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The study of agricultural non-point source pollution (ANNSP) patterns and driving
mechanisms is crucial for regional ecological management. This paper evaluates
the sources of ANNSP in the Huang-Huai-Hai Plain for the years 2000, 2010, and
2020 using the source list method. Additionally, nitrogen source data for the
InVEST model were supplemented and adjusted, and the nitrogen output load
and proportions derived in farmland from both methods were compared. The
temporal and spatial distribution of nitrogen emission intensity was analyzed
based on InVEST model outputs. Key source areas were identified through
hotspot analysis, and spatial driving factors were examined using geodetector.
Key findings reveal: 1) While the source list method estimated a higher nitrogen
output load, both methods concurred on the proportion of agricultural nitrogen.
The main sources of nitrogen input were overuse of fertilizer and livestock
breeding. 2) Over this period, nitrogen emission intensity declined, exhibiting a
distinct spatial pattern of “northwest low, southeast high.” 3) The extent of critical
source areas underwent a dynamic shift, initially contracting before expanding.
4) Rainfall emerged as the primary driver of spatial variability in agricultural TN
emission intensity. These insights offer critical reference points for achieving
efficient ANNSP management in the Huang-Huai-Hai Plain.
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1 Introduction

In the crucible of China’s economic metamorphosis, agriculture stands resolute as an
enduring pillar, achieving commendable milestones and profoundly influencing global food
security (Zhang et al., 2023). Despite these strides, the relentless march of urbanization has
constricted arable lands, amplifying the demand for agricultural and livestock products. The
pursuit of enhanced yields has strained the natural environment’s capacity, resulting in soil
and water pollution and the emergence of agricultural non-point source pollution challenges
(Lu et al., 2023). This pollution not only imperils water quality (Wang et al., 2023c), but also
stands as a chief instigator of eutrophication. The “Second National Census of Pollution
Sources Bulletin” in 2020 unveiled that agricultural sources alone contribute 46.52% of total
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nitrogen (TN) emissions, surpassing industrial and domestic
counterparts. The genesis of agricultural non-point source
pollution is intricately woven with climatic nuances, topographical
peculiarities, land-use dynamics, and vegetative cover, rendering the
monitoring, simulation, and mitigation of its impact a daunting task
(Luo et al., 2023; Jolly et al., 2023; Wang et al., 2023a). The Huang-
Huai-Hai Plain, as one of China’s nine major agricultural regions
(Shirazi et al., 2022), shoulders the crucial task of supplying grains.
However, over the past two decades, this region has faced severe
threats from agricultural non-point source pollution, elevating the risk
of water eutrophication (Chang and Zhang, 2023; Yue et al., 2022).
Consequently, effectively and economically addressing agricultural
non-point source pollution in theHuang-Huai-Hai Plain has emerged
as a focal and formidable challenge in current research.

In the realm of addressing agricultural non-point source
pollution, the accurate estimation of pollutant loads stands as a
pivotal undertaking. Within this context, non-point source
pollution models emerge as indispensable tools, categorically
classified into two primary domains: empirical models and
mechanistic models. Empirical models, exemplified by the output
coefficient approach, leverage a broad spectrum of empirical data, but
can fall short in portraying the intricate migration pathways of
pollutants. Limitations stem from the inherent constraints imposed
by regional boundaries, hindering a holistic understanding of the
environmental phenomena (Li et al., 2021b). In contrast, mechanistic
models engage in a more comprehensive examination, integrating
diverse factors such as hydrology, meteorology, and geography to
delve into the intricate spatial and temporal variations of non-point
source pollution (Ji et al., 2023). These models not only facilitate the
identification of pollutant sources and the analysis of their
concentrations but also compute pollutant output loads.
Consequently, they furnish robust support for the formulation of
agricultural non-point source pollution mitigation strategies and the
assessment of preventative measures (Zuo et al., 2023). Amid the
plethora of non-point source pollution models, distributed models
have gained widespread popularity due to their proficiency in
simulating and predicting the migration and transformation of
pollutants within river basins. This category encompasses models
such as the Soil andWaterAssessment Tool (SWAT) (Zhu et al., 2023;
Ding et al., 2023b), the Annualized Agricultural Non-point Source
(AnnAGNPS) (Chao et al., 2023; Liu et al., 2023), the Hydrological
Simulation Program-Fortran (HSPF) (Lee et al., 2023), and the
Integrative Valuation of Ecosystem Services and Tradeoffs Tool
(InVEST) model (Ding et al., 2023a). In the practical application
of these models, the judicious selection of a model must account for
various factors, including the unique characteristics of the study area,
simulation scale, and data availability.

