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Introduction: The development of the digital economy has a profound impact on
industrial economics. The paper conducted an analysis of how China’s digital
economy and its structural indicators impact carbon emission intensity. The
structural indicators comprise three dimensions: digital manufacturing industries,
digital service industries, and industrial digitalization.

Method: This study drew on industrial organization theory and established
economic models for empirical test. The paper adopted the measurement
framework from the U.S. Bureau of Economic Analysis (BEA) to assess digital
economy development through the economic value-added of digital industries.
The analysis utilized Input-Output Tables (including extended tables) from 30
Chinese provinces. For empirical modeling, fixed-effects models and Spatial
Durbin Models (SDM) were systematically employed.

Results and discussion: The empirical results show that: 1) at the national level,
the development of China’s digital economy industries has a suppressive effect
on carbon emission intensity; 2) in terms of spatial effects, the development of
digital economy has significant carbon spillover effects, but digital
industrialization and industrial digitization present different spatial effect
results; 3) from the analysis of regional heterogeneity, in the northeast, central
and western regions, the direction of influence of digital industrialization and
industrial digitalization on carbon emission intensity is consistent; in the eastern
region, the development of digital industrial service sector and industrial
digitalization has a suppressive effect on carbon emission intensity, while
digital industrial manufacturing sector presents a pro-increasing effect;
4) Non-linear relationship analysis shows that the development of the digital
industrial manufacturing sector has a “promoting and then inhibiting” effect on
carbon emission intensity. Overall, the impact of digital industry development on
carbon intensity exhibits a “promoting increase, then suppressing, then
promoting increase” trend. In conclusion, the findings suggest that China’s
digital economy industry has entered the low-carbon development stage.
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1 Introduction

With the rapid development and integration of digital
technologies such as 5G, cloud computing, and artificial
intelligence into the industrial economy, the growth of the digital
economy industry has become a key force driving economic growth
and transforming the global competitive landscape. The booming
development of the digital economy also presents new opportunities
for China to achieve its goals of peaking carbon emissions and
achieving carbon neutrality. As a new production factor, data has the
characteristics of being clean and low-carbon. According to data
released by the National Development and Reform Commission, in
2020, every ton of standard coal consumed can directly contribute
11,000 yuan in output value to data centers, drive 888,000 yuan in
value-added for digital industrialization, and indirectly generate a
digital market worth 3.605 million yuan through the transformation
of various industries. Data centers, accounting for about 2% of
China’s total electricity consumption, support a digital economy that
accounts for approximately 36.2% of the national GDP, making a
significant contribution to achieving the “dual carbon” goals in the
era of the digital economy. The “Overall Layout Plan for Building a
Digital China” proposes that building a digital China is a crucial
engine for promoting China’s unique modernization in the digital
age. Only by deeply integrating digital technologies with traditional
industries and unleashing the driving force of digitization and
intelligence can we truly promote industrial digitalization and
low-carbon development, accelerate the realization of digital
carbon neutrality, and advance comprehensive green
transformation of economic and social development.

The research literature exploring the influence of the digital
economy industry on carbon emissions intensity encompasses three
distinct viewpoints:

First, some scholars posit that the development of the digital
economy industry fosters an increase in carbon emissions intensity.
The digital industry itself lacks inherent low-carbon attributes,
particularly concerning the high energy consumption involved in
establishing digital infrastructure (Zimin and Chanjuan, 2016).
Furthermore, the rapid advancement of Information and
Communications Technology (ICT) stimulates higher
electricity consumption (Salahuddin and Alam, 2015), leading
to substantial increments in carbon emissions (Sadorsky, 2012),
displaying an exponential growth trend (Anders et al., 2015;
Zhou et al., 2019).

Second, in contrast, some scholars argue that the digital
economy can inhibit carbon emissions and carbon intensity
(Zhang et al., 2023b; Yang et al., 2023) and, to some extent,
enhance carbon emission efficiency (Han and Jiang, 2022; Ge
et al., 2022; Lyu K. et al., 2023), contributing to the development
of a low-carbon economy (Wang et al., 2022). Empirical research
shows that the digital economy mainly suppresses carbon emissions
through the optimization of industrial structure and the
improvement of energy efficiency (Chen et al., 2022; Lyu Y.
et al., 2023; Yi et al., 2022; Zhou et al., 2022; Dong et al., 2022).
The development of the digital economy stimulates business
innovation, thereby restraining carbon emissions (Chen, 2023).
Moreover, the evolution of the digital economy industry
transforms traditional business models. Reducing investments in
physical establishments due to the emergence of online platforms.

Consequently, this reduction in fossil energy consumption for
infrastructure promotes the greening of energy consumption
structures (Horner et al., 2016). The persistent cross-industry
technological spillovers contribute to carbon reduction, thereby
empowering green development through digital technology (Lei
et al., 2023).

Third, there is a viewpoint that the impact of the digital economy
industry’s development on carbon emissions is uncertain. The
effects of the digital economy on carbon emissions depend on
specific economic and environmental contexts (Zhang J. et al.,
2022). The impact of the digital economy on carbon emissions
exhibits significant heterogeneity in different regions of China (Zhao
et al., 2023; Zhang et al., 2022b; Wang et al., 2023). The regional
carbon emissions are affected by economic spillover effects,
competition effects, and demonstration effects, showing
significant spatial agglomeration in neighboring regions (Shao
et al., 2022). On the other hand, some studies suggest that due to
the network effects of the digital economy, the relationship between
digital economy development and carbon emissions may exhibit
nonlinear characteristics (Li et al., 2021; Yang et al., 2023). Based on
empirical evidence from Chinese data, the impact of the digital
economy on carbon emissions follows an inverted U-shaped
relationship (Li and Wang, 2022; Lei et al., 2023; Wang et al., 2023).

In comparison to previous research literature, this article may
contribute in the following ways:

First, research perspective: The study adopts a comprehensive
approach by analyzing the impact of digital economy industry
development on carbon emission intensity from both the aspects
of digital industrialization and industrial digitalization. It utilizes
structured variables related to the digital economy industry to
specifically analyze. Second, theoretical analysis: Based on the
industrial organization theory in industrial economics, the article
explores the differences in market structures and industrial
behaviors between digital industrialization and industrial
digitalization. Third, measurement method: The research
methodology draws inspiration from the United States Bureau of
Economic Analysis (BEA) calculation methods. It can objectively
measure the scale of digital economy development and its
contribution to the overall economy. Forth, multidimensional
analysis: The article delves into the impact from various
dimensions, including direct effects, spatial effects, regional
heterogeneity, and non-linear relationships. This study deepens
the understanding of the relationship between China’s digital
economy industry and low-carbon development, providing
theoretical guidance for achieving both carbon peaking and
carbon neutrality while promoting high-quality economic
development in China.

