovation has become an important
way to overcome resource and environmental constraints and
achieve sustainable development. On the one hand, green
innovation contributes to promoting clean production, reducing
carbon emissions, and mitigating global climate change (Sun et al.,
2021; Xin et al., 2021; Sharif et al., 2022). On the other hand, green
innovation facilitates the efficient utilization of energy resources,
reducing resource consumption and environmental pollution
(Ulucak and Baloch, 2023). However, green innovations do not
always help to improve environmental performance (Du and Li,
2019), and low quality and low quantity green innovations even
exacerbates to environmental pollution (Mongo et al., 2021).

2.2 Energy efficiency related research

Energy efficiency plays an indispensable role in the cost-benefit
analysis of energy conversion. Researchers have extensively delved
into the exploration of energy efficiency, aiming to comprehend and
optimize energy utilization. The research at hand encompasses two
primary dimensions: firstly, what methods are used to accurately
measure energy efficiency; the second is to explore various
influencing factors of energy efficiency. By delving into these
issues through profound investigation, valuable theoretical
support and practical guidance can be provided to enhance
energy utilization efficiency and promote sustainable development.

There are two main approaches to assessing energy efficiency in
academia, namely, single-factor energy efficiency and total factor
energy efficiency. The benefits of single-factor energy efficiency are
simple methods, specific results, and the ability to intuitively reflect
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the impact of energy consumption on economic output. In earlier
academic research, single-factor energy efficiency emerged as a
widely employed indicator (Petrovic et al., 2018; Shao et al.,
2019). However, the indicator only treats energy consumption as
the only input to economic output, ignoring the substitution effects
between different input factors. Therefore, the energy efficiency
measured by this indicator is not comprehensive and accurate
enough to fully reflect the changes in energy efficiency as well as
energy consumption (Duro, 2015). From this, it can be seen that the
single-factor energy efficiency indicator has obvious shortcomings,
and cannot be served as the sole standard for comprehensively
measuring energy efficiency.

As research on energy efficiency continues to grow, more scholars
are focusing on and introducing TFEE. TFEE can better evaluate the
combined impact of energy consumption and other input factors on
economic output, and largely compensates for the inadequacy of single-
factor energy efficiency (Gerarden et al., 2017; Li et al., 2021). Although
TFEE is more realistic and accurate, however, the steps and procedures
for measuring TFEE are more complex than for single-factor energy
efficiency. Currently, the measurement methods for TFEE primarily
involve two approaches: stochastic frontier analysis (SFA) and data
envelopment analysis (DEA) (Guo et al., 2023). The larger the
measurement result obtained, the higher the utilization efficiency of
energy and other input factors. Compared to the traditional single-
factor energy efficiency, TFEE incorporates factors such as capital and
labor into the evaluation framework, thus taking into account the
substitution relationships among various input factors comprehensively
(Proskuryakova and Kovalev, 2015). In recent years, with the
intensification of resource and environmental constraints, and
improvements in measurement methods, some scholars have
pointed out that energy efficiency that ignores environmental
pollution is inaccurate and incomplete. As a result, an increasing
number of scholars have started to consider incorporating
environmental constraint indicators as undesirable outputs into the
evaluation framework, aiming to avoid overestimating energy efficiency.

The factors influencing energy efficiency have been one of the hot
topics in academia, encompassing multiple aspects such as economic,
technological, and policy. In recent years, scholars have revealed the
drivers of energy efficiency from different perspectives, such as
technological progress (Paramati et al., 2022), environmental