The InVEST model distinguishes itself from other models through
its straightforward parameterization and transparent mechanisms for
nutrient flow and transformation within water systems. This simplicity
and clarity make it particularly well-suited for large-scale simulations of
non-point source pollution (Li et al., 2021a; Scordo et al., 2018). The
Nutrient Delivery Ratio (NDR) module, integral to the InVEST model,
provides a scientific basis for decision makers by modelling and
estimating the contribution of vegetation and soil to water
purification, particularly in controlling nutrient pollutants in runoff.
Globally, researchers utilize NDRmodules to explore non-point source
pollution within watersheds. For instance, in the White River Basin of

the Midwest United States, NDR modules have effectively delineated
areas with elevated nitrogen and phosphorus loads across varying land
use scenarios (Han et al., 2021). Similarly, studies in the
United Kingdom have underscored the utility of NDR modules in
evaluating the relative contributions of nitrogen and phosphorus
outputs (Redhead et al., 2018). In China, Yan et al. (2018) evaluated
the impact of constructed wetlands on total nitrogen removal in the
Jiulong River basin, while NDRmodules were used to estimate nitrogen
and phosphorus pollutants in the mountainous terrain of Baoxing
County, Sichuan Province (Liu et al., 2019). Zhang et al. (2021a)
investigated non-point source distributions in the farmland of the
Haihe River Basin, identifying critical pollution sources. These
examples provided exemplify the robustness and dependability of
the NDR module in studying non-point source pollution.

Variations in nutrient levels within a river basin can be evident
across diverse regions. Within these areas, the preponderance of
pollutant outputs from a single area may constitute the principal
fraction of the overall pollution load within the entire basin, exerting
a decisive influence on water quality. These localized domains,
denominated as critical source areas (CSAs) (Ghebremichael
et al., 2013; Hoang et al., 2019), assume paramount importance
in the context of water quality management. Effectively identifying
and managing these CSAs is imperative for the control of non-point
source pollution. Although the task of non-point source pollution
control is acknowledged to be formidable and resource-intensive
(Chen et al., 2023a; Hou et al., 2022), achieving the objectives of
water quality management can be done with greater efficacy and
precision. Consequently, research endeavors revolving around CSAs
have increasingly gained prominence. The strategic identification of
CSAs through distributed models enables the prioritization of
limited resources towards targeted remediation efforts, thereby
markedly enhancing intervention efficiency (Giri et al., 2012).
Such an approach not only holds promise for bolstering the
efficacy of pollution control measures but also underscores a
paradigm shift towards more discerning and resource-efficient
environmental management strategies.

Currently, significant progress has been achieved in estimating
non-point source pollution loads and identifying CSAs (Zuo et al.,
2022). However, there remains a gap in understanding the
mechanisms driving pollution emissions (Duan and Li, 2023).
Using the InVEST model, this study conducted simulations of
Agricultural nitrogen non-point source pollution (ANNSP) across
the Huang-Huai-Hai Plain for the years 2000, 2010, and 2020. The
aim of this study was to analyze the spatio-temporal patterns of total
nitrogen (TN) emission intensity, pinpoint critical source areas, and
quantify the influence of various factors. The primary objective of this
research is to offer scientific support for decision-making regarding
the control of Agricultural nitrogen non-point source pollution in the
Huang-Huai-Hai Plain and advance the sustainable development of
agriculture and contribute to rural ecological revitalization.

2 Materials and methods

2.1 Study area

The Huang-Huai-Hai Plain, located in the north of China,
resides within a continental monsoon climate characterized by
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warm temperate sub-humid conditions, fostering unique
opportunities for agricultural advancement. With ample rainfall
and abundant light and heat resources, this region offers an
optimal natural milieu for crop cultivation (Zhao et al., 2022).
Boasting a deep and fertile soil layer, the Huang-Huai-Hai Plain
primarily engages in dry farming practices. Notably, it serves as a
pivotal hub for the cultivation of staple grain crops like wheat and
corn, cementing its status as a significant contributor to China’s
grain, cotton, and oil production (Liu et al., 2022).

This study specifically targets the Huang-Huai-Hai Plain,
recognized among the nine principal agricultural regions
designated by the Chinese Academy of Sciences. Encompassing
Beijing, Tianjin, Shandong, Hebei, and Henan provinces, the area
under investigation comprises 47 prefectures and cities. The study
area encompasses a total expanse of 542, 30, 000 ha, experiencing an
average rainfall of 715mm over the span of 2000–2020 years.Within
this domain, considerable regional disparities exist in both
agricultural production and non-point source pollution.

2.2 Data sources

This study utilized the InVESTmodel to simulate the spatial and
temporal dynamics of ANNSP across the Huang-Huai-Hai Plain.
The model execution necessitated a range of data inputs, including
Digital Elevation Model (DEM), land use and land cover (LULC),
meteorological data, agricultural area data, administrative
boundaries, and statistical data. The detailed specifics of the data
employed in this investigation, alongside their respective sources,
are comprehensively documented in Table 1.