2 Structural analysis of the digital
economy industry and theoretical
assumptions

2.1 The theory of industrial organization in
the context of the digital economy

In the study of fair competition in markets, traditional industrial
organization theory has evolved into three major schools of thought.
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Firstly, the Harvard School is centered around the “Structure-
Conduct-Performance” (SCP) analytical framework. It
emphasizes the identification of monopolistic enterprises by
assessing industry concentration and argues that their pursuit of
monopoly profits is detrimental to efficient allocation of market
resources and the enhancement of social welfare. In contrast, the
Chicago School challenges the views of the Harvard School. It argues
that firm size expansion cannot simply be equated with an increase
in monopoly power. The Chicago School believes that firm size
expansion and increased concentration may be driven by
technological innovation or economies of scale, rather than solely
for acquiring monopoly profits. Consequently, the Chicago School
advocates for using contestable market theory as an alternative to the
SCP paradigm and argues for establishing more reasonable criteria
in determining monopoly. This approach aims to avoid a blanket
application of antitrust policies against large firms. The third school
of thought is the New Industrial Organization (NIO) theory.
Building upon previous research, NIO theory delves deeper into
the relationship between firm size and transaction costs. It points out
that the level of transaction costs is influenced by the uncertainty
and complexity of transaction activities, which often stem from the
behavior of traders. Consequently, NIO theory emphasizes the in-
depth study of the behavioral attributes of traders. Furthermore,
NIO theory advocates examining organizational structures and
principal-agent problems from within the firm, and believes that
advancements in digital technology provide robust support for these
endeavors. For instance, the utilization of blockchain technology to
prevent data falsification and the interconnection of data to reduce
information asymmetry are highlighted as key areas for
improvement.

Based on the industrial cycle theory represented by Li et al.
(2021) put forward a driving mechanism for the industrial life cycle
under digital economy circumstances, concentrating on the analysis
of firm entry and exit (entry barriers), scale, technology, and changes
in consumer demand. As shown in Figure 1, the key characteristics

can be generalized into four main aspects: Firstly, there is a rapid
expansion in industrial agglomeration and scale. This is because
digital infrastructure reduces market entry barriers. Under the
influence of network externalities, the agglomeration and scale of
digital economy industries can expand significantly in a short
period. Secondly, an open and collaborative competitive
relationship is formed among industrial organizations. This
promotes frequent industrial integration and cross-sectoral
development. Thirdly, the pace of industrial transformation
cycles accelerates, with faster iterations. Fourthly, industrial
organizations tend to evolve towards modularity, adopting
flexible organizational structures to adapt to the iterative changes
in industrial cycles.

The development of the digital economy has remolded the
macroeconomic operational mechanisms, and the emergence of
the internet industry has brought challenges to industrial
economics. The internet industry shows relatively low entry
barriers, characteristic of perfect competition, yet high market
concentration also exhibits features of oligopoly. Furthermore,
platform enterprises have natural monopoly characteristics such
as economies of scale, economies of scope, and sunk costs. These
giant enterprises, including internet platform companies that nearly
monopolize niche markets, are under intense antitrust pressure, yet
they have not been compelled by the government to be broken up
to change market structures. How do we understand the
organizational forms of platform enterprises and comprehend
monopoly and competition within the platform economy? Have
they truly excluded fair competition and formed monopolies?
Achieving equality among enterprises remains a goal pursued
by industrial organization theory, and industrial organization
policies in the digital economy must carefully handle the
relationship between antitrust and innovation. Preventing
unnecessary suppression of innovation by antitrust measures
requires discriminating analysis of market behavior and
performance in the digital sector.

FIGURE 1
Stage path of industrial organization change in digital economy.
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2.2 Theoretical analysis and research
hypotheses

With the development of the digital economy, an increasing
number of scholars have started to focus on the relationship between
the digital economy and carbon emissions. This is mainly
manifested in the impact of digital technology, internet
development, and the digital economy on carbon emissions. The
rapid development of digital technology and its industries has led to
an increase in electricity consumption, thereby driving up carbon
emissions. However, some scholars have a different opinion, arguing
that the development of digital technology is beneficial to reducing
greenhouse gas emissions, thereby improving environmental
quality. For instance, increasing internet penetration and
investing in information and communication technology
infrastructure can significantly reduce carbon emissions.

According to the “Statistical Classification of the Digital
Economy and its Core Industries (2021)” and relevant literature,
the digital economy encompasses two categories: the
industrialization of digitization and the digitization of industries.
These two components exhibit disparate industrial structures. For
instance, the industrialization of digitization is predominantly
represented by major telecommunications conglomerates in
China, thereby exhibiting a high degree of concentration and
distinct oligopolistic characteristics. Conversely, the digitization
of industries involves numerous sectors with limited
interconnections, resulting in lower industry concentration and
exhibiting the characteristics of perfect competition. The
organization of the digital industry in China is characterized by
complexity. It encompasses elements of absolute monopoly in
certain industries, where some entities control essential facilities,
as well as oligopolistic competition with a few dominant players.
Additionally, there is a large number of small and micro enterprises
that can be considered to exhibit characteristics of perfect
competition. In the digitalized part of the industry, monopolistic
tendencies are more pronounced, while competition plays a
significant role in industrial digitalization. Even within the realm

of monopolies, the digital industry showcases a variety of
organizational structures. Traditional monopolies, such as China
Unicom, coexist with new forms of monopolistic organizations, such
as platform-based entities.

Taking carbon emissions as an example, as shown in Figure 2. In
regions with lower per capita GDP, the market economy is not yet
sufficiently developed, and the price mechanism under perfect
competition is not well-established. Consequently, efficiency in
such areas is evidently lower than that under monopolistic
conditions. Therefore, digitization of industries in these regions
may increase carbon emissions, while digital industries themselves
have the potential to reduce carbon emissions. On the other hand,
considering the development of digital economy technologies. At
this stage, digital economic technologies are in their early phase,
requiring significant resource allocation for research and
development. And integration with industries has yet to be
realized. Thus both digital industrialization and industry
digitization may contribute to increased carbon emissions.

As per capita GDP increases, the purchasing power of demand-
side increases, leading to an enhanced role in the market. Under
complete competition industry innovation accelerates, whereas
monopolistic industry innovation slows down. In this scenario,
digitization of industries in the region may reduce carbon
emissions, but digital industries may increase carbon emissions.
Additionally, due to limited progress in digital economy technology
development, and the early stage of integration between digital
economic technologies and various industries, industry
digitization in the region may increase carbon emissions. With
further improvement in per capita GDP and increased
purchasing power of demand-side, both complete competition
and monopolistic industries are constrained by demand.
Consequently, digitization of industries and digital industries will
decrease carbon emissions. Furthermore, the extensive
implementation of data empowerment within industries
promotes quality improvement and efficiency enhancement, as
well as further refinement of industry division and collaboration,
leading the region to enter a low-carbon development stage. From a

FIGURE 2
In the case of carbon emissions “Structure-Conduct-Performance” analytical framework.
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policy perspective based on this theory, local governments should
initially assess the measurement of per capitaGDP in their regions to
establish the conditions of the two distinct industries. Subsequently,
different industrial policies should be implemented to achieve a win-
win situation for economic growth and carbon reduction. For the
digitization of industries, as it pertains to monopolistic industries,
administrative and judicial measures are necessary to promote
industry development. As for industry digitization, which falls
under perfect competition, further market improvements should
be pursued to leverage the invisible hand. Based on the
aforementioned analysis, the first hypothesis of this paper
is proposed.

Hypothesis 1: The development of digitization and digitalization
in the digital economy industry has varying effects on carbon
emission intensity. While the development of the digital economy
industry has both promoting and inhibiting effects on carbon
emission intensity, overall, its impact is positive.

The Kuznets Curve (EKC) theory demonstrates an inverted
U-shaped relationship between environmental pollution and
economic development. It suggests that environmental pollution
initially increases with economic development until reaching the
inflection point of the inverted U-shaped curve. Subsequently,
environmental pollution decreases as further economic
development occurs. In the actual process of development,
during the early stages of digital economy industry development,
substantial resources are invested in constructing the digital
economy infrastructure, including the manufacturing of
electronic equipment, power distribution equipment, and the
establishment of large data centers. These activities intensify
energy consumption and result in significant carbon dioxide
emissions. However, as the digital economy progresses to a
certain stage of development and the infrastructure construction
becomes more comprehensive, advancements in digital technology
significantly enhance production efficiency and optimize production
methods. As a result, carbon emission intensity decreases with the
development of the digital economy industry. Based on this analysis,
the second hypothesis of this paper is proposed.