regulation (Wu et al., 2020), industrial agglomeration (Tanaka and
Managi, 2021), internet development (Wu et al., 2021), economic
globalization (Liu et al., 2023), and energy prices (Jacobsen, 2015).
Undoubtedly, technological progress is one of the most critical factors
affecting energy efficiency. Generally, technological progress tends to
lower energy utilization costs, the constant updating of technologies
provides additional means and possibilities for improving energy
efficiency. However, while focusing on the significant role of
technological progress in enhancing energy efficiency, the energy
rebound effect caused by technological progress should not be
ignored as well (Sun et al., 2019). Meanwhile, considering that the
market mechanism often fails to achieve the expected effect, the
environmental regulation measures issued by the government can
correct market failure to a certain extent (Liu et al., 2023).
Environmental regulations not only help promote technological
innovation, but also guide enterprises to adopt energy-saving
measures by providing incentives (Wang et al., 2022). In addition,
the rise in energy prices will also guide enterprises and society to pay
more attention to energy conservation and utilization efficiency, thereby
improving TFEE (Guo and Liu, 2022).

Figure 1 briefly depicts the framework of this paper. The
relationship between green innovation and TFEE is the focus of
our attention. On this basis, we explore the heterogeneity of the
impact of green innovation on TFEE from the perspectives of
innovation and cities.

3 Research design

3.1 Sample selection and data source

The data on urban green patent applications is sourced from the
CNRDS database. The PM2.5 data for calculating TFEE comes from
the Atmospheric Composition Group at Columbia University.
Other data are obtained from the China Urban Statistical
Yearbook, China Urban Construction Statistical Yearbook, China
Energy Statistical Yearbook, EPS database and provincial and
municipal statistical yearbooks. Ultimately, the authors compile a
balanced panel data for 284 prefecture-level and above cities in
China from 2008 to 2018.

FIGURE 1
Framework diagram.
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3.2 Variable definitions

3.2.1 Dependent variable
Traditional data envelopment analysis (DEA) is not sufficiently

flexible when dealing with inputs and outputs, i.e., it does not take into
account “slack variables”, which leads to a certain degree of bias in the
measured results compared to the actual situation. To overcome the
shortcomings of traditional DEA methods, Tone (2001) proposes the
super-efficiency Slack Based Measure model that takes slack variables
into account. By adding slack variables, it effectively solves the problem
that the traditional DEA model cannot deal with non-desired output
and the error caused by radial and angular, and breaks through the
limitation that the optimal value of efficiency is 1. In recent years, the
environmental pollution caused by human activities has received
increasing attention, and it is necessary to consider non-desired
outputs when evaluating TFEE. Hence, this study adopts the super-
efficiency Slack-Based Measure model that incorporates non-desired
outputs to calculate TFEE. Referring to Zhao et al. (2022a), this article
sets up the following evaluation model:

minpk �
1 + 1

m ∑m
i�1

s−i
xik

1 − 1
s+q ∑s

r�1
s
g+
r

yg
rk

+ ∑s
r�1

sb−t
yb
tk

( )
(1)

∑n
j�1,j ≠ k

λjxij − s−i ≤ xik (2)

∑n
j�1,j ≠ k

λjy
g
rj + sg+r ≥yg

rk (3)

∑n
j�1,j ≠ k

λjy
b
tj − sb−t ≤yb

tk (4)

pk > 0 (5)
λj, s

−
i , s

g+
r , sb−t ≥ 0 (6)

In the above equation, assuming there are n decision-making
units, any decision-making unit has m inputs, s kinds of desired
outputs, and q kinds of non-desired outputs. x, yg and yb are the
input, desired output and non-desired output matrices, respectively.
pk is the measured efficiency value. S−i , S

g+
r and Sb−t denote slack

variables, which refer to inputs, desired outputs and non-desired
outputs, respectively. Xij represents the ith input of decision-making

unit j. yg
rj is the rth desired output of decision-making unit j. yb

tj

represents the tth non-desired output of decision-making unit j. λj is
the weight of decision-making unit j.

The input-output indicators selected in this paper are shown in
Table 1. Input indicators include labor input, capital input and
energy input. The desired output indicator is the urban GDP. As for
the non-desired output, in addition to taking into account the three
industrial wastes, we also include PM2.5 in the evaluation system.
This is mainly because haze pollution has had profound and far-
reaching impacts on various aspects, including human health,
ecological environment, and economic development in recent
years (Chen et al., 2023).