2.3 Methods

2.3.1 InVEST model
The InVEST model leverages the robust capabilities of ArcGIS

software and establishes a sophisticated framework for assessing
ecosystem functions (Redhead et al., 2018). By integrating diverse
natural data inputs, the model dynamically analyzes ecosystem
service volumes, offering regional decision makers an intuitive,

quantitative perspective on how ecosystem changes impact
human wellbeing consequences. The InVEST model seeks to
reconcile economic development with socio-ecological
expectations, aiming to optimize sustainable resource allocation
by promoting economic growth while safeguarding ecosystem
health and resilience. Applied and validated in fields such as
water conservation (Li et al., 2021a), habitat service quality
assessment (Wu et al., 2021), and carbon storage estimation
(Zhao et al., 2019), the model has garnered recognition for its
accuracy and practical utility. Compared to similar models,
InVEST stands out due to its straightforward parameters, clear
mechanisms, and significant advantages in spatial information
processing, database technology, mathematical calculations, and
visual representation (Wei et al., 2022).

2.3.1.1 NDR module
The NDR module, integral to the InVEST model, is designed to

simulate and assess nutrient transport within ecosystems. Built upon
a hydrological framework, it replicates water volume, fluid
dynamics, and flow paths, integrating crucial hydrological factors
such as rainfall, evaporation, and runoff to precisely evaluate
nutrient transport via runoff (Small et al., 2023). In this study,
the NDR module adjusts total nitrogen (TN) input loads based on
the watershed’s Runoff Potential Index (RPI) grid to compute the
nitrogen transport rate at each pixel, as outlined in Equations 1–5.
This analysis focuses on surface nutrient transport dynamics.

loadmod x, i( ) � load x, i( ) · RPIi (1)
RPIi � RPi/RPav (2)

NDRsurf,i � NDRo,i
1+exp ICj−ICo

k( )( )−1 (3)
Xexp ,i � loadsurf,i ·NDRsurf,i (4)

Xexp ,tot � ∑
i

Xexp ,i (5)

Where loadmod (x,i) is the nutrient load for each raster pixel i
corrected. RPIi is the runoff potential index. RPi is the runoff agent
on raster pixel i. RPav is the average proxy parameter on the grid.
NDRsurf,i is the surface nitrogen transmission rate, NDRo,i is the
nitrogen transmission rate retained by downstream pixels, ICj is the

TABLE 1 Research data and sources.

Name Detailed data Source

DEM 30 m resolution Geospatial Data Cloud
https://www.gscloud.cn/

LULC 30 m resolution, LULC details for 2000, 2010 and 2020 Resources and Environmental Science and Data Center
https://www.resdc.cn/

Meteorological data Average annual rainfall data Resources and Environmental Science and Data Center
https://www.resdc.cn/

Agricultural area data Data of China’s nine major agricultural regionalization, China’s
agricultural maturing regionalization and China’s nine major river

basins

Resources and Environmental Science and Data Center
https://www.resdc.cn/

Administrative boundary Beijing, Tianjin, Hebei, Henan, Shandong within the scope of
47 municipalities

Resources and Environmental Science and Data Center
https://www.resdc.cn/

Statistical data Arable land area, nitrogen and compound fertilizer yield, crop yield,
livestock breeding and rural population

Statistical Yearbook of China and provinces
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topographic index, ICo and k are calibration parameters, loadsurf,i is
the nitrogen load of surface pixel i corrected, Xexp,i is the corrected
nitrogen export load for each raster pixel i, Xexp,tot is the corrected
total nitrogen export load of all grids.

This study focused on surface nitrogen nutrients in farmland and
simplified the parameters in the biophysical table (Table 2). Set the
cumulative flow threshold to 2000 m3/s, set the calibration parameter
K to 2, and determine the RPI based on the annual rainfall.

2.3.2 Source list method
The source inventory method, widely recognized for its efficacy

in identifying and quantifying pollution sources, particularly in
estimating nitrogen contributions (Han et al., 2023a; Zhang et al.,
2021a). In the context of China’s agricultural and rural activities,
significant non-point sources include fertilizer application, straw
return to fields, livestock breeding, and rural life. The InVESTmodel
leverages detailed pollution load data from the source inventory
method to conduct comprehensive analyses of various pollution
sources’ impacts on ecosystem health. This process involves
complex model operations addressing spatial dispersal,
environmental transformation, and pollutant bioaccumulation.
Moreover, Ding et al. (2023a) research underscores that statistical
analysis of nitrogen output loads across farmland type further
validates the InVEST model’s predictions, enhancing its scientific
accuracy and reliability. Crucially, the source inventory method not
only quantifies the specific contributions of each pollution source to
nitrogen pollution (Fu et al., 2023; Wang et al., 2023a) but also
accurately identifies principal sources, providing a data foundation
for targeted pollution management strategies.