Hypothesis 2: With the advancement of economic development,
the impact of digital economy industry development on carbon
emission intensity follows the pattern of the EKC, exhibiting non-
linear characteristics.

China possesses vast territorial expanse, and there are significant
differences in environmental resource endowments and economic
development backgrounds among different regions. Additionally,
the development of the digital economy industry in each region
exhibits distinct characteristics and varying degrees of advancement.
For instance, the eastern region benefits from abundant human
resources and hosts a large number of highly skilled technology
professionals. It leads the development trends of digital technologies
such as the Internet, 5G, and big data in China. The western region
boasts abundant natural resources and a sparse population, making
it suitable for the construction of large-scale data processing centers
and other digital economy infrastructure. Taking into account the
characteristics of both regions, China has implemented the “East
Numerical, West Computational” project to achieve coordinated
and balanced development of the national digital economy.

Therefore, this paper divides China into four major economic
regions: Northeast, East, Central, and Western regions. Analyzing
the impact of the digital economy industry on carbon emission
intensity in different regions.

Considering the spatial effects between regions, on one hand,
digital elements themselves possess characteristics of high
integration, strong penetration, and rapid dissemination. They
facilitate the free flow of production factors between regions,
optimize the production factor structure in neighboring regions,
and achieve synergistic regional economic development, thereby
reducing carbon emission intensity. In the consumer goods market,
ICT technologies not only reduce the prices of products and services
but also guide neighboring markets to reduce demand for energy-
consuming products through price transmission mechanisms. On
the other hand, digital technologies enhance information exchange
between enterprises, improve the efficiency of the industrial chain,
and drive regional industrial upgrades. However, high-polluting and
energy-intensive enterprises may relocate to neighboring regions,
resulting in carbon leakage effects. Based on this, the third
hypothesis is proposed.

Hypothesis 3: The impact of the digital economy industry on
carbon emission intensity exhibits heterogeneity across different
regions. The development of the digital economy industry has a
restraining effect on carbon emission intensity in the local region
and spatial spillover effects on carbon emission intensity in
neighboring regions.

3 Empirical analysis of the impact of
digital economy industry development
and its structured indicators on carbon
emission intensity

3.1 Variable selection

3.1.1 Dependent variable
The dependent variable is carbon intensity (CI), denoting CO2

emissions in relation to the unit of GDP. Carbon emission intensity
is a measurement indicator of carbon emission levels proposed from
an efficiency perspective. The explained variable in this paper refers
to the research conducted by Xie (2022) and Yi et al. (2022). There
are various methods for carbon emission accounting, and three
primary methods are used for accounting carbon emissions based on
territorial boundaries: the emission factor method, the material
balance method, and the actual measurement method. The
emission factor method has a wide range of applications and
high authority. It has developed relatively mature accounting
formulas and databases. The most representative is the “National
Greenhouse Gas Inventories Guidelines” developed by the
Intergovernmental Panel on Climate Change (IPCC). It also
enjoys high international recognition. Thus, we employ the
sectoral emissions accounting methodology of the
Intergovernmental Panel on Climate Change (IPCC) to calculate
carbon emissions data for 30 provinces and municipalities in China
from 2012 to 2017.

Figure 3 presents the spatial distribution characteristics of
carbon intensity in China for the years 2012 and 2017. An
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analysis of Figure 3 reveals a distinctive “west high, east low” pattern
in China’s carbon intensity landscape. This suggests a discernible
nexus between carbon intensity and the trajectory of regional
scientific and technological advancement. Regions marked by
robust economic and technological progress, exemplified by
locales such as Beijing and Guangdong, tend to exhibit a
relatively moderated carbon emissions intensity. The comparative
analysis between 2012 and 2017 further highlights the substantial
escalation of carbon intensity in the northeastern region, particularly
within Shanxi province. This trend accentuates the
interconnectedness of carbon intensity with the energy
consumption and industrial structure of a region.

3.1.2 Key explanatory variables
The key explanatory variables of this paper encompass three

structured factors concerning the developmental of the digital
economy: 1) Digital industrial manufacturing sector:
Communication equipment, computers, and other electronic
devices. 2) Digital industrial services sector: Information
transmission, software, and information technology services. 3)
Digitalization of industry Development Level (DDL). The first
two variables respond to the level of digital industrialization
development (IDE), and the third variable signify the level of
digital development of industries. Regarding the measurement of
digital economy, there are mainly research methods such as added
value measurement, compilation of relevant indices, and the
construction of satellite accounts. Among these, the construction
of satellite accounts for the digital economy can effectively depict the
engagement of diverse sectors in the national economy in activities
characteristic of the digital economy, enabling a more precise

assessment of the magnitude of digital economy development
and its contribution to the overall economy. However, due to
constraints in statistical data, the compilation of macro-level
digital economy satellite accounts remains challenging.
Theoretical and practical research on digital economy satellite
accounts are currently undergoing continual refinement. The
OECD (2018) suggests that the value-added generated by digital
economy industries can presently serve as an indicator of digital
economy scale, thereby laying the groundwork for future satellite
account preparation. Consequently, this paper elects to measure
economic value added of the Digital Industrial Manufacturing
Sector (Sector 1), Digital Industrial Services Sector (Sector 2), and
Industrial Digitalization (DDL) to comprehensively reflect the
development stage of the regional digital economy industry.

According to the “Statistical Classification of Digital Economy
and Its Core Industries (2021),” this classification determines the
industrial scope of digital economy as follows: 01 digital product
manufacturing industry, 02 digital product service industry,
03 digital technology application industry, 04 digital factor
driving industry and 05 digital efficiency improvement industry
5 categories. The 01-04 categories corresponding to the core
industries of the digital economy, that is, the digital
industrialization part. These industries serve as the bedrock for
digital economy development. The digital industrialization includes
digital industry manufacturing sector and digital industry service
sector. Within the input-output table, the digital industry comprises
two sectors: communication equipment, computers, and other
electronic equipment (Sector1), and information transmission,
software, and information technology services (Sector2). The 05th
category is the industrial digitalization part, which refers to the

FIGURE 3
Spatial distribution of China’s carbon emissions intensity in 2012 and 2017.
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enhanced output and efficiency resulting from the application of
digital technology and data resources to traditional industries, thus
representing the integration of digital technology with the real
economy.The statistical classification of digital economy and its
core industries corresponds to the input-output table industry

sector, which is shown in Table 1. Digital industrialization
corresponds to the input-output table industry sector
“Communication equipment, computers and other electronic
devices” and “Information transmission, software and
information technology services” The economic value of

TABLE 1 Digital economy and its core industries.

