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Particularly, environmental pollution, such as air pollution, is still a significant issue
of concern all over the world and thus requires the identification of good models
for prediction to enable management. Blind Source Separation (BSS), Copula
functions, and Long Short-Term Memory (LSTM) network integrated with the
Greylag Goose Optimization (GGO) algorithm have been adopted in this research
work to improve air pollution forecasting. The proposed model involves
preprocessed data from the urban air quality monitoring dataset containing
complete environmental and pollutant data. The application of Noise
Reduction and Isolation techniques involves the use of methods such as Blind
Source Separation (BSS). Using copula functions affords an even better estimate
of the dependence structure between the variables. Both the BSS and Copula
parameters are then estimated using GGO, which notably enhances the
performance of these parameters. Finally, the air pollution levels are
forecasted using a time series employing LSTM networks optimized by GGO.
The results reveal that GGO-LSTM optimization exhibits the lowest mean squared
error (MSE) compared to other optimization methods of the proposed model.
The results underscore that certain aspects, such as noise reduction, dependence
modeling and optimization of parameters, provide much insight into air quality.
Hence, this integrated framework enables a proper approach to monitoring the
environment by offering planners and policymakers information to help in
articulating efficient environment air quality management strategies.

KEYWORDS

blind source separation, air pollution, greylag goose optimization, copula, principal
component analysis, noise

1 Introduction

Reduced accessibility to fresh air due to accelerated urbanization and the boom of the
industrial sector prominently worsen the alarming problem of air pollution (Ravindra et al,
2019). These changes are more visible due to the emergence of urban areas and the establishment
of new industrial plants. Appropriately tracking and predicting air pollution levels during a
turning point is both a scientific challenge and an emergency need for environmental health and
stability (Asamoah et al,, 2020). Within this environment, the Air Quality Monitoring Dataset acts
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as a helpful information source, combining sensor data, weather data,
and statistics on air pollution. Nevertheless, the natural power of the
dataset is hidden beneath the continuous antagonizing noise—an
opponent that has the power to interfere with the precision of the air
pollution forecast (Al-Janabi et al., 2020). To tackle this issue, a range of
advanced statistical measures are introduced, for instance, Blind Source
Separation (BSS), Principal Component Analysis (PCA), Independent
Component Analysis (ICA), and cluster optimization to produce well-
balanced assimilation of data and contribute to the improvement of the
air pollution prediction process (Pion-Tonachini et al., 2019; Ma and
Zhang, 2021; Chang et al., 2022; Greenacre et al., 2022).

Environmental monitoring becomes vital and infinitive to the work,
going beyond the factual evidence already used. The significance of
environmental monitoring in the context of air pollution has gained
broad acceptance, such that further steps can be implemented based on
the data produced (Jiang et al., 2020). This anticipatory piece is the
weapon to protect human health from threats and to prevent the
imbalance in ecology. In addition to improving environmental
monitoring processes, the paper also explores the details underlying
the tightly-knit relationship between air pollution and environmental
variables (Jafarzadegan et al.,, 2019; Mengist et al., 2020).

Our paper relies on such BSS methods as PCA and ICA as their
most recognizable tools (Monakhova and Rutledge, 2020; Yang
et al,, 2021). Incorporating the principal component analysis into
its dimensionality reduction techniques, PCA can map out the
critical constituents of the dataset. ICA goes beyond PCA in this
aspect since it works with components that show the complex nature
of mixed data, providing more independence. The synergistic use of
these methods makes the signals and the noise decompose in a more
aligned way. Therefore, the depth of comprehension of the processes
dictating air pollution was offered (Rizk et al., 2023).

We illustrate an analogy of noise as a puzzle and discuss how cluster
optimization is an all-embracing solution. Knowing that noise in a dataset
often forms clusters, cluster optimization lets us focus on the noise
sources near one another. This leveling-up helps generate high-quality
data and betters the accuracy of forecasts, bypassing paperwork and
focusing on noise mitigation with impact precision (Rizk et al., 2024).

Consequently, the paper endeavors to address the following
paper questions:

1. How effective are Blind Source Separation (BSS) techniques in
isolating independent sources of air pollution from the mixed
sensor data?

2. Can the Greylag Goose Optimization (GGO) algorithm
significantly enhance the performance of BSS methods and
improve the accuracy of air quality predictions?

3. How well do Copula functions model the dependence structure
between different environmental and pollutant variables to
enhance prediction accuracy?

4. What is the comparative performance of GGO-optimized Long Short-
Term Memory (LSTM) networks in forecasting carbon monoxide
(CO) concentrations, compared to other optimization techniques?

5. Does the predictive model maintain high accuracy across
different temporal and meteorological scenarios, ensuring
robust air quality forecasts?

The subsequent sections delve into the methodologies and
techniques employed in this study. They begin with a detailed
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description of the dataset, emphasizing the environmental and

pollutant parameters measured. Data preprocessing steps,
including normalization, feature selection, and handling of
missing data, are then discussed.

Following this, the paper explores Blind Source Separation (BSS)
methods like (PCA) and

Independent Component Analysis (ICA), explaining their role in

Principal Component Analysis
noise reduction and source isolation. The use of Copula functions to
model dependence structures between variables is also examined.

The optimization of BSS and Copula parameters using the Greylag
Goose Optimization (GGO) algorithm is detailed, highlighting its impact
on model performance. The application of Long Short-Term Memory
(LSTM) networks for predicting carbon monoxide (CO) concentrations,
optimized by GGO, is then presented.

The evaluation section compares the GGO-LSTM model’s
performance with other techniques across various metrics. The
paper concludes with insights into the findings, the model’s
robustness, and recommendations for future research and policy-
making in air quality management.

2 Related works

An exhaustive Table 1 elucidates the demonstration of
involvement, encapsulating diverse inquiries within the realm of
BSS enhancement for effective environmental monitoring.

When these scholarly contributions are aggregated, it becomes
evident that there is a pressing need to enhance the precision of
Separation techniques for identifying air pollution across diverse
domains. These studies pivot on distinctions in data types,
methodologies, and measurements, offering a comprehensive

perspective on viable security solutions.

3 Materials and methods

This paper’s material and methods show the complicated
processes and methods that deal with the robustness issue in
noise-plagued air pollution datasets. A practical approach to
improving the accuracy of predictive models is to be equipped
with a complete grasp of the tools and techniques used.

3.1 Copula

A copula function is a mathematical tool in probability theory and
statistics that provides a mathematical framework for relating random
variables despite the entirely different characteristics of their distributions
(Zaki et al,, 2023a). In a nutshell, it sketches how variables give rise to
interdependence or correlation without considering the separate
distribution of variables. These copula functions not only participate
in different fields such as multivariate analysis, risk management, finance,
and reliability engineering but also understand and model the relations
structure of variables, which plays a critical role in each of these
disciplines. The copula is sparse, which helps us describe a
multivariate distribution with a dependent structure (Razmlkhah et al,
2022). Nelsen (2007) introduced copulas as follows: a copula is a function
that joins multivariate distribution functions with uniform [0, 1] margins.

frontiersin.org


https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1429410

Ben Ghorbal et al.