2.3.2.1 Fertilizer application
The quantification of nitrogen within applied fertilizers was

determined by transforming the pure nitrogen content of both
nitrogen fertilizers and nitrogen-containing compound fertilizers into
statistical data. For nitrogen-containing compound fertilizers, a
standardized assumption was made regarding the ratios of nitrogen to
phosphorus to potassium, establishing a uniform ratio of 1:1:1, as detailed
by Li et al. (2023a). The calculation formula is expressed as Equation 6:

Nfer � Nf + Ncf

3
(6)

Where Nfer is the input quantity of nitrogen-containing
fertilizers, Nf is the amount of nitrogen fertilizer applied, Ncf is
the amount of nitrogen-containing compound fertilizer applied.

2.3.2.2 Straw return to fields
Within this investigation, the TN content arising from the

practice of returning to cropped fields was assessed across seven
distinct crop types. The computation of the nitrogen surface
source pollution load induced by straw returning to fields
necessitates a comprehensive consideration of factors,
including straw type, yield, crop-to-straw ratio, nitrogen
content, the proportion of straw returned to fields, and
product coefficient, as elucidated by Liu et al. (2021). The
numerical values for each parameter (Table3) are extracted
from pertinent literature sources (Yin et al., 2018;
Zhang et al., 2021b; Wang et al., 2023b). The calculation
formula is expressed as Equation 7:

Nstr � ∑
i

Yi · Ri · Ci · Fi · Pi (7)

Where Nstr is the TN input into farmland resulting from the
practice of returning crop straw to fields, Yi is the yield of crop i, Ri is
the ratio of crop i to straw, Ci is the nitrogen content in crop i, Fi is
the proportion of crop i’s straw returned to fields, Pi is the pollution
production coefficient of crop i.

2.3.2.3 Livestock breeding
The ANNSP loss load stemming from livestock breeding is

computed by utilizing metrics such as breeding volume alongside
coefficients for manure and urine pollution generation. As reported
in statistical yearbooks, the spectrum of livestock and poultry
farming primarily encompasses large animals (cows, horses,
donkeys, mules), pigs, sheep, and poultry. The coefficients for
manure and urine excretion stand at 61.1, 4.51, 2.28, and
0.275 kg・head/piece−1・a−1, respectively, as documented by
Chen et al. (2023b) and Qiu et al. (2021). The calculation
formula is expressed as Equation 8:

Nlp � ∑
i

Qi · Ei (8)

Where Nlp is the TN input into agriculture stemming from
animal husbandry, Qi is the quantity of livestock i at the end of the
year, Ei is the coefficient of fecal excretion for livestock i.

2.3.2.4 Rural life
Within the purview of this inquiry, the TN load ascribed to rural

settings emanates solely from domestic sewage, solid waste, and fecal

TABLE 2 Values of key parameters in the biophysical table.

LULC load_n(kg/pixel) eff_n crit_len_n

Farmland TN load 0.5 25

Forest land 2.9 0.8 280

Meadow 11 0.78 160

Water area 13 0.06 17

Unused land 15 0.02 25

Construction land 14 0.04 17

Wet land 9 0.02 11

TABLE 3 Correlation coefficient of straw return to fields.

Crop Ri (kg/t) Ci (kg/t) Fi (%) Fi (kg/t)

Paddy 0.97 0.82 71 7.95

Wheat 1.34 0.54 81 7.24

Corn 1.23 0.89 75 10.95

Potato 0.72 1.97 22 14.18

Soybean 1.53 0.89 18 13.62

Cotton 2.82 0.85 9 23.97

Oilseed 2.14 1.03 24 22.04
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waste generated by the rural populace (Zou et al., 2020). The
calculation formula is expressed as Equation 9:

Nrl � Pi ·Wi (9)

WhereNrl is the TN input into agriculture originating from rural
life, Pi is the number of individuals in the rural community,Wi is the
pollution coefficient attributed to each rural resident, calculated
based on the standard of 1.58 kg per person per year.

2.3.2.5 Loss pattern
According to the manual Agricultural Pollution Source Fertilizer

Loss Coefficient determine the pollution emission coefficient of
different land loss patterns. The formula for calculating nitrogen
is based on the pollution loss load of the source list method as shown
in Equation 10:

N � Nfer,ij · Ej + Qj + Nstr +Nlp +Nrl( ) · Ui (10)

Where N is the pollution TN discharge, Ej is the TN loss
coefficient of non-point source pollution pattern j (Table 4), Qj is
the basic loss, Ui is the pollution emission factor for
different sources.

2.3.3 Hotspot analysis
Utilizing the Getis-Ord G*

i index, a statistical technique
renowned for pinpointing clusters of elevated and diminished
values, we conducted cold and hot spot zoning. This
methodology, widely utilized in geographical research, enables
the identification and interpretation of spatial distribution
patterns (Tran et al., 2022). Subsequently, based on Getis-Ord G*

i

index, we categorized the hotspot analysis results into five distinct
grades. This grading system facilitates a nuanced comprehension of
nitrogen emission distribution, thereby aiding in the pinpointing of

CSAs. The specific grading principles and calculation formulas are
elaborated in Equations 11–13.