Digital
economy

Large categories of
industries

Medium industry The input-output table corresponds to the
industrial sector

Digital
industrialization

Digital goods manufacturing

Computer manufacturing

Communication equipment, computers and other electronic devices;
Information transmission, software and information technology

services

Communication and radar equipment
manufacturing

Digital media equipment manufacturing

Smart device manufacturing

Electronic components and equipment
manufacturing

Other digital goods manufacturing

Digital product service
industry

Wholesale of digital products

Digital product retail

Digital product leasing

Digital product repair

Other digital products and services

Digital technology
application industry

Software development

Telecommunications, radio and television and
satellite transmission services

Internet-related services

Information technology services

Other digital technology applications

Digital factors drive industry

Internet platforms

Internet wholesale and retail

Internet finance

Digital content and media

Information infrastructure construction

Data resources and property rights transactions

Other digital drivers of the industry

Industrial
digitalization

Digital efficiency
improvement industry

Smart agriculture

The economic value added to the industry obtained through the
application of digital technology in the production of the remaining

40 sectors

Smart manufacturing

Intelligent transportation

Smart logistics

Numerical finance

Digital commerce

Numerical society

Digital government

Other digital efficiency improvement industries

Note: The table is sourced from “Statistical Classification of Digital Economy and Its Core Industries (2021)”.
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Industrial digitalization obtained through the application of digital
technology in the production of the remaining 40 sectors.

Since detailed data regarding industries related to the digital
economy is currently unavailable, referring to the measurement
method. The measurement of added value in the industrial digital
economy necessitates the utilization of coefficient-based tools.

The digital economy adjustment factor is introduced to
account for industrial sectors that are only partially classified
under the digital economy category. For instance, intelligent
railway transportation within the railway transportation
sector, digital retail within the retail sector, and Internet
insurance within the insurance sector. Therefore, the
economic added value of the industrial sector related to the
digital economy cannot be directly summed up. The digital
economy adjustment coefficient aj needs to be introduced,
which refers to the proportion of the added value of the
digital economy in the industrial sector Vij to the total added
value of the industrial sector Vj, such as Equation 1 shown.

aj � Vij

Vj
(1)

Industrial value-added rate. The industrial value-added rate tj
refers to the ratio of the value added by an economic industrial sector
Vj to the total output of the corresponding industrial sector Yj, as
shown in Equation 2.

tj � Vj

Yj
(2)

Research by the Bureau of Economic Analysis (BEA) (Barefoot
et al., 2018; BEA, 2019) is a representative study of the digital
economy calculate using the added value of the digital economy. The
Australian Bureau of Statistics (ABS, 2019) also adopts the
measurement method employed by BEA to measure the digital
economy in their country, indicating the methodological relevance
of BEA’s approach. Therefore, referring to the calculation method of
BEA, it is assumed that the ratio of intermediate consumption of the
digital economy to the total output of the digital economy is equal to
the proportion of intermediate consumption and total output of the
corresponding industry. The added value of the digital economy of
each industrial sector Vij is the product of the total output of the
digital economy of the industry Yij and the added value rate of the
industry tj. This relationship is depicted in Equation 3.

Vij � Yij × tj (3)

Equation 4 can be obtained by Equations 2, 3.

Yj

Yj
� Vij

Vj
(4)

From this analysis, it is concluded that the adjustment coefficient
of the digital economy is equal to the ratio of the added value of the
digital economy in the industrial sector Vij to the total added value
of the industrial sector Vj. The ratio of the total output of the Vij

digital economy in an industryVij to the total output of the industry
Vj is also equal.

Since the Input-Output Table is not continuously updated, Due
to the lack of continuous updates in the Input-Output Table, this
article utilizes the data from the Input-Output Table (including the

extended table) of 30 provinces for the years 2012, 2015, and 2017 to
calculate the data for 2013, 2014, and 2016. According to the
standard of “National Economic Industry Classification” (GB/T
4754-2017), the digitization industry sector primarily consists of
two departments. The digital industry manufacturing sector
(Sector1), falls under the C-manufacturing industry, which
belongs to the secondary industry. And the digital industry
service sector (Sector2) falls under the I-information
transmission, software, and information technology service
industry, which belongs to the tertiary industry. Referring to the
research ideas of Yang and Hu (2022), it is assumed that China’s
industrial structure coefficients remain unchanged over a relatively
short period of time. Based on this, we can calculate the economic
value added of the digital economy’s digitization in each province for
the years 2013, 2014, and 2016. Industrial digitalization permeates
all sectors of the national economy. Therefore, when calculating the
added value of the digital economy industry, it is assumed that the
ratio of the added value of the industrial digital economy to the total
added value of the economy remains constant over a short period of
time. Using this assumption, the digital economy added value of
each province’s digital economy industry for the years 2013, 2014,
and 2016 is calculated.

Figures 4, 5 respectively illustrate the spatial distribution
characteristics of industrial digitization and digital
industrialization economic value-added in China for the years
2012 and 2017. The development of industrial digitalization
mirrors the development of digital industrialization, with the
eastern regions taking a prominent lead, the central regions
displaying emerging trends, and both the eastern and western
regions generally lagging in development.

3.1.3 Control variables
According to previous studies (Xie, 2022) and theoretical

analysis, this paper selects the following control variables: 1)
Economic development status pgdp: It refers to the GDP per
capita of each province. The expansion of economies of scale is
the direct cause of the increase in carbon emissions. 2) Population
size (pop): Total population at the end of the year in each province.
An increase in population size results in higher consumption of
energy resources, which increases carbon emissions. 3) Level of
urbanization (lnurb): The increase in urbanization level will
accelerate the transformation of production mode from
agricultural society to industrial society, thereby increasing
carbon emission intensity. To avoid collinearity issues with
population size, the level of urbanization is represented by the
urban built-up area instead. 4) Economic and industrial structure
(istr): The ratio of the added value of the tertiary industry and the
secondary industry in the national economy. Progress in economic
and industrial structure leads to technological advancements,
promoting low-carbon development and aiding in the reduction
of carbon emission intensity. 5) Environmental regulation (lnenv):
The proportion of investment in industrial pollution control to the
total industrial output value. The government’s environmental
regulatory schemes, such as carbon taxes and carbon emissions
trading schemes, largely incentivize market companies to reduce
carbon emissions in their production processes and switch to green
production methods, thereby contributing to the overall reduction
in carbon emissions.
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FIGURE 4
Spatial distribution of China’s development level of industrial digitalization in 2012 and 2017.

FIGURE 5
Spatial distribution of China’s development level of digital industrialization in 2012 and 2017.
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3.2 Data sources

The sample data in this paper is the China provincial panel data,
including 30 provinces (excluding Hong Kong, Macao, Taiwan and
Tibet), covering the period from 2012 to 2017. The dependent
variable data were obtained from the China Carbon Emission
Accounting Database (CEADs). The key explanatory variables are
calculated based on the data from the Input-Output Table
(including the extended table) of 30 provinces for the years 2012,
2015, and 2017. The specific calculation method has been explained
in the previous text. As for the control variables, they mainly
originate from statistics released by the National Bureau of
Statistics. The investment amount dedicated to industrial
pollution control is obtained from “China Environment
Statistical Yearbook”.

The descriptive statistics of the main variables in this paper are
shown in Table 2.