3.2.2 Independent variable
Patents are considered as one of the important indicators for

measuring technological innovation, it is common academic
practice to use the number of green patents to indicate urban
green innovation. The number of green patents serves as an
objective measure that can reflect the overall level of a city’s
green innovation. Compared to the number of granted patents,
patent application data is considered to be more stable, reliable, and
timely. Like most literature (e.g., Xu et al., 2021; Fang, 2023), this
study utilizes the number of green patent applications at the city
level (the sum of green invention patents and green utility model
patents) to measure green innovation. Ultimately, Gi is expressed as
the natural logarithm of the number of green patent applications.

3.2.3 Control variables
To eliminate the influence of other important factors on the

estimation results. Referring to Wang et al. (2022) and Hao et al.
(2022), this paper also controls for the following factors in the
regression model. Economic development level (Gdpr), this paper
uses urban GDP growth rate to measure the regional economic
development level, faster economic growth can promote the
development of energy saving and emission reduction
technologies. Foreign trade (Fdir), measured by the ratio of the
actual amount of foreign investment used to GDP, and the
technology spillover effects and economies of scale from foreign
trade are usually beneficial in reducing energy consumption.
Population density (Pden), Population gathering increases energy
demand, this article uses the ratio of the total population at the end
of the year to the administrative area to represent population

TABLE 1 Input output indicators.

Indicators Definitions Units

Inputs Total number of employed persons person

Capital stock 10,000 yuan

Energy input 10,000 tons of standard coal

Desired outputs GDP 10,000 yuan

Non-desired outputs Industrial smoke emissions ton

Industrial sulfur dioxide emissions ton

Industrial wastewater emissions 10,000 tons

Haze pollution (PM2.5) μg/m3
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density. The size of science expenditure (Scir), measured as the ratio
of urban science expenditure to GDP. Industrial structure (Second),
measured by the proportion of value added by the secondary sector
to GDP, a higher proportion indicates that there may be higher
energy consumption. Environmental regulation (Er), similar to
Chen et al. (2018), is represented by the proportion of
environmental-related vocabulary in the urban government’s
work report.

3.3 Research model

To examine the impact of green innovation on TFEE, the
following two-way fixed effects model is constructed:

TFEEit � α + β1Giit + β2Gi
2

it + ΣλControlit + μi + υt + εit (7)

Among them, where TFEEit represents the energy efficiency of
city i in year t; i, t represent the city and the year, respectively; Giit
indicates urban green innovation; Controlit denotes a set of urban
characteristics; μi and ]t represent the city and time fixed effects; εit is
the error term. α is a constant term; β1 and β2 are the coefficients.

4 Empirical results

4.1 Descriptive statistics

Table 2 shows the variable definitions and descriptive
statistics. For both the independent and dependent variables,
their means are slightly greater than the medians, and they
exhibit smaller standard deviations. This indicates that the
data distribution is relatively even and approximately follows
a normal distribution.

4.2 The spatial and temporal patterns of
TFEE in Chinese cities

To visually display the spatiotemporal distribution of TFEE in
Chinese cities, we utilized ArcGIS software to create spatiotemporal

distribution maps. As depicted in Figure 2, this study showcases the
spatial distribution of urban TFEE for the years 2008, 2011, 2015,
and 2018, respectively. It is evident that there are significant
differences in TFEE among various cities in China, and the
distribution is not uniform. Overall, there are more cities with
higher TFEE in the eastern region than in the western and
central regions. Compared to cities in northern China, cities in
southern China generally exhibit higher levels of TFEE. In 2008, the
regions with lower TFEE are mainly located in Gansu, Guangxi,
Guangdong and Northeast China, while the cities with higher TFEE
are scattered. In 2018, cities with higher levels of TFEE are more
concentrated in regions such as the Beijing-Tianjin-Hebei area, the
Shandong Peninsula, and the Yangtze River Delta.