�X �
∑n
i�1
Xj

n
(11)

S �

								∑n
i�1
X2

n − 1
− �X

√√
(12)

G*
i �

∑n
j�1
Wij − �X∑n

j�1
Wij												∑n

j�1
Wij

2− ∑n
j�1

Wij( )2

n−1

s

√√ (13)

Where G*
i is the Getis-Ord index, Xj is the nitrogen emission

intensity of unit j, �X is the mean nitrogen emission intensity of all
units,Wij is the spatial weight coefficient between regions i or j, n is
the total number of study units.

2.3.4 Geodetector
The Geodetector emerges as a potent instrument, endowed with

the capacity for both factor detection and interactive detection,
predicated on the resemblance between the contribution of driving
factors and their spatial dispersion (Duan and Li, 2023). A
meticulous examination involved statistical partitioning of TN
emission intensity (Y). The subsequent phase involved the
discretization of multiple independent variables, encompassing
DEM (X1), slope (X2), annual rainfall (X3), proportion of
farmland in each city (X4), TN input intensity (X5), Nfer (X6),
Nstr (X7), Nlp (X8), and Nrl (X9). This study elucidates the impact
of driving factors on spatial variations in nitrogen emission
intensity, facilitating the identification of key individual factors

TABLE 4 Non-point source pollution pattern of study area.

Mode
number

Pattern TN loss
coefficient (%)

TN base loss
(kg/ha)

5 Northern Plateau Mountain Region - Gentle Slope - Terraced Fields - Arid Land - Single
Cropping of Large Fields

0.120 0.210

11 Northern Plateau Mountain Region - Steep Slope - Terraced Fields - Arid Land - Garden Plot 0.220 0.990

12 Northern Plateau Mountain Region - Steep Slope - Terraced Fields - Arid Land - Single
Cropping of Large Fields

0.105 0.120

18 Northeast Semi-humid Plain Region - Flat Land - Arid Land - Single Cropping of Large Fields 0.180 0.315

23 Huang-Huai-Hai Semi-humid Plain Region - Flat Land - Arid Land - Single Cropping of Large
Fields

0.563 3.315

25 Huang-Huai-Hai Semi-humid Plain Region - Flat Land - Arid Land - Double or More
Croppings of Large Fields

0.950 6.315

40 SouthernMountainous and Hilly Region - Gentle Slope - Terraced Fields - Arid Land - Double
or More Croppings of Large Fields

1.270 14.865

46 Southern Mountainous and Hilly Region - Steep Slope - Terraced Fields - Arid Land - Double
or More Croppings of Large Fields

0.333 1.605

52 Southern Mountainous and Hilly Region - Steep Slope - Terraced Fields - Paddy Fields - Rice-
Wheat Rotation

0.519 15.690

57 SouthernMountainous and Hilly Region - Gentle Slope - Terraced Fields - Paddy Fields - Rice-
Wheat Rotation

0.577 15.000
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through the q value measure developed by Li et al. (2022) and Shi
et al. (2023). The calculation formula is expressed as Equation 14:

q � 1 −
∑L
h�1

Nhσ2h

Nσ2
(14)

Where q represents the explanatory degree of X on Y, h is to the
stratification of variable Y or factor X, Nh is the number of units in
layer h, N represents the entire region, σ2h and σ2 denote the
variances in layer h and the entire region, respectively. The
q-value ranges from 0 to 1, with a larger value signifying a more
pronounced explanatory power of X on Y. A heightened q value
corresponds to a more robust driving effect of that factor on the
spatial-temporal evolution of agricultural nitrogen non-point source
pollution, while a diminished q value suggests a weaker effect.

3 Results and analysis

3.1 Comparison of InVEST model and source
list method

The source list method offers a more comprehensive assessment
of nitrogen pollution loads by recording and analyzing various
nitrogen input sources. In contrast, the InVEST model may be
constrained by its structure and parameter settings, limiting its
ability to fully capture all significant nitrogen sources. Therefore,
the source list method serves as a crucial supplement to the InVEST
model, enhancing the accuracy of nitrogen input information. This
study integrates the source list method with the InVEST model to
provide a quantitative evaluation of nitrogen point source pollution.
Focusing on farmland, a pivotal land use category, we calculated the
agricultural surface nitrogen non-point source pollution load for
each city and assessed its contribution to the overall load (Table 5),
thereby illuminating the potential environmental consequences of
agricultural activities. Notably, the source list method consistently
yielded higher nitrogen output estimates than the InVEST model
across the three temporal snapshots of 2000, 2010, and 2020.
Nitrogen pollution is a dynamic process influenced by various
factors, including climate change, land use changes, and
agricultural management practices. The source list method is
limited in its ability to detect small-scale variations in nitrogen
pollution and cannot accurately simulate the loss and
transformation of nitrogen fertilizers in agricultural settings. In
contrast, the InVEST model incorporates a wider range of
influential factors, offering a more comprehensive analysis of
nitrogen dynamics.