3.3 Baseline regression model testing

According to the above theoretical assumptions, the following
econometric model is constructed for empirical analysis:

ln CIit � α1 + β1 lnDEit + β2lnpgdpit + β3lnpopit + β4lnurbit

+ β5istrit + β6lnenvit + εit (5)
ln CIit � α2 + θ1 ln Sector1it + θ2lnpgdpit + θ3lnpopit + θ4lnurbit

+ θ5istrit + θ6lnenvit + ωit

(6)
ln CIit � α3 + η1 ln Sector2it + η2lnpgdpit + η3lnpopit + η4lnurbit

+ η5istrit + η6lnenvit + δt

(7)
ln CIit � α4 + γ1 lnDDEit + γ2lnpgdpit + γ3lnpopit + γ4lnurbit

+ γ5istrit + γ6lnenvit + μit
(8)

The variables are transformed into logarithms to address
potential heteroscedasticity. In the model, the subscripts “i” and

“t” represent the province and year, respectively. lnCI represents
carbon emission intensity. lnD E represents the development level of
the digital economy industry. And three structured variables are
introduced for analysis. lnSector1 represents the digital industry
manufacturing sector, specifically the economic value added by the
sectors of communication equipment, computers, and other
electronic equipment. lnSector2 represents the digital industry
service sector, specifically the economic value added by the
sectors of information transmission, software, and information
technology services. lnDDE represents the economic value added
brought by industrial digitalization, indicating the level of industrial
digitalization in each region. Additionally, the following variables
are introduced to control factors affecting carbon intensity: lnpgdpit

represents the regional economic development status. lnpopit

represents the population size. lnurbit represents the level of
urbanization. istrit represents the economic and industrial
structure. lnenvit represents environmental regulation. The
regression coefficients for the core explanatory variables are
denoted as β1、 θ1、 η1、 γ1, αi (for i = 1, 2, 3, 4) represent the
constant terms. The sets of regression coefficients for each control
variable in eachmodel are denoted as βi (i = 1, 2, 3, 4)、 θi (i = 1, 2, 3,
4), ηi (i = 1, 2, 3, 4), γi (i = 1, 2, 3, 4). The error perturbation terms for
each model are represented as εit、 ωit、 δit、 μit, respectively.

In order to determine the optimal form of the model, several
tests were conducted. Firstly, an F-test was performed, and the
results strongly rejected the null hypothesis, indicating the presence
of individual effects. This led to the application of the Least squares
dummy variable (LSDV) method, which demonstrated that the
fixed-effect model outperformed the mixed regression model.
Secondly, the LM test was conducted to examine individual
random effects, and the results indicated that the random effects
model performed better than the mixed regression model. Finally,
the Hausman test was conducted to validate the results, confirming
that the fixed-effect model was preferable to the random-effects
model. Considering the vast territory of China and the significant
variations in natural resource endowment, climate environment,
and economic development among different provinces, as well as the
recent focus on global climate and environmental issues, China has
implemented a series of green and low-carbon policies to reduce
carbon emissions. Therefore, we adopt the dual fixed-effect model,
incorporating fixed province and time effects, as the baseline
regression model. The test results of the baseline regression
model, constructed based on Equations 5–8, are presented
in Table 3.

From the perspective of digital industrialization development,
model FE (1), FE (2), FE (3) and FE (4) demonstrate that the
development of provincial digital industrialization in China plays a
role in curbing carbon intensity and supports the transition to a
green and low-carbon economic structure. Regarding the impact of
industrial digitalization on carbon intensity, model FE (5) and
model FE (6) suggest that the development of industrial
digitalization also promotes a decrease in carbon emission
intensity. Specifically, every 1% increase in the economic value
added of industrial digitalization leads to approximately a 0.123%
reduction in carbon intensity. Model FE (7) indicates that, overall,
the development of China’s digital economy and industry can help
mitigate carbon emission intensity. The baseline regression results
based on the sample data from 30 provinces in China demonstrate

TABLE 2 Descriptive statistics.

Variable Obs Mean Std.Dev Min Max

lnCI 180 −4.129 0.614 −5.856 −2.747

lnDE 180 16.122 1.167 13.628 18.995

lnSector1 180 13.656 3.144 0 18.14

lnSector2 180 15.205 0.955 12.955 17.438

lnDDE 180 15.224 1.169 12.03 18.03

lnpgdp 180 10.718 0.4 9.849 11.822

lnpop 180 8.203 0.741 6.347 9.404

lnurb 180 8.425 0.837 6.238 10.032

istr 180 1.252 0.685 0.611 4.894

lnenv 180 12.098 0.896 9.485 14.164
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that both digital industrialization and industrial digitalization
contribute to the suppression of regional carbon emission
intensity to a certain extent.

3.4 Robustness test

3.4.1 Replace the explanatory variable
CO2 emissions primarily result from the combustion of different

fossil fuels. Therefore, the explanatory variables will be replaced with
carbon emission data calculated using the carbon emission factor
method proposed by the United Nations Intergovernmental Panel
on Climate Change (IPCC). The calculation is shown in Equation 9:

CO2 � ∑j
n�1

Cin × CFin × CCin × COFin ×
44
12

( ) (9)

In this context, j represents the energy type. This study focuses
on seven primary fossil energy sources: coal, coke, gasoline,
kerosene, diesel, fuel oil, and natural gas. Within region in
represents the nth type of fossil fuel energy in region i. C
denotes the final consumption of fossil energy. CF signifies the
low calorific value of fossil energy. CC represents the carbon content
per unit calorific value. COF represents the carbon oxidation rate.
44/12 is the chemical mass conversion relationship between carbon
(C) and carbon dioxide (CO2 ). The carbon emission coefficient can

be calculated as (CF × CC × COF × 44/12). Based on available
statistics, the corresponding carbon emission coefficients for the
seven fossil energy sources are provided in Table 4.

After replacing the dependent variable and re-estimating the
results, the core explanatory variable coefficients show the same
positive or negative sign as in the baseline regression model.
Additionally, the significance level remains consistent. These
findings indicate that the baseline regression model, estimated
using carbon emission indicators from the China Carbon
Accounting Database (CEADs) for each province, is robust. The
results also demonstrate that the development of digital
industrialization and industrial digitalization in the national
sample data has a significant inhibitory effect on carbon emissions.

3.4.2 Metering method substitution
In order to avoid the autoregression problem of perturbation

terms in the panel data model, this paper replaces the original
measurement method and uses the first-order lagged model for
GMM estimation and analysis, and the robustness results show that
the coefficients of the core explanatory variables of GMM are
significant, and the positive and negative signs are consistent
with the benchmark regression results, indicating that the
research results in this paper are reliable.

To address the issue of autoregression in the perturbation terms
of the panel data model, this study adopts a modified approach by
employing the first-order lagged model for GMM estimation and

TABLE 3 Test results of benchmark regression model.

Variables FE (1) FE (2) FE (3) FE (4) FE (5) FE (6) FE (7)

lnDE −0.111*** (−2.68)

lnSector1 −0.037*** (−3.52) −0.031*** (−3.43)

lnSector2 −0.140*** −0.064**

(-4.40) (-2.20)

lnDDE −0.106** −0.123***

(-2.58) (-2.93)

CV No Yes No Yes No Yes Yes

_cons −3.458*** 10.837*** −1.861*** 6.815*** −2.512*** −1.830** −2.214***

(-23.68) (4.15) (-3.93) (5.29) (-4.01) (-2.35) (-3.26)

Province FE Yes Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes Yes

R-squared 0.818 0.886 0.820 0.870 0.532 0.607 0.805

F-statistic 58.11*** 279.66*** 244.60*** 131.25***

LM 366.57*** 425.87*** 340.82*** 407.02***

Hausman 6.88*** 13.89*** 11.60*** 2.17***

Note: *, **, **** indicate that they are significant at the significance level of 10%, 5%, and 1%, respectively, and the t value in parentheses is the same below.

TABLE 4 Carbon emission coefficients of seven fossil energy sources.

Fossil energy Coal Coke Gasoline Kerosene Diesel fuel Fuel oil Natural gas

Carbon emission factor 1.647 2.848 3.045 3.174 3.150 3.064 21.670
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analysis. The robustness results confirm the significance of the
coefficients of the core explanatory variables in the GMM
estimation. Furthermore, the positive and negative signs of these
coefficients align with the findings from the benchmark regression
analysis. This consistency in the results validates the reliability of the
research findings presented in this paper.