4.3 Baseline results

The benchmark regression results are presented in Table 3.
Column (1) shows the effect of green innovation when no regional
characteristics are included. In this case, the coefficient of Gi is
significantly negative at the 1% level, while the coefficient of Gi2 is
significantly positive at the 1% level. When we include all control
variables in the regression model, the result is presented in column
(2) of Table 3. The results demonstrate a positive U-shaped
relationship between green innovation and TFEE, characterized
by an initial inhibition followed by subsequent promotion. In
other words, the energy rebound effect of green innovation has
been preliminarily tested. Specifically, the turning point of the
U-shaped relationship is 4.6279, corresponding to a green patent
number of 102. The economic implication is that when the number
of urban green patent applications is below 102, green innovation
reduces TFEE. When the number of urban green patent applications
exceeds 102, green innovation can significantly improve TFEE. This
result suggests that for cities with lower green innovation capacity, it
is necessary to further expand investment in innovation, especially
in terms of expenditure on green innovation.

However, it is not appropriate to solely rely on the significance of
Gi2 to conclude the presence of a U-shaped relationship between
green innovation and TFEE. Lind and Mehlum (2010) argue that
such a criterion is weak or even erroneous. Lind andMehlum (2010),

TABLE 2 Summary statistics.

Variables Definitions Mean SD Min Median Max

Tfee Urban TFEE calculated based on the non-desired
output super-efficiency Slack Based Measure model

0.3515 0.1572 0.0050 0.3222 1.1591

Gi The natural logarithm of urban green patent applications 4.5971 1.7796 0 4.4886 10.2812

Gdpr Urban GDP growth rate 10.2009 4.1536 −19.3800 10.0000 26.0000

Fdir Actual amount of foreign investment used/GDP 1.8063 1.8486 0.0141 1.2436 20.6575

Pden Total city population at year end/Administrative area 0.0426 0.0298 0.0019 0.0361 0.1358

Scir Science expenditure/GDP 0.2343 0.1911 0.0312 0.1739 1.1383

Second Value added of the secondary industry/GDP 48.4526 10.3063 19.7600 48.6600 74.5700

Er Environmental vocabulary in government work reports/total text vocabulary 0.7483 0.5292 0.0900 0.6900 15.5200

N 3124
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Haans et al. (2016) have provided a set of steps for testing U-shaped
relationships. Step 1, the coefficients of the quadratic terms must be
significant, and in the same direction as expected by the theory. Step
2, at the left and right endpoints of the U-shaped relationship, the
slope must be significant and the sign must be opposite. Step 3, the
turning point of the U-shaped relationship falls within the range of
the independent variable. According to Lind and Mehlum (2010),
the U-shaped relationship between green innovation and TFEE is
only valid when all three conditions mentioned above are
simultaneously met.

The empirical result in column (2) of Table 3 shows that the
first step holds. Subsequently, we employ the “utest” command
developed by Lind and Mehlum (2010) to examine the second
step. We find slopes of −0.0398 and 0.0477 for the left and right
endpoints of the independent variable, respectively, and
corresponding t-values of −3.6563 and 2.4644, respectively. This
shows that the second step also holds. Finally, according to the
descriptive statistics in Table 2. It is apparent that the inflection
point (4.6279) of the U-shaped relationship is located between the
minimum and maximum values of the independent variable. Thus,
the third step also holds. The U-shaped relationship between green
innovation and TFEE can be verified.

4.4 Robustness checks

In addition, this paper also performs other robustness tests to
demonstrate the robustness of the baseline regression results. In
column (1) of Table 4, the authors employ the number of urban
green patent grants as a robustness check for substituting
explanatory variables. In the baseline regression, we utilize the
TFEE computed from the non-desirable output super-efficiency
Slack Based Measure model as the dependent variable. In column
(2) of Table 4, the authors employ single-factor energy efficiency
(the ratio of GDP to energy consumption) as a robustness check to
substitute the dependent variable. In this case, the coefficient of Gi2

remains significantly positive. Although we control for numerous
regional-level control variables, there may still be other regional
factors bias our results. Therefore, following Yuan and Zhang
(2015), we include province-year interaction fixed effects in the
model to control for time-varying and non-time-varying province
characteristics. The results is presented in column (3) of Table 4.