Further scrutiny of farmland’s nitrogen output contribution to
the total nitrogen non-point source pollution load reveals that the
source tabulation method consistently yielded percentages of
67.24%, 64.93%, and 65.37% across the analyzed periods,
underscoring the persistence of farmland as the primary source
of nitrogen pollution load. The InVEST model estimates, albeit
slightly varying at 64.32%, 62.7%, and 62.43%, agree on the pivotal
role of farmland nitrogen management in regional pollution control.
This congruence resonates with the recent findings of Ding et al.
(2023a), reinforcing the InVEST model’s applicability and
credibility in assessing agricultural nitrogen non-point source

pollution. The similar nitrogen output ratios across farmland
primarily stem from the consistent role of farmland as a major
source of nitrogen pollution and the uniformity of agricultural
management practices.

On the basis of detailed analysis of the input ratio of each
nitrogen source (Table 6), this study clearly pointed out that
fertilizer application and livestock breeding were the main
pollution sources of agricultural TN load. Specifically, from
2000 to 2020, nitrogen fertilizer application and livestock farming
accounted for a significant share of total TN output load, with the
former contributing 54.66%–66.09%, and the latter contributing
24.56%–30.71%. This data distribution not only revealed the main
drivers of agricultural nitrogen pollution, but also mapped the
profound changes in the structure and mode of agricultural
production. Looking at the dynamics over this time period, we
notice a striking trend: with the acceleration of urbanization, the
expansion of urban areas inevitably leads to the reduction of arable
land, and while the absolute demand for agricultural output may
fluctuate due to a variety of factors, agricultural activity itself shows a
relatively concentrated growth trend. In this context, agricultural
producers tend to increase the application amount of nitrogen
fertilizer in order to maintain or increase production. Meanwhile,
the large-scale development of animal husbandry has further
aggravated the burden of nitrogen emissions.

3.2 Analysis of TN emission intensity

In this survey, the TN output load per hectare of farmland served
as a quantitative indicator for assessing agricultural non-point
source pollution (ANNSP) emission intensity across various
cities, with classifications derived using the natural breaks
method (Figure 2). Analysis of data from 2000, 2010, and
2020 reveals average TN output loads of 8.43 kg/ha, 4.08 kg/ha,
and 3.66 kg/ha, respectively.

Temporally, a noteworthy decreasing trend in TN emission
intensity was evident across all cities. Spatially, there existed
significant heterogeneity in TN emission intensity, with an
overarching pattern of “northwest low, southeast high,” aligning
with the distribution of TN output load. This implies that farmland
exerts minimal influence on the spatial distribution of TN emission
intensity. It is pertinent to highlight that throughout all study years,
Xinyang exhibited the highest TN emission intensity, registering
values of 27.28 kg/ha, 9.49 kg/ha, and 10.87 kg/ha, respectively. In
contrast, Zhangjiakou consistently demonstrated the lowest TN
emission intensity, with values of 0.67 kg/ha, 0.41 kg/ha, and
0.26 kg/ha, respectively.

The decline in agricultural TN emission intensity can be
primarily attributed to the formulation and execution of
pertinent policies. Since 2015, China’s Ministry of Agriculture
has spearheaded the implementation of the Action Plan to
Achieve Zero Growth in Fertilizer Use by 2020. This strategic
initiative aims at progressively curtailing fertilizer application
through the adoption of scientific fertilization practices and
enhanced fertilization techniques. Concurrently, heightened
emphasis from local administrations on agricultural
environmental preservation has propelled the widespread
promotion of eco-friendly agricultural methodologies and
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approaches. This concerted effort has incentivized farmers to
embrace alternatives such as organic fertilizers, biofertilizers, and
other substitutes for chemical fertilizers, thereby curbing fertilizer
usage and subsequently mitigating TN emissions. Moreover,
governmental oversight of ANNSP has intensified, ushering in
measures such as farmland drainage regulation and livestock
breeding pollution management. These interventions further
contribute to the reduction of TN emission intensity, thus
fostering positive strides towards agricultural sustainability and
ecological preservation.

3.3 Identification of critical source areas

To delineate the CSAs of ANNSP in the Huang-Huai-Hai Plain,
this study employed the ArcGIS hotspot analysis tool.We conducted
an extensive examination of data from 2000, 2010, and 2020,
focusing on the agricultural TN emission intensity of individual
cities. By configuring various levels of confidence, we derived the
classification outcomes of CSAs (Figure 3).