TABLE 1 Summary of related works for the prediction of student’s academic performance.

Application

Data type

Method

Evaluation method

10.3389/fenvs.2024.1429410

Key findings

Ansari et al. Audio Signal Recovery Sound Blind Source In vivo outcomes analysis Highlights the need for continual
(2023) Separation refinement in sonic blind signal
separation

Nath et al. Air Quality Forecasting in PM2.5, Statistical Methods, SMAPE performance Statistical models outperform deep

(2021) Kolkata, India PM10 Data Deep Learning comparison learning methods in predicting
Methods pollution rates

Arahmane et al. | Neutron-Gamma Separation Radiation NTF, SVM, CWT PCA Demonstrates enhanced separation of

(2021) Signals radiation signals using the proposed

methods

Al-Janabi et al.
(2020)

Smart Air Quality Prediction
Model (SAQPM)

Air Quality
Data

RNN with PSO

10-fold cross-validation,
SMAPE

RNN-PSO algorithm improves
accuracy across different pollutant
emissions

Oosugi et al. EEG Signal Analysis Neural Signals  Blind Source Canonical Correlation Provides a new assessment technique
(2017) Separation Analysis, Rank Aggregation for evaluating BSS algorithms on EEG
data
Navares and Madrid Air Quality Prediction Various Air LSTM-RNN Single model vs stacked Single LSTM-RNN model outperforms
Aznarte (2020) Pollutants models’ comparison multiple models in predicting various
pollutants
Khosravy et al. IoT Data Processing ToT Data P-Stone BSS Speed, accuracy, longevity P-Stone enhances performance in data
(2020) comparison reduction, power consumption, and
memory storage
Li et al. (2016) Spatiotemporal Deep Learning Air Quality STDL Method (Stacked | Comparison with other models = STDL achieves better predictive
(STDL) for Air Quality Data Autoencoder) accuracy than other models
Prediction
Wang et al. Acoustic UAV Detection Sound BSS Machine learning algorithm Achieves consistent UAV detection
(2022) with a consistent detection rate | rates amidst diverse background noises
Ma et al. (2019) | Transferred Bi-directional Long =~ PM2.5 Data TL-BLSTM Performance comparison with = TL-BLSTM shows superior

Short-Term Memory (TL-

Guangdong, China case model

performance in long-term air quality

BLSTM)

Theorem 1. (Sklar theorem) Sklar (1973) considers the two
random variables X and Y, with distribution functions F(x) and
E(y), respectively, then the CDF and PDF for bivariate copula are
respectively given as:

F(x,y) = F(x,y) = C(F(x),F(y)),
fley)=f)f (n)e(Ex),E(y)).

The Gaussian copula is a popular and widely used method of
constructing multivariate distributions that models joint dependence for
random variables. It works based on the metric that the separate
distributions of the variables are jointly normal, and it uses the
copula function to describe their collective distribution. Through this
approach, dependencies between variables that need to be captured and
understood are separated from the process of creating single-variable
distributions, thus providing better results in finance, risk management,
and in their goals like comprehending and modeling interdependence
between variables (Xiao et al., 2022).

Unlike the Gaussian copula, the PDF and CDF generally do not have
a closed form in their expression. Nonetheless, for the conditional
distributions of the Gaussian (standard) type, and when the
correlation matrix is known, the joint distribution is calculated via the
multivariate Gaussian distribution (Chen et al., 2020).

Let’s denote (F;(x;)) as the CDF of the (i)- th variable, and
(@) As the cumulative distribution function of the standard normal
distribution. The joint cumulative distribution function of the
Gaussian copula is given by:
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C(tp) = 0p (D7 (1), ' (), ..., D" (u))

where (u; = F;(x;)) Are the marginal cumulative probabilities and
(p) Is the correlation matrix.

The PDF of the Gaussian copula is found by taking the derivative of
the multivariate cumulative distribution function. Nevertheless, this
exchange form is rather complicated and is usually not used because it
is too complex.

3.2 Principal component analysis (PCA)

PCA is one of the most applied statistical methods for
reducing the dimensionality and regaining understanding of
the acquired data (Liborio et al., 2022). It aims to transform
the original data into a new dataset composed of powerful
uncorrelated variables called principal components, which
take the maximum variance from the data. The PCA does this
by identifying the directions (principal axes) along which the
data varies the most, leading to a reduced dimensionality of data
representation.

PCA is based on linear algebra concepts, and the computational
procedure consists of calculating eigenvectors and eigenvalues from the
covariance matrix of the original data. The mathematical foundation can
be expressed through the following equations: The mathematical
foundation can be expressed through the following equations:
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https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1429410

Ben Ghorbal et al.

1 - _
Covariance matrix C = p—] (x-X)"(X-X)

where X is the data matrix with dimensions m x n (where m is the
number of observations and # is the number of variables), and X is
the mean of each variable (Kherif and Latypova, 2020; Kahl
et al.,, 2021).

Compute Eigenvectors and Eigenvalues: C - eigenvector =
eigenvalue -eigenvector

The eigenvectors represent the principal components, and the
corresponding eigenvalues indicate the variance each component
captures. Sort the eigenvalues in descending order and select the top
k eigenvectors to form the matrix Wy, representing the
transformation matrix.

Transform Original Data: Transformed data Y = X - W

3.3 Blind source separation (BSS)

BSS is a powerful signal processing technique designed to unveil
independent source signals from observed mixtures without prior
knowledge of the sources or the mixing process (Sawada et al., 2019;
Yang et al, 2019). In air pollution paper, where pollutant
with
interactions, BSS is a valuable tool for uncovering the underlying

concentrations arise from various sources complex
dynamics. The fundamental principle involves the assumption that
the observed data matrix (X) can be represented as the product of a

mixing matrix (A) and an independent source matrix (S):
X =AS

Each column of § corresponds to an independent source signal, and
each column of X represents the observed mixture. The challenge is to
estimate S by inversely solving the mixing process, revealing the
underlying independent sources contributing to the observed data.

The mathematical foundation of BSS often relies on ICA, a widely
used technique. The observed data matrix X is assumed to be a linear
combination of independent source signals, and the goal is to find a
demixing matrix (W) such that S = WX. This process involves
maximizing the statistical independence of the estimated sources. The
estimated independent sources (Set) can be expressed as:

Sest = WX

ICA  algorithms, ICA,
Diagonalization of Eigen-matrices (JADE), and Infomax, iteratively

including Fast Joint Approximate
adjust the demising matrix to achieve the separation of sources.

Figure 1 illustrates the fundamental concept of BSS, a signal
processing technique designed to untangle mixed signals without
prior knowledge of the sources or the mixing process. This
visualization provides an insightful overview of the BSS process,
showcasing how the algorithm disentangles the source signals from
their mixed counterparts.