Finally, unlike other cities in China, Beijing, Shanghai, Tianjin,
and Chongqing hold a “special status” as they are directly
administered by the central government. The administrative level
of municipalities is higher than that of ordinary cities, and the

FIGURE 2
The spatial and temporal distribution of TFEE in Chinese cities. Note: The representative years, from left to right and top to bottom, respectively, are
2008, 2011, 2015, and 2018. The base map is sourced from the Standard Map Service System of the Ministry of Natural Resources, and the base map
review number is GS (2019) 1822.
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municipalities are able to receive more attention and importance from
the central government. Compared to general cities, municipalities
directly under the central government consume more energy.
Therefore, the four municipalities were removed from the sample in
this paper and the regression test was re-run according to the baseline
regression model. The result is shown in column (4) of Table 4.

4.5 Endogenous analysis

In this paper, the endogeneity is a fatal issue when discussing the
impact of green innovation on TFEE. That is, there may be an
endogenous problem between green innovation and TFEE, which
can seriously interfere with the estimation results. Although this

TABLE 3 The impact of green innovation on TFEE.

(1) (2)

Tfee Tfee

Gi −0.0334*** −0.0398***

(-3.0064) (-3.6563)

Gi2 0.0039*** 0.0043***

(2.8844) (3.2523)

CV No Yes

City_FE Yes Yes

Year_FE Yes Yes

Slope of left endpoint −0.0334*** −0.0398***

(-3.0064) (-3.6563)

Slope of right endpoint 0.0475** 0.0477**

(2.3541) (2.4644)

_cons 0.4093*** 0.1953***

(13.1146) (3.0856)

N 3124 3124

R2_a 0.6099 0.6193

Note: ***p < 0.01, **p < 0.05, *p < 0.1. City-level clustering robust t-values are reported in parentheses. CV, indicates city-level control variables.

TABLE 4 The results of robustness tests.

(1) (2) (3) (4)

Tfee Tfee Tfee Tfee

Gi −0.0468*** −2.6070** −0.0329*** −0.0335***

(-4.1287) (-1.9952) (-2.7823) (-3.0850)

Gi2 0.0048*** 0.1463* 0.0040*** 0.0035***

(3.3174) (1.6914) (2.6038) (2.6237)

CV Yes Yes Yes Yes

City_FE Yes Yes Yes Yes

Year_FE Yes Yes Yes Yes

Province*Year - - Yes -

_cons 0.2065*** 27.6024*** 0.2746*** 0.1893***

(3.2517) (4.7402) (3.8029) (3.0632)

N 3124 3124 3053 3080

R2_a 0.6207 0.6207 0.6636 0.6270

Note: ***p < 0.01, **p < 0.05, *p < 0.1. City-level clustering robust t-values are reported in parentheses. CV, indicates city-level control variables.
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paper controls a range of control variables that may affect TFEE,
many other macroeconomic factors may also influence TFEE.
Therefore, there may be endogenous problems caused by omitted
variables in the econometric model. In view of this, our paper
employs the instrumental variable approach, which is widely used
in academia, to alleviate the authors’ concerns regarding the
endogeneity.

To be specific, the authors try to alleviate endogenous problems
by using two-stage least squares (2SLS) regression. In fact, a perfect
instrumental variable is the “God’s gift”. It is common practice in
empirical studies to use lagged term of independent variable as
instrumental variable to mitigate endogeneity (e.g., Zhao andWang,
2022; Chen et al., 2023). Therefore, we employ lagged one-period
(Gi_1) and lagged two-period green innovation (Gi_2) as
instrumental variables. On the one hand, Gi_1 and Gi_2 are
highly correlated with Gi. On the other hand, the TFEE of the
current period does not affect Gi_1 and Gi_2. The estimation results
of 2SLS are shown in Table 5. The first stage F-value is greater than
10, and the weak instrumental variable problem can be excluded. In
the second stage, TFEE is used as the dependent variable. The
U-shaped relationship still holds. Thus, the benchmark regression
results remain robust after mitigating the endogeneity.