In 2000, 2010, and 2020, the cumulative TN loads from CSAs
represented 26%, 7%, and 28% of the entire study area,
respectively. Temporally, the CSAs displayed a trend of initial
contraction followed by expansion. Specifically, the number of
cities situated within CSAs decreased from 5 to 2, before rising to
6. Regarding spatial distribution, CSAs progressively extended
from the southern to the southeastern areas of the study domain.
Initially, in 2000, the CSAs were dispersed across the
southeastern region of Henan Province, encompassing
Xuchang, Luohe, Zhoukou, Zhumadian, and Xinyang. By
2010, the CSAs were predominantly concentrated in the
southern expanse of Henan Province, specifically in Luohe and
Zhumadian. By 2020, these regions were primarily situated in the
southeastern territories of Henan and Shandong provinces,
including Xinyang, Linyi, Qingdao, Rizhao, Weifang, and Zibo.

The CSAs are significantly influenced by factors such as terrain
and agricultural practices. These factors contribute to notable
variations in soil moisture conditions and erosion resistance
compared to other regions. Consequently, nitrogen nutrients are
more susceptible to loss through runoff and leaching in these areas.
Addressing this challenge necessitates a focus on improving ANNSP
management practices and optimizing cropping structures within
these CSAs. The integration of 3S (Geographic Information System
(GIS), Global Positioning (GPS) and Remote Sensing (RS))
technologies and mechanistic models facilitates a more precise
identification of CSAs for ANNSP. By simulating pollutant
migration paths, transformation processes, and output continuity,
these technologies aid in pinpointing the most polluted areas and
locations within the study region. In CSAs such as Henan and
southeastern Shandong, GIS and RS technologies were leveraged to
monitor soil moisture and rainfall, thereby informing agricultural
production practices. Initiatives included the advancement of water-
saving irrigation technologies to mitigate water and nitrogen loss, as
well as the promotion of crop varieties tailored to local climatic and
soil conditions to bolster resilience against erosion.

3.4 Spatial evolutionary drivers analysis

In this investigation, by employing Geodetector, we scrutinized
the discrimination and identification of factors influencing
agricultural TN emission intensity across various cities within the
Huang-Huai-Hai Plain, aiming to elucidate the primary drivers
impacting nitrogen emissions in the region (Figure 4). Our
findings revealed temporal variations in the main influencing
factors. Specifically, in 2000, key drivers included annual rainfall
(X3), TN input intensity (X5), and DEM (X1) (a). Conversely, by
2010, the primary factors shifted to encompass annual rainfall (X3),
Nrl (X9), and the proportion of farmland in each city (X4) (b). This
transition can be attributed to extensive rural-to-urban migration

TABLE 5 Comparison of farmland TN output between InVEST model and source list method.

Time Source list InVEST

Value (t/a) Percentage Value (t/a) Percentage

2000 Year 574,550 67.24% 274,445 64.32%

2010 Year 483,227 64.93% 149,293 62.70%

2020 Year 396,274 65.37% 120,251 62.43%

TABLE 6 Sources and proportion of TN input load in agriculture.

Type of contamination source 2000 Year 2010 Year 2020 Year

Value (t/a) Percentage Value (t/a) Percentage Value (t/a) Percentage

Fertilizer application 694,647 54.66% 693,685 60.52% 612,922 66.09%

Straw return to fields 5,351 0.42% 7,886 0.69% 7,557 0.81%

Livestock breeding 390,267 30.71% 332,272 28.99% 227,784 24.56%

Rural life 180,578 14.21% 112,305 9.80% 79,105 8.53%
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FIGURE 1
The location of the Huang-Huai-Hai Plain.

FIGURE 2
Agricultural TN emission intensity.
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between 2000 and 2010, alongside rapid declines in farmland
concurrent with ongoing urbanization. Come 2020, the principal
drivers comprised annual rainfall (X3), DEM (X1), and slope (X2) (c).
Notably, the enduring stability of annual rainfall (X3) as a driving
factor across time scales warrants attention. Furthermore,
significance level analyses underscored the pivotal roles of rainfall
and terrain in shaping agricultural TN emission intensity. Nitrogen
pollutants are predominantly influenced by rainfall-runoff and
erosion processes, leading to their ingress into water bodies,
concomitant with changes in terrain elevation, ultimately
polluting receiving waters.

Rainfall exerts a profound impact on pollution discharge,
primarily influencing surface runoff and soil erosion, which can
enhance soil nitrogen dissolution and facilitate nitrogen emissions.
Additionally, rainfall interacts with topographic features, such as
elevation and slope, exacerbating runoff and erosion in sloped areas,
thereby intensifying nitrogen loss and acting as a crucial regulatory

factor in agricultural nitrogen emissions. However, the spatio-
temporal variability of rainfall impacts, constrained by regional
and seasonal differences, complicates nitrogen pollution
prevention and control. Consequently, effective ANNSP
management strategies must account for the interplay between
rainfall and terrain, implementing targeted measures to mitigate
their adverse environmental effects.