3.4 Long short-term memory (LSTM)

LSTM is a Recurrent Neural Network (RNN) type that can be
selected for time-series prediction applications, including air
pollution because it efficiently analyzes long-term temporal
patterns in data. LSTM networks use memory cells and gates to
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control the flow of information and are, therefore, capable of
retaining information over a sequence period. When they are all
connected, these are the input gate, the forget gate, the output gate,
and the cell state, which are responsible for deciding when to retain
and discard information.

Thus, prior to applying LSTM to predict air pollution, the input
values are normalized to scale the input features to values between
0 and 1. This is then followed by the sliding window approach, which
creates subsequences of the input data and the corresponding target
outputs. The dataset is divided into training and test sets to assess the
model’s ability to generalize to data it has not seen during training
(Chang et al.,, 2020).

Starting with initial weights and bias and after passing the Input
sequences through the LSTM network to get the predictions, the Loss
can be computed using a loss function such as MSE, which represents the
differences between the actual and predicted values and weights/biases
can be tuned through backpropagation through time (BPTT). Stochastic
gradient descent or its modifications like Adam or RMSprop are used to
make incremental changes to the model parameters. To measure the
accuracy of the LSTM model, MAE, RMSE, and R2 statistical measures
are used, which determine the accuracy and the amount of variance in
the model explained. Being a form of recurrent neural network, LSTM
networks can meet the data’s temporal processing requirements and are
appropriate for predicting the concentrations of pollutants.

3.5 Greylag Goose Optimization
(GGO) algorithm

The best way to develop the BSS with the help of GGO is
demonstrated in the paper regarding environmental cleanup and
particularly noise reduction (Szipl et al., 2019; Hoarau et al., 2022;
Zaki et al, 2023b). This describes  the
recommendation on how GGO can tune BSS parameters and

part complete

optimize LSTM hyperparameters.

3.5.1 GGO algorithm

The GGO algorithm starts by creating individuals that randomly
generate candidate solutions to the problem. Each individual represents
such candidate solutions. The term GGO (X;,i=1,2,...,n) stands for the
population of the group, n, with an integer denoting the size of the
population (Dokeroglu et al., 2019; Braik et al., 2021).

In Figure 2, we delve into the exploration and exploitation
dynamics of the GGO algorithm. This visualization captures the
essence of GGO as it navigates the solution space, striking a balance
between exploration (searching for new, potentially better solutions)
and exploitation (refining known solutions). The figure features a
dynamic representation of GGO’s iterative process, emphasizing
how the algorithm optimally combines exploration and exploitation
strategies to achieve efficient and effective solutions (Halim et al., 2021).

3.5.1.1 Exploration operation

The exploration procedure is critical in the GGO algorithm;
there is sifting through the search space for the probable optimal
solution, which makes GGO escape the local optima by steering to
the global optima (Khafaga D. S. et al., 2022).

Moving Towards the Best Solution: This strategy is achieved
through explorers’ geese, active seekers of ideal sites near the current
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FIGURE 1
The blind sources separation (BSS).
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The GGO exploration and exploitation.

ones, thus reducing the possibility of earning entrapped in local To enhance exploration further, the algorithm incorporates the
optima. The GGO algorithm employs the following equations for ~ following equation, considering three randomly chosen search
updating vectors A and C, denoted as A =2a -1y —aand C = 2.r,,  agents (paddings) denoted as Xvp,aqie” 1> Xpaddie” 2> and Xrpagdier 3
respectively, during iterations. The parameter a undergoes a linear

change from 2 to 0: X (t+1) = w Xrpaadte” 1 + 2Wa (Xrpaadie” 2 = X7paddle” 3)

X(t+1) = X*(t) - A [C.X*(8) - X (1) + (1 = 2)ws (X = Xopagaie” 1)

Here, X (t) represents the position of an agent at iteration ¢, Here, w;, w;, and w; update within [0,2], z decreases
X*(t) denotes the position of the best solution (leader), and r; and exponentially according to z =1 - (t/tmax)?, Where t denotes the

r, are randomly changing values within [0,1]. iteration number, and t,,,y is the maximum number of iterations.
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The second updating process involves decreasing the values of a
and vector A for r3 >0.5:

X(t+1) = wy X*(t) - X (1)|e¥ cos (2n8) + 2w, (ry + r5)X*(t)

Here, b is a constant, Z is a random value in [-1,1], w4 updates
within [0,2], and r4 and r5 update within [0,1].

3.5.1.2 Exploitation operation

The exploitative dimension of the GGO algorithm is dedicated
to refining preexisting solutions (Djaafari et al., 2022). After each
iteration, GGO discerns the entity exhibiting the utmost fitness and
accords due acknowledgment. The pursuit of exploitation objectives
is realized through two discrete strategies, explicated herein, both
synergistically contributing to ameliorating the holistic solution
quality (AlEisa et al,, 2022).

Moving Towards the Best Solution: The algorithm employs
the subsequent equation to guide individuals (X_“NonSentry”)
towards the estimated position of the prey under the guidance of
three sentry (X_“Sentryl”, X_“Sentry2”,
X_“Sentry3”):

X, = X”Semry” 1= ArCy - X”Sentry” 1 — X,
Xy = Xrsentry” 2 = Az*|C1 + Xosentryr 2 — X,
X5 = Xosenuyr 3 = As|Cy - Xosenuryr 5 = X,

solutions and

where A;, A,, Az are calculated as A = 2a - r; —a and C;, C,, C; are
calculated as C = 2r,. The updated positions for the population,
X (t+1), are expressed as the average of the three solutions X;, X,
and X3 as follows:

1 3
X(t+1)=§ZX1-
i=1

3.5.1.3 Searching the Area Around the Best Solution

In the pursuit of enhancements, individuals explore regions
proximate to the optimal response (leader), denoted as Xngjqr 1.
This exploration process is formulated by the equation:

Xt+1)=X@)+D(1+2)w(X — Xrpock 1)

Here, D, z, and w contribute to the exploration process with z
calculated according to z=1- (t/tmax)’, where t denotes the
iteration number, and t,,, represents the maximum number
of iterations.

3.5.1.4 Selection of the optimal solution

The GGO method features a mutation technique and systematic
evaluation within the search group, which is why this method has
been given such good exploration ability (D. Khafaga et al., 2022b).
It is the first significant step towards GGO deflecting convergence,
which would act as tangible proof of its advanced exploration
capabilities. A more detailed version of the program algorithm is
shown in Algorithm 1.

The sequential application of steps in the GGO algorithm
involves updating the positions of the exploration group (#;) and
the exploitation group (#,). The parameter r; undergoes dynamic
updating during iterations, defined as ry = ¢ (1 — t/tax), where ¢
represents the current iteration, ¢ is a constant, and fy,y is the
total number of iterations. At the conclusion of each iteration,
GGO updates the agents in the search space, randomly altering
their order to interchange their roles within the exploration and

Frontiers in Environmental Science

10.3389/fenvs.2024.1429410

exploitation groups. In the final step, GGO returns the
optimal solution.