5 Further analysis

5.1 Substantive vs. strategic green
innovation

The baseline regression result indicates a positive U-shaped
relationship between green innovation and TFEE. Considering
the differences in the motivation of green innovation agents to

undertake green innovation activities, do different types of green
innovation show significant differences in their impact on TFEE?
Based on this consideration, following Zhang et al. (2022), we
categorize green invention patents as substantive green
innovation and green utility model patents as strategic green
innovation. Strategic green innovation refers mainly to strategic
actions taken to meet government policies on environmental
protection. These strategies may be innovations that appear green
on the surface but are actually just marketing tools. In contrast to
strategic green innovation, substantive green innovation is high-
quality green innovation behaviour aimed at gaining competitive
advantage and environmental performance. The focus of substantive
green innovation is on environmental protection and economic
efficiency through technical and managerial means.

Columns (1)–(2) of Table 6 present the regression results for
substantive green innovation and strategic green innovation,
respectively. Regardless of whether it is substantive green
innovation or strategic green innovation, the impact on TFEE
shows a U-shaped relationship. However, the difference is that the
extreme value point for substantive green innovation (23) is much
smaller than the extreme value point for strategic green innovation
(104). This suggests that substantial green innovation with high
innovation capacity can reach the turning point earlier, and
achieve the effect of promoting TFEE. Unsurprisingly, substantive
green innovation is more concerned with transformative innovation
in products or technologies. The success of substantive green
innovation can generate greater benefits for the environment,
businesses, and society as a whole. In practice, companies and
governments can focus on raising the level of substantive green
innovation, and adopting more environmentally friendly and
efficient technologies to achieve the goals of sustainable
development and energy saving and emission reduction.

TABLE 5 Endogenous analysis.

(1) (2)

Gi Tfee

Gi_1 0.1315*** -

(6.6157)

Gi_2 0.0412** -

(2.3289)

Gi - −0.0960**

(-2.1324)

Gi2 - 0.0085**

(2.3156)

CV Yes

City_FE Yes

Year_FE Yes

F-statistics of the first stage 22.6090

p-value of Hansen J statistic 0.9585

N 2,556

Note: ***p < 0.01, **p < 0.05, *p < 0.1. City-level clustering robust t-values are reported in parentheses. CV, indicates city-level control variables.
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5.2 Resource-based cities vs. non-resource-
based cities

China is endowed with abundant energy resources, and there
are significant differences in the energy resource endowments
among different regions. A good natural resource endowment is a
tremendous advantage for the sustainable development of
resource-based cities, and the most basic feature that
distinguishes resource-based cities from non-resource-based
cities. Typically, the resource-based cities mainly rely on
natural resource development and processing industries, such
as oil, coal and metal minerals, to develop their economies. In
contrast, the non-resource-based cities rely on other industries
such as manufacturing and services. As a result, the industrial
structure and economic development paths of the two types of
cities are distinctly different. Naturally, then, we want to ask
whether the impact of green innovation on TFEE differs
significantly between resource-based and non-resource-
based cities?

Following the “National Sustainable Development Plan for
Resource-Based Cities (2013–2020)”, we categorize the samples
into two groups: resource-based cities and non-resource-based
cities. Columns (3)–(4) of Table 6 present the regression results
for resource-based cities and non-resource-based cities,
respectively. There is a significant U-shaped relationship
between green innovation and TFEE for both resource-based
and non-resource-based cities. However, the extreme value point
for resource-based cities (51) is much smaller than that for non-
resource-based cities (612). This indicates that, in comparison to
non-resource-based cities, resource-based cities have a
significantly lower level of green innovation capability. For
resource cities, the median (51) is exactly equal to the extreme
value point, indicating that the sample is evenly distributed on
both sides of the symmetry axis. For non-resource-based cities,
the median value of green innovation (145) is smaller than the
turning point, indicating that the majority of the observations are

located on the left side of the symmetry axis. It is not difficult to
explain that resource-based cities are mostly small and medium-
sized cities, with a single economic structure and insufficient
economic development potential. In addition, the development
of resource-based cities has long relied on the extraction and
processing of resources, and the demand for green technology
innovation is relatively low, resulting in a lack of urban
innovation capacity and competitiveness.