3.5 Nonlinear relationship analysis

To examine the nonlinear relationship, the study introduces
multiple terms of the core explanatory variable in the nonlinear
relationship test. In this paper, the nonlinear relationship between
the three structured variables of the development of the digital
economy industry and the carbon emission intensity is examined.
Model N (1) includes the quadratic term of the variable lnSector1.
Model N (2) incorporates the quadratic term of the variable
lnSector2. Lastly, model N (3) includes both the cubic and
quadratic terms of the variable lnDDE.

The test results in Table 5 indicate that the added quadratic
coefficients are significant. Both model N (1) and model N (2) have
negative quadratic coefficients, while the primary square terms have
positive coefficients. These findings suggest a potential “inverted
U-shaped” relationship between the development of the digital
industry manufacturing sector and the development of the digital

industry service sector with carbon intensity. Additionally, a three-
dimensional relationship may exist between the level of industrial
digital development and carbon intensity. To avoid false positives in
the nonlinear relationship test, the method proposed is employed.
This involves comparing the extreme points of the model with the
actual observation points and determining whether the sample value
interval encompasses the model extreme points to verify the
nonlinear relationship between the variables.

In the digital industrialization part, the extreme value point of
the fittingmodel for the relationship between the development of the
digital industry manufacturing sector and carbon intensity is
lnSector1 � 8.921. The sample observation range is [0.140,
18.140]. The inclusion of the extreme points of the fitting model
within the sample observations confirms the presence of an
“inverted U-shaped” relationship between the development of the
digital industry manufacturing sector and carbon intensity during
the study period. For the relationship between the development of
the digital industry service sector and carbon intensity, the extreme
point of the fitting model is l nSector2 � 12.333. The sample
observation range is [12.955, 17.438]. As the extreme points of
the fitting model are not included in the sample observations, it
indicates a monotonically decreasing functional relationship
between the development of the digital industry service sector
and carbon intensity during the research period.

In accordance with the analysis of the Environmental Kuznets
Curve (EKC) theory, during the early stages of economic
development, the increase in economic added value of the digital
industry manufacturing sector promotes a rise in regional carbon
emission intensity. However, as technological advancements occur
and a fixed threshold is crossed, further increases in the economic
added value of the digital industry manufacturing sector begin to
restrain carbon emissions. Overall, the development of the digital
industry manufacturing sector exhibits a “first promote, then
inhibit” effect on carbon emission intensity. The relationship
between the digital industry service sector and carbon intensity
aligns with the functional relationship characteristics on the right
side of the EKC inflection point, indicating that China’s digital
industry service sector has entered a stage of carbon emission
reduction during the sample period.

In the industrial digitalization part, the extreme points of the
fitting model are lnDDE � 13.611、16.5 and the sample
observation range is [12.030, 18.030]. Both extreme points are
included in the sample observations. This indicates that during
the study period, the impact of industrial digital development on
carbon intensity exhibits an “first promoting growth, suppressing,
and then promoting growth” effect. Currently, China’s digital
economy and digital industrialization are in a phase of low-
carbon development. There is still room for improvement in
industrial digital development, and further enhancement of the
integration of digital technologies such as artificial intelligence,
big data, and Internet 5G with various sectors of the national
economy is necessary.

Comparing the results with the benchmark model regression, it
is observed that the impact of digital industrialization on carbon
emission intensity is greater than the impact of industrial
digitalization. Ultimately, the development of the digital economy
industry demonstrates a significant inhibitory effect on
carbon emissions.

TABLE 5 Results of nonlinear relationship test.

Variables N (1) N (2) N (3)

lnSector12 −0.019***

(-4.58)

lnSector1 0.339***

(3.57)

lnSector22 −0.024**

(-2.30)

lnSector2 0.592*

(1.85)

lnDDE3 0.012*

(1.84)

lnDDE2 −0.542*

(-1.88)

lnDDE 8.085*

(1.87)

CV Yes Yes Yes

_cons −5.023*** −7.452*** −43.136**

(-9.45) (-3.01) (-2.00)

Province FE Yes Yes Yes

Year FE Yes Yes Yes

R-squared 0.393 0.404 0.457
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4 The impact of interregional digital
economy industry development and its
structured indicators on carbon
emission intensity

4.1 Spatial effects analysis

Considering the spatial correlation between provinces, a spatial
econometric model is constructed to investigate the relationship
between the development of the digital economy industry and
regional carbon emission intensity. Two spatial weight matrices,
namely, W1 and W2, are created for this purpose. The W1 matrix is
a 0–1 spatial adjacency matrix where adjacent provinces are assigned
a value of 1, while nonadjacent provinces are assigned a value of 0.
The W2 matrix is a spatial geo-economic distance nested weight
matrix. The formula for W2 is shown in Equation 10, where the
element in W0 is the reciprocal of the straight-line distance between
the two provincial capitals. Yi represents the average GDP of
province i in a given year, and Y represents the average annual
GDP of all provinces in the country. n represents the total number of
provinces (n = 30).

W2 � W0 × diag
Y1

�Y
,
Y2

�Y
, . . . ,

Yn

�Y
( ) (10)

First, the Z-value test and the global Moran’s I index are used to
test the spatial autocorrelation of carbon intensity. The global
Moran’s I index is calculated as shown in Equation 8, lnCIt
which represents the average of the carbon intensity of all
provinces. is a matrix of spatial weights, and WijlnCIi,t
logarithmic values representing the carbon intensity of lnCIj,t
provinces I and J in the t period, respectively, where n is the
number of all provinces (n = 30).

To examine the spatial autocorrelation of carbon intensity, the
Z-value test and the global Moran’s I index are employed. The global
Moran’s I index is calculated as shown in Equation 11. lnCIt
represents the average value of carbon intensity across all
provinces. Wij is the spatial weight matrix, while lnCIi,t and
lnCIj,t represent the logarithmic values of carbon intensity for
provinces i and j, respectively, during time period t. n denotes
the total number of provinces (n = 30). The Z-value significance test
of the global Moran’s I index is calculated as shown in Equation 12.
Var(I) represents the theoretical variance. E(I) represents the
theoretical expectation.

I � n∑n
i�1∑n

j�1Wij lnCIi,t − lnCIt( ) lnCIj,t − lnCIt( )[ ]
∑n

i�1∑n
j�1Wij∑n

i�1 lnCIi,t − lnCIt( )2 (11)

Z I( ) � I − E I( )������
Var I( )√ − N 0, 1( ) (12)

Table 6 presents the calculation results of the global Moran’s I
index using the two weight matrices. The results indicate the
presence of spatial effects in carbon intensity, demonstrating a
significant positive spatial correlation in carbon emission intensity.