1: Initialize GGO populationX; (i=1,2,...,n), sizen,
iterations tyax, Objective function F.

2: Initialize GGO parametersa, A, C, b, 1, c, rq, ro, rs,
ra, rs, W, wy, Wo, wa, wg, Ay, Ay, A3, C;, C, C3, t =1

3: Calculate objective function F, for each agents X;

. Set P = best agent position

o o~

. Update Solutions in exploration group (n;) and
exploitation group (n,)

. while t < t; ., do

cfor (i=1:1i<ny+1)do

: if (t%2 ==0) then

: if (r3<0.5) then

: if (|A] < 1) then

. Update positionof current searchagentasX (t+1) =
X*(t)- A |C.X(t) - X(t)]|

12: else

13: Select three random search agents, Xeaqd1e1, Xpadaie2,

- ® O 0 N O

-

and Xeadgies

14: Update (z) by the exponential formof z=1- (Ttax)2

15: Update positionof current searchagentasX (t+1) =
w1 #XPaddlel +z#w2 *(XPaddle2 -XPaddle3)+(1- z) = w3
# (X - XPaddlel)

16: end if

17: else

18: Update position of current search agent as X (t+1) =
Wy k| X (t)-X(t)|.eP.cos (2nl)+[2w; (r4 +rs) =X (t)

19: end if

20: else

21: Update individual positionsasX (t+1) =X(t) +D (1
+2z) = w s (X = Xezoekn)

22: end if

23: end for

24: for (i=1:1<np,+ 1) do

25: if (t%2 ==0) then

26: Calculate X1 = XSentry1-A1.|C1.XSentry1-X|, X2
XSentry2- A2.|C2.XSentry2 - X|, X3 = XSentry3 -
A3 .|C3.XSentry3 - X|

27: Update individual positions as X:[3

28: else -

29: Update positionof current searchagentasX (t+1)
X(t) +D (1+2) =w= (X - Xezock1)

30: end if

31: end for

32: Calculate objective function F, for each X;

33: Update parameters

34: Sett=t+1

35: Adjust beyond the search space solutions

36: if (Best F, is same as previous two iterations) then
37: Increase solutions of exploration group (nq)

38: Decrease solutions of exploitation group (n,)

39: end if

40: end while

41: Return best agent P

Algorithm 1. GGO Algorithm.
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3.6 Analysis of Variance (ANOVA)

Analysis of Variance (ANOVA) is a robust statistical difference
method used to measure group differences across multiple category
mean. Our project investigation particularly examines the SAR
values. It involves a close perusal of how SAR has been affected
at different points should the optimization algorithm in question be
applied to the given dataset. With ANOVA, it turns out that the
algorithms differed in their capability to create drops in SAR values.

The F-value in ANOVA is the vital factor that demonstrates the
measurement of the difference in the rate of between-group variance
from within-group variance. The larger the F-value, the more
pronounced the difference between the optimization algorithms in
terms of their performance in reducing SAR values (signal sizes
around the body). In some sense, the F-value is accompanied by
another statistical metric, which is known as a p-value, and it is used
to measure the significance of these differences that have been observed.
A p-value below the standard threshold of 0.05 shows a statistically
significant change with at least one of the algorithms. This result means
that this algorithm significantly stands out from the others in terms of its
impact on SAR for All dataset columns (Alharbi et al., 2024).

ANOVA interpretation reveals whether there are significant
differences in SAR means among all optimization algorithms.
This exposes their comparative performance in effectively
reducing noise using Blind Source Separation (BSS).

3.7 Wilcoxon Signed Rank Test

The Wilcoxon Signed Rank Test, a pivotal tool in non-
parametric statistics, is important in the paper. It is beneficial
when comparing two paired data, significantly when the
difference distribution between pairs deviates from the normality
assumptions. Our study focuses on SAR estimation for the polar
satellite with all dataset columns, and the Wilcoxon Signed Rank
Test plays a crucial role in examining the relationship between the
various BSS methods under investigation.

We have undertaken a comprehensive exploration of the data
collected, specifically focusing on the Wilcoxon Signed Test Results for
a range of algorithms. This thorough approach provides a comprehensive
overview of the reality of findings. The Wilcoxon Signed Rank Test
(p-value = .002), significant at .05, shows the considerable effect of
algorithmic pairs on the SAR values. “Exact” calculations that give
results close to the actual p-value help the accuracy of the statistical
results. This is a confidence-inspiring factor that contributes to their
reliability. In the table, bold asterisks (**) sticking p-values next to the
value indicate a statistically significant difference in quality.

In summary, the Wilcoxon Signed Rank test is an important
element in the statistical tools kits and is useful in applying optimal
BSS systems in environmental monitoring. This facilitates informed
decisions for predictive modeling.

4 Proposed methodology

This paper proposes a complex framework, as shown in Figure 3,
that combines the latest noise reduction techniques to meet the
demanding task of greater precision in air pollution predictions. The
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variety of pollution sources makes the approach of accurate air
quality forecasts easier for the innovative methodologies that allow
them to be detected from datasets.

4.1 Dataset

The dataset used in this study includes a variety of
environmental and pollutant parameters collected over a period.
It contains timestamps indicating the date and hour of each
measurement, along with corresponding data on temperature,
relative humidity, and absolute humidity. The dataset also
features readings from multiple sensors that measure various
environmental and pollutant levels. Additionally, it includes
target values for the concentrations of key pollutants such as
monoxide, benzene, and nitrogen This
comprehensive dataset provides a solid foundation for analyzing

carbon oxides.
and predicting air pollution levels, enabling the development of
effective predictive models. Key components of the dataset include:

o date_time: Timestamps indicating the specific date and hour
when measurements were taken.
o deg C: Temperature recorded in degrees Celsius.

relative_humidity: The percentage of relative humidity
in the air.

absolute_humidity: ~ The
representing the actual amount of water vapor in the air.

absolute value,

humidity

« sensor_1: Measures Particulate Matter (PM), which includes
particles with diameters that are generally 2.5 um and
smaller (PM, 5).

o sensor_2: Measures Volatile Organic Compounds (VOC),
which are a group of organic chemicals that can easily
become vapors or gases.

« sensor_3: Measures Carbon Dioxide (CO,), a key greenhouse
gas and pollutant.

o sensor_4: Measures Ozone (Os), a pollutant that can cause
various health problems and is a component of smog.

o sensor_5: Measures Nitrogen Dioxide (NO5), a significant air
pollutant and a marker for traffic-related pollution.

primary
representing the concentration of carbon monoxide (CO) in the air.

o target _benzene: The concentration of benzene (CsHg) in the air.

target_nitrogen_oxides: The concentration of nitrogen

oxides (NO,) in the air.

o target_carbon_monoxide: The target  variable

The dataset provides detailed information on both pollutant
concentrations and meteorological parameters, which are crucial for
developing sophisticated models to predict air quality. The forecasting
tool primarily focuses on predicting the concentration of carbon monoxide
(CO), leveraging the various input features to capture the complex
interactions between environmental conditions and pollutant levels.