5.3 New energy demonstration cities vs.
non-new energy demonstration cities

To promote the research and development, application, and
promotion of new energy technologies, and to play the key role of
renewable energy in adjusting energy structure and building
ecological civilization. In January 2014, the National Energy
Administration of China announced the first batch of new
energy demonstration cities (industrial parks). This measure
aims to reduce the reliance of cities on fossil fuels, increase
the proportion of new energy in urban energy consumption,
and enhance the sustainable development capacity of cities.
Meanwhile, recent empirical studies have shown that new
energy demonstration cities significantly improve the energy
efficiency of pilot cities (Cheng et al., 2023). Based on this, it
is natural to question whether the impact of green innovation on
TFEE differs significantly between pilot cities and non-
pilot cities.

The columns (5)–(6) of Table 6 show the results for pilot and non-
pilot cities. Similarly, whether for new energy demonstration cities or
non-demonstration cities, the U-shaped relationship between green
innovation and TFEE holds. The difference is that the extreme points
in the pilot cities (565) are much larger than those in the non-pilot
cities (68). Compared to non-demonstration cities, the turning point
in demonstration cities occurs earlier, indicating that the level of green
innovation is higher in the pilot cities. For the pilot cities, the median

TABLE 6 The results of heterogeneity analysis.

(1) (2) (3) (4) (5) (6)

Tfee Tfee Tfee Tfee Tfee Tfee

Gi −0.0270*** −0.0390*** −0.0314* −0.0385*** −0.0700*** −0.0321***

(-2.8208) (-3.6727) (-1.8912) (-2.8495) (-2.7118) (-2.6903)

Gi2 0.0043*** 0.0042*** 0.0040** 0.0030* 0.0055* 0.0038**

(3.5728) (2.7226) (2.0613) (1.7576) (1.8583) (2.5956)

CV Yes Yes Yes Yes Yes Yes

City_FE Yes Yes Yes Yes Yes Yes

Year_FE Yes Yes Yes Yes Yes Yes

_cons 0.1451** 0.1873*** 0.1744*** 0.2610*** 0.2100* 0.1838**

(2.3758) (2.9619) (2.6432) (2.8130) (1.9116) (2.2784)

N 3124 3124 1,265 1859 627 2,497

R2_a 0.6189 0.6186 0.6039 0.6042 0.6427 0.6145

Note: ***p < 0.01, **p < 0.05, *p < 0.1. City-level clustering robust t-values are reported in parentheses. CV, indicates city-level control variables.
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green innovation (118) is smaller than the extreme value point,
indicating that most of the observations are located on left of the
symmetry axis. For non-pilot cities, the median green innovation (83)
is greater than the extreme value point, indicating that the majority of
observations are located on the right of the symmetry axis. The
possible reason for this is that the new energy demonstration cities are
at the early stage of policy implementation and the pilot cities have
failed to effectively integrate various energy resources in the
promotion and application of new energy technologies, thus
affecting energy efficiency (Guo et al., 2024). Most of the pilot
cities belong to large and medium-sized cities, and their green
innovation capabilities are also stronger than general cities. In
addition, new energy technologies such as solar and wind,
although widely used and tested in demonstration cities, may still
present challenges in terms of their technological maturity, cost-
effectiveness and marketing. This may lead to slow progress in
reaching the tipping point in new energy demonstration cities. The
findings can yield valuable insights for enhancing green innovation
and promoting sustainable urban development.