The optimal spatial econometric model is selected based on the
LM test, LR test, andWald test. The Hausman test is then conducted
to determine whether to include the fixed-effect model. After
considering the results of these tests, this paper adopts the spatial
Durbin model (SDM) with a fixed time effect. The specific form of
the model is as follows:

ln CIit � δ1∑N
j�1
Wij ln CIit + C1 + α1 ln Sector1it + β1∑

N

j�1
Wij ln Sector1it

+ θ1lnpgdpit + θ2lnpopit + θ3lnurbit + θ4istrit + θ5lnenvit
+ λ1t + ε1it

(13)

ln CIit � δ2∑N
j�1
Wij ln CIit + C2 + α2 ln Sector2it + β2∑

N

j�1
Wij ln Sector2it

+ θ1lnpgdpit + θ2lnpopit + θ3lnurbit + θ4istrit + θ5lnenvit
+ λ2t + ε2it

(14)

ln CIit � δ3∑N
j�1
Wij ln CIit + C3 + α3 lnDDEit + β3∑

N

j�1
Wij lnDDEit

+ θ1lnpgdpit + θ2lnpopit + θ3lnurbit + θ4istrit + θ5lnenvit
+ λ3t + ε3it

(15)

ln CIit � δ4∑N
j�1
Wij ln CIit + C4 + α4 lnDEit + β4∑

N

j�1
Wij ln DDEit

+ θ1lnpgdpit + θ2lnpopit + θ3lnurbit + θ4istrit + θ5lnenvit
+ λ4t + ε4it

(16)
Equations 13–16 represent the spatial effect analysis of the

impact of digital economy industry development and its

TABLE 6 Global Moran’s I index calculation results under two weight matrices.

0–1 matrix Nested matrices

Years Moran’s I Z value p-value Moran’s I Z value p-value

2012 0.400 3.698 0.000 0.104 2.767 0.003

2013 0.360 3.356 0.000 0.098 2.644 0.004

2014 0.385 3.564 0.000 0.103 2.737 0.003

2015 0.398 3.665 0.000 0.107 2.813 0.002

2016 0.387 3.561 0.000 0.111 2.891 0.002

2017 0.381 3.530 0.000 0.105 2.782 0.003
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structural indicators on carbon emission intensity. In these
equations, ln CIit represents the observed carbon intensity in
province i during period t. ∑N

j�1Wij ln CIit is the spatial lag term
for the explained variable. δ represents the regression coefficient of
spatial autocorrelation of carbon intensity between different
provinces. ∑N

j�1Wij ln Sector1it、 ∑N
j�1Wij ln Sector2it、∑N

j�1Wij lnDDEit、 ∑N
j�1Wij lnDDEit are the spatial lag terms

for the core explanatory variables. The regression coefficients are
denoted as β1, β2, β3, and β4. C represents the constant term. λt
represents the time effect. εit represents the random
perturbation term.

Based on the spatial effect test results presented in Table 7, 8, the
following conclusions can be drawn: First, the direct impact of the
development of digital industrialization and industrial digitalization
on regional carbon intensity is consistent with the direct impact of
the overall development of the digital economy industry on regional
carbon intensity. Both have inhibitory effects. Additionally, the
digital industry service sector shows the strongest inhibitory
effect on carbon intensity. This can be attributed to the high
technical level required by the digital service sector, which
improves production efficiency and reduces carbon emissions per
unit of output. Second, the impact of the development of digital
industrialization and industry digitization in neighboring provinces
on the carbon emission intensity of a specific province exhibits
variations. However, overall, the development of the digital
economy industry in neighboring provinces increases the
carbon emission intensity of the province. The spatial test
results show that a significant spillover effect of the
development of the digital economy on carbon emission
intensity. The indirect effect of the development of the digital
industry service sector in neighboring provinces on carbon
intensity is not robust, but the digital industry manufacturing
sector and industrial digital development have significant indirect
effects on carbon emission intensity. Consequently, the
development of the digital economy industry in neighboring
provinces ultimately increases the carbon emission intensity of
the province. Third, due to the inconsistent effects of the three
structural variables of the digital economy industry on carbon
emission intensity, the overall impact of the development of the
digital economy industry on carbon intensity is not robust. The
overall effect of industrial digitalization on carbon intensity
requires further analysis. The carbon spillover effect of digital
economic industry digital development in neighboring provinces
has a more pronounced impact on the carbon emission intensity of
the province, making it difficult to observe a significant reduction
in carbon emissions solely attributed to industrial digitalization
within the province. This suggests that there is potential for further
integration of digital technology with various industries in China
to achieve greater carbon emission reduction.

4.2 Analysis of heterogeneity in the
northeast, east, central and western regions

China has a vast land area, and there are great differences in
natural resource endowment, climate environment, economic
development and other aspects between regions, so China is
divided into four major economic regions - northeast, east,

central and western regions. Based on the benchmark regression
model, the heterogeneity analysis of the four regions of China was
carried out, and the impact of the development of digital economy
industries on carbon emission intensity in different regions was
analyzed according to the economic and environmental
characteristics of different regions. Table 9 displays the model
estimation outcomes for the northeastern and eastern regions,
while Table 10 presents the model estimation results for the
central and western regions.

For the northeast region, digital industrialization and
industrial digitalization both affect the regional carbon emission
intensity at a significant level of 1%, and both play a promoting
role. Compared with economically developed regions such as the
east, the economic and technological development of the northeast
region is relatively backward, the infrastructure construction of the
digital economy is relatively lagging behind, and relevant policy
support needs to be improved, which is still in the early stage of the
development of the digital economy. At this stage, the integration
of digital technology and various industries is limited, and the
infrastructure of the digital economy itself consumes a lot of
energy, so the development of digital industrialization and
industrial digitalization in the digital economy in Northeast
China has increased the intensity of regional carbon emissions.
Compared with the progress of industrial digitalization in the
northeast region, the development of digital industrialization has
promoted the improvement of carbon emission intensity. The
reason for this phenomenon is that the digital products
produced by the digital industrialization sector, such as
communication equipment, computers, software, etc., require a
lot of manpower and material resources in the production process,
which will significantly increase carbon emissions, while industrial
digitalization is mainly through digital technology to empower
other industries to increase sector output, so the promotion of
carbon emission intensity is relatively small.

For the eastern region, the estimated results of models E (1) and
E (2) show that the impact of digital economy and digital
industrialization on carbon emission intensity is opposite. The
eastern region includes many provinces with developed digital
economy, and in the 2023 “Government Work Report,” it was
pointed out that Beijing accelerated the construction of a global
digital economy benchmark city, adding more than 10,000 5G base
stations. Promote the research and development of 6G technology
and actively deploy the Internet 3.0 and other new tracks; Shanghai
implements the Smart Factory Pilot Action and strives to build an
internationally competitive digital industry cluster; Zhejiang
Province vigorously promotes digital industrialization and
industrial digitalization, and strives to increase the added value of
core industries of the digital economy by 10%. The rapid
development of the digital economy industry in the eastern
region, the construction of digital industry infrastructure is
essential, and many digital products are also produced, these
production activities need to consume a lot of energy, thereby
increasing regional carbon emissions, so with the increase of
economic added value of the digital industry manufacturing
sector, carbon emission intensity increases. However, compared
with the digital industry manufacturing sector, the digital
industry service sector can empower upstream and downstream
industries, improve the technology and knowledge of upstream and
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TABLE 7 Spatial effect test results under 0–1 spatial adjacency matrix.

Variables S (1) S (2) S (3) S (4)

Direct
Effect

Indirect
Effect

Total
Effect

Direct
Effect

Indirect
Effect

Total
Effect

Direct
Effect

Indirect
Effect

Total
Effect

Direct
Effect

Indirect
Effect

Total
Effect

lnSector1 −0.123*** 0.049** −0.074***

(11.24) (2.43) (-3.55)

lnSector2 −0.433*** 0.100 −0.333***

(-11.85) (1.46) (-5.18)

lnDDE −0.367*** 0.243*** −0.125**

(-12.79) (4.63) (-2.48)

lnDE −0.369*** 0.226*** −0.142***

(-13.05) (4.24) (-2.71)

CV Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

R-squared 0.415 0.476 0.490 0.512
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TABLE 8 Spatial effect test results under weights matrix nested for spatial geographic economic distances.