4.2 Data preprocessing
The data preprocessing phase is discussing the core part of the

proposed methodology, which aims to optimize the Air Quality
Monitoring Dataset for accurate pollution forecasting. This involves
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FIGURE 3

Proposed Framework for Air Pollution Prediction using GGO and LSTM Model.

multiple complicated and well-planned steps. Each adapted to deal
with the specific issues and peculiarities in the given dataset. For
incomplete, sporadic or sequential values, robust strategies are laid
out for imputing missing observations. Emphasis is paid to sensor
readings, weather information, and target variables, which could
lead to a loss of accuracy in prediction if they have missing values.

Detecting and treating outliers as inliers that can be extreme
values or anomalies is an integral part of the process. The
uncertainty surrounding the variety of sensors’ readings and
target variables could significantly throw off the predictive
should
transforming variables with the same scales. This stage enhances

models. Some algorithms require consistency in
the dataset to standardize and scale sensory readings and
environmental conditions. Through these preprocessing phases,
we arrive at a solid foundational position relevant to the
succeeding stages (El-kenawy et al.,, 2022a; El-kenawy et al., 2022b).

Figure 4 Signifies a strong association of the variables in the
dataset, which are displayed in the correlation matrix. The study of
the correlation degree recognizes the strengthening and directional
patterns. It is a guide for pointing out those variables that may have
multicollinearity so that it easier to do feature selection and model
building in the future.

In the following stages, we expose statistics and visual
representations to create a foundation for informed decision-
making. Statistical parameters and graphic insights give us the
necessary dictums to use the data successfully and eliminate

noise more efficiently for accurate predictions.

4.3 PCA and BSS on the dataset

Our approach to accurate and reliable air pollution predictions
in Section 5.3 is initiated by the PCA data applied to the original
dataset, which is one of the phases of the comprehensive model. The
attention now shifts to resolving noise once the Copula phase
disentangled complex dependencies and correlations are reached.
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Such a phase is critical because it transforms the original variables
into uncorrelated principal components to reduce space while
retaining significant information. This part gives us a better
understanding of the background, theoretical basis, steps of
application, and evaluation metrics regarding PCA so that we
can extend knowledge further and use this powerful tool to
benefit the main goal: more accurate forecasting. Let us embark
on a journey of analysis together to establish the impact of PCA on
the dataset quality and also see how this stage prepares the dataset
for the following stages of the noise reduction method.

PCA is a potent tool for noise reduction, capable of extracting and
representing highly significant patterns within complex data. The PCA
approach converts original variables into uncorrelated principal
components, simplifying the dataset into its most straightforward
representation. This segment delves into the reasons for choosing
PCA, exploring the mathematical theory behind this technique,
which effectively suppresses noise and enhances the accuracy of air
pollution forecasts. PCA’s theoretical basis involves transforming the
nature of the original variables into a new set of uncorrelated ones,
known as principal components. These components hold the maximum
information about variations, effectively filtering out noise. The
mathematical principles of PCA drive essential pattern extraction and
noise reduction, making it a strong contender for reducing noise in
complex datasets.

BSS, a robust approach, begins its role in complex datasets by
significantly enhancing the accuracy of air pollution prediction. This
section delves into the theoretical foundations of BSS models and
underscores their primary function as noise reduction units. It also
outlines the sequential steps used in applying BSS to the dataset,
providing a clear roadmap for its implementation and the evaluation
metrics used to measure its impact. Understanding BSS is crucial as
it forms the basis for the subsequent.

BSS is the primary problem of this paper, which is to examine
and solve the different noises found in the dataset. The noise sources,
like sensor errors, fluctuations, and irregular data gaps and absences,
contribute to the obscuration of the actual patterns in air pollution
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data. Through its ability to distinguish independent sources, BSS can
deliver custom paper to extract noise from genuine signals. BSS can
isolate natural signals, thereby improving the quality of data, which
used to develop more accurate air pollution predictions. In this
regard, the BSS is expected to produce a high-quality dataset that
comprises clean data, where the individual pollutant sources are
classified, thus generating a new dataset with clear and precise
representation. The primary effects include an increased signal-
to-noise ratio, higher model interpretability, and a more refined
dataset that provides a solid platform for further modeling stages.

4.4 PCA for BSS in noise reduction

The application of PCA (Principal Component Analysis) into
the BSS (Blind Source Separation) process is the most important
among all the other enhancements that this approach has brought,
and this has been majorly demonstrated in the process of automatic
transcription of music with the Air Quality Monitoring Dataset.
PCA also handles issues like noise mitigation to ensure data quality
and, possibly, increase the accuracy of air pollution forecasts.
Theoretical underpinnings regarding PCA within the BSS
framework was delineated, and steps applied to the dataset was
explained (Salem and Hussein, 2019).

The application of PCA consistently as BSS gives outstanding
capabilities when applied together. It can make out the primary
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data features in the dataset. It can also do an excellent job of
reducing dimensionality, aiding signal separation and noise
elimination. Orthogonalizing-based variables reduce the data
into understandable amongst the complexity by retaining vital
data; this, therefore, aids in the separation of independent sources
in the data space. The integration of PCA within BSS offers a
solution to the persistent noise problem. It facilitates better
separation of independent sources, leading to a cleaner dataset
for accurate air pollution prediction. The forecasted results,
including a significant augmentation of signal-to-noise ratio,
enhanced explanatory capabilities, and a more robust dataset
for modeling, instill confidence in the effectiveness of PCA in
improving data quality.

The PCA process under BSS comprises the following primary
steps: preprocessing to ensure dataset quality, dimensional
reduction and noise cancellation of the factorial applied by the
factor-analytic method, and validation analysis to verify the
statistical ~ significance and  methodological  effectiveness.
Evaluation metrics with insignias SDR, ISR, and SAS enable PCA
performance assessment, assisting in a comparative analysis
disregarding other noise models.

The effectiveness of PCA for data whitening opens avenues for
further research on noise reduction in subsequent stages. The
refined dataset is a crucial feature for optimization algorithms,
propelling pollution prediction models to the next level with
more precise and efficient performance.
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Correlation matrix.

4.5 BSS optimization using GGO

which concentrates on developing noise reduction techniques in
air pollution prediction and provides a new hybrid method
combining GGO optimization and the BSS. Greylag Goose
Optimization, modeled upon the natural foraging habits of geese
species Greylag, presents a specialized algorithmic paper to improve
the BSS procedure. This part addresses the theoretical foundation,
application procedures, and evaluation strategies utilized in GGO
application towards BSS improvement in countering noise. With the
help of GGO, the intended target is to make step-by-step
enhancements in the accuracy of noise reduction process, which
contributes to scaling up overall air pollution predictions.