4 Discussion

4.1 Comparison between source list method
and InVEST model

This study employed the source list method to quantify primary
nitrogen input sources in the Huang-Huai-Hai Plain and simulated
the dynamic effects of agricultural nitrogen pollution on river

FIGURE 3
The classification outcomes of hotspot analysis.

FIGURE 4
The contribution of driving factors. Note: (A–C) for the years 2000, 2010 and 2020, respectively. ***, ** and * are significant at 1%, 5% and 10% levels
respectively.
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nitrogen flux for the years 2000, 2010, and 2020 using an optimized
NDR module. By comparing the total agricultural nitrogen inflow
estimated through the source list method with outputs from the
InVEST model, we rigorously assessed the consistency and
complementary strengths of these approaches in evaluating the
contribution of farmland nitrogen pollution. The theoretical
framework provided by Ding et al. (2023a) underpins this
analysis. The findings indicate that fertilizer overapplication and
inadequate livestock management are major drivers of agricultural
nitrogen pollution in the region, aligning with the prevailing
consensus (Zhou et al., 2023) and underscoring the pivotal role
of agricultural practices in the regional nitrogen cycle. Notably, the
source listing method offers comprehensive nitrogen input data and
helps identify key sources potentially overlooked by the InVEST
model, thereby enhancing the accuracy of nitrogen pollution
assessments. Meanwhile, the InVEST model excels in simulating
nitrogen dynamics under complex environmental conditions,
particularly when considering multiple factors such as climate
change, land use change, and agricultural practices. Although the
two methods differ in total agricultural nitrogen emissions, this
discrepancy is attributed to their varying sensitivities to complex
environmental factors, rather than any fundamental shortcomings
in model suitability.

4.2 Effects of simulation and attribution
analysis of ANNSP

The ANNSP emissions within the Huang-Huai-Hai Plain
manifest distinct spatial disparities, presenting formidable
challenges for pollution management. To more efficiently address
these concerns, each region must comprehensively assess its
agricultural production status and objectives. Tailored agricultural
non-point source pollution control measures should be devised,
taking into account the unique characteristics of pollution sources,
economic development levels, and environmental conservation
imperatives. For instance, implementing and enhancing a
contemporary fertilization technology infrastructure, advocating
for environmentally friendly, scientifically guided, and precise
fertilization practices (Tian et al., 2023), pioneering innovative
approaches for crop residue utilization, and augmenting
utilization efficiencies. Furthermore, there is a pressing need to
delve deeper into the origins, systems, and holistic treatment of
ANNSP (Wang et al., 2023a).

In the face of increasingly severe ANNSP issues, strengthening
research and control efforts is particularly urgent. Considering
economic costs and implementation difficulties, focusing
governance on CSAs is a wise choice (Tao et al., 2023). By
prioritizing strengthening management measures and
reasonably arranging the layout of governance projects,
investment efficiency can be significantly improved, land
resources can be saved, pollution control difficulties can be
reduced, and better achievement of expected governance goals
can be achieved, coordinating the relationship between
agricultural production and environmental protection (Han
et al., 2023b). In CSAs like Henan and southeastern Shandong,
3S technology was employed to steer agricultural production.
Advocate improving the comprehensive utilization efficiency of

straw and water-saving irrigation technology to reduce the loss of
water and nitrogen (Yin et al., 2018).

4.3 The improvement direction of research

In forthcoming applications, the integration of the InVEST
model with the PLUS model (Zhu et al., 2024) and prospective
climate scenario (Li et al., 2023b) data holds promise for advancing
non-point source pollution prediction and analysis. Additionally, to
achieve more effective ANNSP control, factors other than CSAs
identification and management need to be considered. For example,
the promotion and application of agricultural technology, the
formulation and implementation of policies and regulations,
farmers’ environmental awareness and participation. These
factors have important impacts on ANNSP control and
management and need to be considered in future studies.

5 Conclusion

Based on the results of InVEST model, this study delved into the
pivotal agricultural nitrogen non-point source pollution hotspots in
the Huang-Huai-hai Plain and their tailored mitigation strategies.
Key findings reveal:

(1) Although the source listi method yielded a higher load
estimate than the InVEST model simulation, both
concurred on the consistent proportion of output nitrogen
from farmland. Over-fertilization and livestock breeding
emerged as the primary contributors to TN loads within
the agricultural landscape of the Huang-Huai-Hai Plain.

(2) Time-series analysis unveiled a pronounced decrease in
nitrogen emission intensity, accompanied by a spatial
pattern characterized by a gradual increase from northwest
to southeast.

(3) Throughout the study period, the CSAs experienced a
dynamic shift, initially narrowing and subsequently
expanding. Notably, Xinyang City remained consistently
situated within the CSAs.

(4) Factor detection analysis highlighted annual rainfall (X3) as
possessing the highest q-value in 2000, 2010, and 2020,
underscoring rainfall as the primary driving factor shaping
spatial variations in agricultural TN emission intensities
across cities in the Huang-Huai-Hai Plain.
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