6 Conclusion and implications

How to use green innovation tools to improve energy efficiency is
strategically important for achieving the vision of “dual carbon” goals.
Based on balanced panel data at the city level in China from 2008 to
2018, this paper analyses the impact of green innovation on TFEE
using a two-way fixed effects model. The main findings are as follows:
(1) Green innovation inhibits TFEE when the urban green innovation
capacity is low, and helps promote TFEE when green innovation
reaches a certain level. This conclusion still holds after several
robustness tests. (2) Compared to strategic green innovation, the
impact of substantive green innovation on TFEE reached the turning
point earlier. (3) Cities with higher resource dependency can reach the
turning point earlier than cities with lower resource dependency. This
is mainly due to the lack of green innovation capacity of resource-
based cities. (4) For new energy demonstration cities, overall, they are
at the stage where green innovation inhibiting TFEE. For non-new
energy demonstration cities, on the whole, they are at the stage where
green innovation promotes TFEE.

This U-shaped relationship provides valuable insights for us to
understand the interactive mechanism between green innovation
and TFEE, offering important implications for policy-making and
sustainable development strategies. Our research has clear policy
implications: Firstly, in order to achieve the double carbon target on
schedule, the central government can adopt a multi-pronged
approach to improve energy efficiency. The government needs to
strengthen energy management, promote the green and low-carbon
transformation of the energy consumption structure, and set more
stringent energy consumption standards. The central government
can consider providing more financial support or preferential
policies to cities with high energy efficiency, promoting local
governments to attach importance to improving energy
efficiency. Moreover, incorporating energy performance into the
officials’ assessment system could be put on the agenda to motivate
local government officials to save energy and reduce emissions.

Secondly, considering the dual impact of green innovation on
TFEE, the government can take multiple measures to guard against

energy rebound effect. For example, the impact of a single policy on
the energy market should be avoided, and measures such as taxation,
government regulation, and market mechanisms should be adopted
to adjust the energy consumption structure from multiple aspects.
Simultaneously, vigorously promote the synergistic low-carbon
development of the energy supply side and consumption side,
aiming to establish a clean, low-carbon, secure, and efficient
energy system. On the supply side, invest more in renewable
energy, and promote clean energy technologies to strengthen the
supporting role of non-fossil energy supply for carbon reduction. On
the consumption side, promote green and low-carbon production
and lifestyle, especially to guide high-energy-consuming enterprises
to establish a scientific energy management system.

Thirdly, when green innovation reaches a higher level, it can
improve TFEE. Therefore, the central government should further
improve the market-oriented green technology innovation system,
increase green innovation investment, and especially encourage
innovative entities to carry out substantive green innovation
research. The government can establish public green innovation
platforms to guide more social capital to invest in the field of green
innovation. More meticulously, the government can consider
establishing a scientific green innovation evaluation system and
strictly controlling green patent certification, especially for green
invention patents. Of course, considering the significant differences
in green innovation levels among different cities, the government
needs to develop differentiated incentive measures. For example, for
resource-based cities and other small and medium-sized cities, the
government can implement tax and fee reduction policies for
innovative entities that carry out green innovation activities, and
provide more resource incentives for such cities.

Although this paper can attract the attention of several
disciplines, frankly speaking, there are some limitations to our
study. Firstly, this study uses panel data at the city level in China
for analysis, and the generalizability of the findings needs further
verification. Future studies could expand the sample to different
countries and regions to improve the generalizability and
reliability of the findings. Second, due to the availability of data,
we do not consider the impact of other types of green innovations
on TFEE. Subsequent research can consider categorizing green
innovation (e.g., Xu et al., 2021), and delve into the differentiated
impact of heterogeneous green innovations on TFEE. Finally, this
paper does not address the spatial effects of green innovation. On
the basis of more solid theoretical studies, follow-up studies can
use spatial econometric models to explore the spatial effects of
urban green innovation on TFEE to understand their relationships
more comprehensively.
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