Greylag Goose Optimization is an algorithm based on greylag
geese’s foraging behavior. Driven by nature’s processes, geese-
inspired foraging optimizes the beneficial aspects of both
cooperative processes and adaptation mechanisms. Optimization
technique, GGO has shown effectiveness in addressing complex
problems in efficient algorithm searching algorithm path. The
problem of borrowing intelligence from the greylag geese
community in which collective intelligence is emulated and
decentralized decision-making occurs serves as a theoretical basis
for the algorithm.

The utilization of GGO in BSS optimization is meant to make
source separation algorithms precise. The adaptive and collaborative
nature of GGO is anticipated to be user-oriented, which can ideally
facilitate the BSS process, thereby boosting the ability to determine
and separate the independent sources from the whole dataset. This
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objective is to minimize data noise even more and thus improve the
dataset to be processed further. Predicted outcomes include the
possibility of better selection of sources, less interference from noise
and higher quality of the given dataset. GGO-optimized BSS
implementation was leading objective in accurately determining
the origin of emissions, which contributes to better air pollution
forecasts. The GGO optimization is successfully applied, using the
technology in the process to boost the output of BSS. The power of
the algorithm is deemed in its form of a collaborating search, which
upgrades the process of a complete characterization of mixture
components.

4.6 GGO for LSTM optimization

Greylag Goose Optimization is applied to LSTM models to
optimize their hyperparameters and increase forecasts’ accuracy
on air pollution rates. GGO pays homage to the foraging strategy
that greylag geese use to search for food where they are less likely
to be trapped in the local optimum and more likely to get the
global one. The algorithm begins with generating a pool of
potential solutions, known as candidate solutions. It specifies
an objective, commonly the Error function, such as MSE,
expected from the LSTM.

During this phase, the geese try to find the solution to the
problem in the solution space. For this, they move to new
their
positions. In exploitation, the geese fine-tune around the

positions according to current and best-known
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3D Scatter Plot for First 3 Principal Components

FIGURE 6
3D scatter plot for first 3 principal components.

known solutions by adjusting their positions nearer to the
optimum. The positions are updated by employing equations
involving parameters, and an attempt is made to achieve a good
balance of exploration and exploitation at the end of
every round.

The fitness of every candidate solution is determined by the
number of correct predictions using the LSTM model on the
validation set. The fitness function is the LSTM’s error on the
validation set, as shown in the equation below: The best solution
is chosen according to this assessment, and the position of the geese
shifts for the subsequent rounds. This continues until some stopping
criteria are achieved, such as the number of iterations to be reached
or the error minimum desired.

In LSTM optimization, the hyperparameters, that is, the
number of layers, number of units in each layer, learning
rate, batch size, and dropout rate, are set as being consistent
with the solutions. The GGO algorithm modifies these
hyperparameters stepwise and gradually finds the best set of
hyperparameters to yield the most minor error for the
prediction. The original LSTM model is improved regarding
the hyperparameters, which ensure that temporal properties in
the air pollution data set are better captured and, thus, better
forecasts are made. Therefore, this study incorporates GGO for
LSTM optimization as a robust model for enriching the
prediction models in environmentally related areas.
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5 Experimental results

The Results section provides a detailed explanation of the results
achieved while applying different optimization algorithms in BSS to
reduce noise in environmentally derived datasets. This part of the
paper comprehensively appraises the optimization algorithms’
performance metrics, the statistical analyses, and the comparisons
between the algorithms. The findings offered valuable insights into
the capacity of these algorithms to extract essential signals with noise
reduction. This enhancement can improve the overall data quality to
forecast environmental variables accurately. By following a
systematic analysis of the results, this section offers evaluations
on the relative strengths and weaknesses of the papers to be
optimized, thereby giving implications in both future papers’
development and practical methods involved in noise reduction
techniques.

5.1 Copula analysis results

This chapter thoroughly considers results attained from
Employing Copula as a noise reduction tool in the environmental
dataset (Yang, 2020; Stork et al., 2022). The chief goal is to examine
Copula for noise elimination and improve the dataset for air
pollution forecast. The assessment is facilitated through a
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relative_humidity  absolute_humidity sensor_1 sensor_2 sensor_3 sensor_4 sensor_5
SDR 0.2356 3.9540 5.1859 3.7369 1.9091 0.3769 1.2081 0.8353
ISR 23316 6.4224 9.5513 5.2243 33157 2.8322 32752 1.6388
SAR 8.6511 6.6261 5.5209 11.2926 10.1050 6.5466 ~0.6470 12.9088
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FIGURE 7

Correlation matrix.

comprehensive analysis of two critical descriptive figures. This
correlation matrix is illustrated in Figure 5.

The scatter copula plot constructs further insight into how this
Copula remodels the data, especially the enriched areas of clarity and
the signifying signals from noise. This visual representation is
significant in assessing the validity of the Copula in unmasking
the actual underlying relations of the environmental variables.

We want to give a complete picture of Copula’s practical impact
as a useful instrument of noise reduction in the data. The discussion
not only confirm Copula’s effectiveness but also work as a basis for
subsequent evaluations and comparisons with the other noise
reduction methodologies to perfect the dataset for the correct
predictions of air pollution status.

5.2 PCA results on the original dataset

In this context, the section is devoted to an in-depth analysis of
the PCA implementation process and the results it produced on the
original environmental dataset (Maier et al., 2019; Pereira et al,
2022). The main goal is to reveal PCA’s effect on smoothing the
noise and further increase the dataset’s suitability for air
pollution modeling.

Frontiers in Environmental Science

12

Figure 6 presents a 3D scatter plot that visualizes the dataset after
applying PCA. This plot shows data points in a reduced-dimensional
space defined by the first three principal components. The primary
objective of this plot is to illustrate how PCA transforms the original
high-dimensional data into a more manageable form while retaining the
most significant variance. In this figure, the scattered data points, which
are widely dispersed, indicate noise or outliers. PCA helps in identifying
these scattered points, which are less relevant for building accurate
models. On the other hand, the concentrated data points form distinct
clusters, representing significant patterns within the dataset. These
clusters the core information that PCA after
dimensionality reduction. Focusing on these concentrated points
improves the reliability of the subsequent models. The distinction
between highlights PCA’s
effectiveness in noise reduction and pattern recognition, which are

are retains

scattered and concentrated data
essential for creating a robust prediction model.

By approaching these figures, we can give a comprehensive
picture of the role played by PCA in reducing the noise in the initial
dataset. The discussion not only focuses on the efficacy of PCA but
also prepares the reader for the second paper of the series by
highlighting the follow-up evaluation, comparison with other
methodologies, and the upcoming reduced noise paper for good
air pollution prediction.
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PCA of Original Data vs PCA of Separated Sources.

Frontiers in Environmental Science 13 frontiersin.org


https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1429410

Ben Ghorbal et al.

TABLE 3 Configuration of compared algorithms with 100 iterations and
10 agents for each one.

Algorithm Parameter(s) Value(s)
GGO rl [0-1]
12 [0-1]
3 [0-1]
4 [0-1]
15 [0-1]
wl [0-2]
w2 [0-2]
w3 [0-2]
wd [0-2]
FA Number of fireflies 10
GA Mutation ratio 0.1
Crossover 0.9
Selection mechanism Roulette wheel
SCA Parameters r_2, r_3, r_4 [0, 1]

5.3 Original dataset’'s BSS result

The importance of the BSS concept cannot be overstated in the
signal processing domain, where the mixture of observations and
unknown sources is being considered. This part investigates the
output of different BSS approaches following the original
environmental dataset, showing their excellence in noise
reduction and the clearness of independent sources (Demir et al.,
2020; Mushtaq and Su, 2020).

As shown in Table 2, the indicator metrics—SDR (Source-to-
Distortion Ratio), ISR (Image-to-Spatial Ratio), and SAR (Source-
to-Artifact Ratio)—captured the outputs from the use of BSS (Blind

Source Separation) across all the variables in the dataset.

TABLE 4 WOA-BSS results.

10.3389/fenvs.2024.1429410

Indeed, the scatterplot in Figure 7 shows the correlation
matrix depicting the linkages between the variables after the BSS.
The lowering of off-diagonal elements signifies the decrease in
the relationship between variables, which can indicate successful
noise reduction and the separation of mixed signals.

Figure 8 provides a comparative visualization of the original
dataset and the separated sources after applying BSS. The
original data scatter plot shows mixed signals with no clear
separation, indicating the presence of noise and overlapping
sources. The data points in this plot are likely intermixed,
making it difficult to identify distinct sources of pollution.
After applying BSS, the separated sources scatter plot reveals
distinct groups of data points, each representing a different
of pollution. This separation demonstrates the
effectiveness of BSS in disentangling mixed signals and

source

isolating independent sources. The clear distinction between
the original and separated data underscores BSS’s capability to
clean and refine the dataset, enhancing its clarity and making it
more suitable for accurate air pollution prediction.

To conclude, the obtained outcomes from the descriptive
analysis figures reveal that BSS (Blind Source Separation)
methods have a significant encouraging value. The drop in
noise and the successful separation of different sources paved
the way for further analyses and refinement of the data, which is
essential for more accurate air pollution prediction forecasts.

5.4 Blind separated sources’ PCA

PCA is a vital technique utilized for dimensionality
reduction and pattern recognition. In the BSS setting, PCA
improves the dataset’s quality by extracting crucial patterns
and retaining them in the data. The final paragraph highlights
the PCA impact on BSS in the original dataset, including noise
reduction and unmixing.

The merger of PCA and BSS is focused on combining the best
possible aspects of both methodologies. BSS mainly fights with
removing the signal mixture, while in PCA, the dataset is further

relative_humidity

absolute_humidity

sensor_1

sensor_2

sensor_3

sensor_4

sensor_5

SDR 2.6936 6.4120 7.6439 6.1949 4.3671 2.8349 3.6661 3.2933
ISR ‘ 4.7896 8.8804 12.0093 ‘ 7.6823 ‘ 5.7737 ‘ 5.2902 ‘ 5.7332 ‘ 4.0968
SAR ‘ 11.1091 ‘ 9.0841 7.9789 ‘ 13.7506 ‘ 12.5630 ‘ 9.0046 ‘ 1.8110 15.3668

TABLE 5 PSO-BSS results.

PSO-BSS deg_C relative_humidity absolute_humidity sensor_1 sensor_2 sensor_3 sensor_4 sensor_5
SDR 49156 8.6340 9.8659 8.4169 6.5891 5.0569 5.8881 55153

ISR 7.0116 11.1024 14.2313 9.9043 7.9957 75122 7.9552 63188

SAR 133311 113061 10.2009 15.9726 14.7850 11.2266 4.0330 17.5888
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TABLE 6 GWO-BSS results.

relative_humidity

absolute_humidity

10.3389/fenvs.2024.1429410

sensor_1l sensor_2 sensor_3 sensor_4 sensor_5

SDR 7.1056 10.8240 12.0559 10.6069 8.7791 7.2469 8.0781 7.7053
ISR 9.2016 ‘ 13.2924 16.4213 12.0943 10.1857 9.7022 10.1452 8.5088
SAR 15.5211 13.4961 12.3909 18.1626 16.9750 13.4166 6.2230 19.7788

TABLE 7 GGO-BSS results.

relative_humidity

absolute_humidity

sensor_1 sensor_2 sensor_3 sensor_4 sensor_5

SDR 12.1056 15.8240 17.0559 15.6069 13.7791 12.2469 13.0781 12.7053
ISR 14.2016 ‘ 18.2924 214213 17.0943 15.1857 14.7022 15.1452 13.5088
SAR 20.5211 ‘ 18.4961 17.3909 23.1626 21.9750 18.4166 11.2230 24.7788
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Analysis plots of the ANOVA test results.

refined by transforming it into a set of uncorrelated principal
components. This section studies the consequences of PCA used
in the BSS process, demonstrating the role of PCA in reducing
noise and improving Source separation (Scheibler and Ono,
2020; Song et al., 2020).
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In Figure 9, the original dataset’s PCA and the separated sources’
PCA results is shown. Regarding the left dependency, the scatter plot
of the initial data shows that the points are scattered widely; hence,
there is much noise and conflicting results. As seen on the right side
of the figure, the points seem compact in the scatter plot, confirming
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Sar analysis for the different optimization algorithms.

that the BSS techniques have reduced noise and offered a suitable
means of isolating the actual independent sources within the dataset.

5.5 BSS optimization results

In this comprehensive comparison, we delve into the performance of
BSS with various state-of-the-art optimization algorithms: Greylag
Goose Optimization, Whale Optimization Algorithm (WOA),
Particle Swarm Optimization (PSO), Grey Wolf Optimization
(GWO) (Jinju et al, 2019; Sun et al, 2020; Zhang et al, 2020;
Stergiadis et al, 2022). Table 3 shows 100 iterations each, and
10 agents for each algorithm are shown. Furthermore, those results
are plotted in Table 4, Table 5, Table 6 and Table 7, as described below.

As seen in Table 4, WOA-BSS results show that the polarization
of the sources is an essential indicator of the performance of the
Whale Optimization Algorithm. Significantly, three fundamental
measures, the SDR, ISR, and SAR indices, show much higher noise
reduction results for the enhanced dataset than the original (Sheeja
and Sankaragomathi, 2023). For example, it inferred that the sound
values of sensor 4 decreased a lot while those of sensor 5 rose
sharply, showing the algorithm’s good productivity in data
enhancement.

As shown in Table 5, the Particle Swarm Optimization (PSO)
results are impressive and prevail for a range of sensors. The SAR

TABLE 8 Air Pollution Prediction using GGO and LSTM Model.

10.3389/fenvs.2024.1429410

values indicate this improvement for sensors 1, 4, and 5, which have
different sensors to separate their sources. Furthermore, the ISR
metrics demonstrate that PSO is successful at increasing the signal
independence  criterion, contributing significantly to the
improvement of the data quality.

As shown in Table 6, GWO reflects excellent noise reduction
characteristics confirmed by greater SDR, ISR, and SAR indices.
GWO-BSS showcased its strength in discriminating sensors 4 and
5 for data refinement. This plays a significant role in the overall
performance. The algorithm’s adaptability is demonstrated on
varied datasets. It is a testimony of its efficiency in handling the
noise of various complex patterns.

As shown in Table 7, the GGO Algorithm with the
maximum noise reduction gets the top rank. GGO-BSS
consistently scores the best SDR, ISR, and SAR values across
any chosen sensor, showing its superiority in the separation task
of mixed signals and improving the number of clean sources.
Successfully addressing noise problems clearly expresses the
asset’s robustness and efficiency. So, it is the best option when
the task is to improve data quality using Blind Source
Separation.

5.6 Statistical analysis for BSS
optimization results

Assessing the capacity of various optimization algorithms to
minimize noise by using BSS is of great importance in
determining the practical utility of these algorithms. The
following portion discusses the statistical analyses of tracking
and evaluating the algorithm’s impact on SAR. Two main
statistical methods, ANOVA (Analysis of Variance) and the
Wilcoxon Signed Rank Test, are used to understand mean
and median differences in SAR scores (Cai et al., 2019;
Houssein et al., 2021). These analyses provide a complete
explanation of the functionality of different algorithms and
reveal their statistical meaning and outcomes.

As can be seen from Figure 10, variance analysis (ANOVA)
was an integral part of the statistical analysis we conducted. The
ANOVA results can be used to diagnose what differences in the
data matter the most, leading to an evaluation of the current
methodology. In this framework, the graph contrasts different
elements of structure to suggest a global strategy for noise
suppression and air pollution prediction.

The Wilcoxon Signed Rank Test shows clear differences in SAR
medians between two alternative algorithms for optimizing the
representation of the neuro signal. Consequently, the p-value
summary states the relative differences in SAR values, which are

GGO-LSTM 0.00189 0.01022 0.01218 0.00174 0.91684
PSO-LSTM 0.00328 0.01478 ‘ 0.01733 ‘ 0.00261 0.90004
GWO-LSTM 0.00423 0.02149 ‘ 0.02745 ‘ 0.00339 0.889
WOA-LSTM 0.00494 0.03122 ‘ 0.03043 ‘ 0.00421 0.88418
Frontiers in Environmental Science 16

Fitted time
0.90665 2.10272 0.99231 0.93028 0.00571586
0.8983 5.03613 0.88953 0.88614 0.00984562
0.88981 7.04479 0.82 0.85899 0.01035688
0.85084 9.33259 0.73904 0.84624 0.01098746
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scaled by varying methods of optimization, and consequently, whether
they said differences are statistically non-significant at the level of which
we usually take the meanings (a = 0.05) that are employed. Figure 11
outlines the Wilcoxon statistics, one of the main statistical techniques in
statistical analysis methodology. The Wilcoxon signed-rank test provides
a powerful tool to assess the consistency of the differences between pairs
of data that are supposed to be the components of framework.

These statistical studies, however, deliver much better knowledge
about the paper’s results in improving noise reduction in BSS using
different optimization algorithms, which in turn contributes to more
meaningful conclusions and decisions.

5.7 Air pollution prediction using GGO and
LSTM model

Table 8 below compares different models, including GGO-LSTM,
PSO-LSTM, GWO-LSTM, and WOA-LSTM, in predicting air pollution
levels. The performance metrics include Mean Squared Error (MSE), Root
Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Bias
Error (MBE), correlation coefficient (r), coefficient of determination (R?),
Relative Root Mean Squared Error (RRMSE), Nash-Sutcliffe Efficiency
(NSE), Willmott’s Index (WI), and the time taken to fit the model.

As denoted in the table, the metrics indicate that the GGO-LSTM
model is the most suitable for predicting the three indexes compared to
other models. It has the lowest MSE, RMSE, MAE, and MBE values,
showing a higher accuracy and lesser bias when making a prediction. The
correlation coefficients with values such as 0.9775 and 0.9949 are relatively
higher for GGO-LSTM, which tend to have a better relationship with the
predicted and actual values of cases. Further, the new development named
GGO-LSTM provides the highest efficiency and model-data conformity
quantified by NSE and W1. Once again, GGO-LSTM takes the least time
to fit, underlining its computational advantage.

Thus, it can be mentioned that the proposed GGO-LSTM model
maximally meets the requirements for effective environmental
monitoring and is highly effective in terms of predicting the
concentration of air pollutants.

6 Conclusion

This paper provides a methodological approach to noise control and
air pollution estimation with the help of high-quality statistical and
optimization apparatus. The first steps of Principal Component Analysis
(PCA) eliminated noise by converting the data into principal
components, whereby significant patterns were preserved while noise
was removed. This step also meant that the dataset was much cleaner
and easier to work with in the later steps. The Blind Source Separation
(BSS) technique improved this dataset by decomposing, or in other
words, disentangling signals from each other, which led to more clarity of
the data. The efficiency of BSS could be clearly identified when a
comparison between the original signals and the newly separated
sources was made. The two were totally different since the sources of
information had different points of data.

Moreover, the Copula functions used in the analysis gave a good
approach to determining the dependence structure between the
environmental and pollutant variables. This enabled better prediction
of the relations between variables, which is vital when modeling air
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pollution. All in all, the Copula functions have been of great influence in
the preprocessing step stage, which aims to enhance the quality of the
dataset. Therefore, the Greylag Goose Optimization (GGO) algorithm
was used to enhance the parameters of both PCA and BSS and the
Copula functions for efficient noise elimination and source separation.
Another research area involved joining GGO with LSTM networks to
analyze air pollution, and the results were impressive. The GGO-LSTM
scheme had the lowest MSE, RMSE, MAE, and MBE than the other
optimization methods applied in the presented model.

The employment of PCA and BSS and the use of Copula functions
and GGO-LSTM make the dataset clear without interference from
noises, making its structures clear and easily workable for generating
relatively accurate and reliable air pollution characteristics. This
network-based approach is helpful for environmental surveillance. It
has excellent potential when planners and policymakers use it as a tool to
perform air quality management practices efficiently. This study also
acknowledges the need for social research to persistently develop new
noise attenuation and optimization approaches to improve predictive
models in different environmental situations.
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