Variables S (1) S (2) S (3) S (4)

Direct
Effect

Indirect
Effect

Total
Effect

Direct
Effect

Indirect
Effect

Total
Effect

Direct
Effect

Indirect
Effect

Total
Effect

Direct
Effect

Indirect
Effect

Total
Effect

lnSector1 −0.115*** 0.056** −0.059**

(-10.23) (2.35) (-2.28)

lnSector2 −0.409*** 0.211** −0.198**

(-11.06) (2.44) (-2.09)

lnDDE −0.324*** 0.217*** −0.107

(-10.93) (2.88) (-1.29)

lnDE −0.332*** 0.202*** −0.130

(-11.07) (2.56) (-1.46)

CV Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

R-squared 0.422 0.480 0.470 0.492
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TABLE 9 Model estimation results in the northeast and eastern regions.

Variables Northeast region Eastern region

Ne (1) Ne (2) Ne (3) Ne (4) E (1) E (2) E (3) E (4)

lnDE 0.145 −0.053

(1.30) (-0.81)

lnSector1 0.110*** 0.102***

(4.23) (3.09)

lnSector2 0.624*** −0.063**

(5.95) (-2.19)

lnDDE 0.191*** −0.079*

(3.74) (-1.77)

CV Yes Yes Yes Yes Yes Yes

_cons 4.260* 0.139 −0.812 22.457*** 8.873*** 7.424*** 4.445*** 3.505

(2.02) (0.13) (-0.62) (6.55) (6.73) (14.97) (3.56) (1.26)

Province FE Yes Yes Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes Yes Yes

R-squared 0.548 0.704 0.645 0.965 0.652 0.589 0.724 0.946

Note: Northeast China includes Liaoning Province, Jilin Province and Heilongjiang Province; The eastern region includes Beijing, Tianjin, Hebei, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong,

Guangdong and Hainan.

TABLE 10 Model estimation results in the central and western regions.

Variables Central region Western region

FE (1) FE (2) FE (3) FE (4) W (1) W (2) W (3) W (4)

lnDE 0.034 −0.190**

(0.30) (-2.50)

lnSector1 −0.459*** −0.158***

(-5.06) (-8.75)

lnSector2 −0.327*** −0.468***

(-8.73) (-10.38)

lnDDE −0.544*** −0.408***

(-3.18) (-8.87)

CV Yes Yes Yes Yes Yes Yes

_cons 8.865*** 0.844 4.269 2.034 −1.901*** 3.023*** 2.089*** −0.747

(3.08) (1.39) (1.61) (0.59) (-8.27) (4.51) (3.13) (-0.65)

Province FE Yes Yes Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes Yes Yes

R-squared 0.610 0.166 0.230 0.823 0.561 0.502 0.551 0.773

Note: The central region includes Shanxi Province, Anhui Province, Jiangxi Province, Henan Province, Hubei Province and Hunan Province; The western region includes Inner Mongolia

Autonomous Region, Guangxi Zhuang Autonomous Region, Chongqing Municipality, Sichuan Province, Guizhou Province, Yunnan Province, Shaanxi Province, Gansu Province, Qinghai

Province, Ningxia Hui Autonomous Region, and Xinjiang Uygur Autonomous Region.
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downstream industries, thereby improving the production efficiency
of the industry and reducing carbon emission intensity (Yi et al.,
2022). The digitalization of digital economy industry decreases the
regional carbon emission intensity at a significant level of 10%.With
the help of digital technologies such as artificial intelligence, big data,
and Internet 5G, traditional industrial sectors have obtained the
optimal product production plan through a large number of data
collection and analysis, which has greatly reduced the carbon
emissions per unit of production.

For the central region, the development of digital economy,
digital industrialization and industrial digitalization both affect the
regional carbon emission intensity at a significant level of 1%, and
both have inhibitory effects. Compared with the elastic coefficient of
the impact of digital economy development on carbon intensity in
other regions, it can be found that the elasticity coefficient of the
central region is relatively large, mainly because there are more
traditional high-energy-consuming heavy industries in the central
region, and there is more space for carbon reduction. In recent
years, the development of the digital economy in the central
region has continuously broken new records, and the added
value of the core industries of the digital economy in Hubei
Province exceeded 400 billion yuan in 2023; Hunan Province’s
digital economy has grown by more than 15%, accounting for
more than 33% of its GDP; The scale of digital economy in Jiangxi
Province accounts for more than 45% of the regional GDP, which
effectively drives the development of the digital economy in the
surrounding areas.

For the western region, the development of digital
industrialization and industrial digitalization of the digital
economy inhibits the intensity of regional carbon emissions, and
the impact coefficient is significantly below the significance level of
1%. The western region generally has a relatively backward economy
and digital economy development, of which Sichuan Province and
Chongqing Municipality play a significant leading and radiating
role, in 2023, Chongqing will build a “50 million” digital industry
development system, Sichuan Province will promote the
construction of major digital infrastructure projects such as
computing power dispatching centers. Develop a national-level
Tianfu data center cluster. However, Guizhou Province uses its
economic development positioning and development characteristics
to promote the high-quality development of the digital economy.
Guizhou Province has a small economy, but in recent years, it has
achieved industrial transformation with the big data industry as the
starting point, and the growth rate of digital economy ranks among
the forefront of the country (Zhang J. et al., 2022). The
implementation of China’s “East Data and West Calculation”
project not only makes efficient use of regional resources, but
also effectively stimulates the economic and digital industry
development of the western region, promotes the large-scale
development of the digital economy industry in the western
region, and promotes the carbon emission reduction effect in the
western region.

The model estimation results of the four regions in China show
that there is significant heterogeneity in the impact of China’s digital
economy industrial development on carbon emission intensity.
Different regions are at different stages of economic development
and the regional economic and industrial structure is different,
which is the main reason for the heterogeneous impact.

5 Conclusion and policy implications

The digital economy is currently in a stage of rapid growth and
has extensively permeated into various economic fields, profoundly
altering the development impetus and mode of the world economy.
How to leverage this new development impetus of the digital
economy to assist in achieving the “dual carbon” goals is an
important research subject. Based on the data from the Input-
Output Tables (and extended tables) of 30 provinces (excluding
Hong Kong,Macao, Taiwan, and Tibet) in 2012, 2015, and 2017, this
paper measures the development scale of the digital economy using
the value-added of digital economic industries, referencing the
measurement methods of the Bureau of Economic Analysis
(BEA). The econometric models of this paper are the fixed effects
model and the spatial Durbin model. The empirical results show that
the impact of China’s digital economy industry on carbon emission
intensity should be analyzed from a structural perspective,
specifically, the impact of digital industrialization and industrial
digitalization on carbon emission intensity should be analyzed
separately. Overall, China’s digital economy industry has entered
the stage of low-carbon development, but the development of digital
economy in the four regions of China presents different
characteristics. Through empirical tests conducted from four
perspectives, the results show that: First, the baseline regression
model testing indicates that the overall development of China’s
digital economy industry has a restraining effect on carbon emission
intensity. After structural decomposition of digital economy
industry, it is found that both digital industrialization and
industrial digitalization exhibit inhibitory effects on carbon
emission intensity. Second, Spatial analysis reveals that the
development of the digital economy industry has significant
carbon spillover effects. It may increase carbon emission intensity
in neighboring regions while reducing it within the region. After
structural decomposition, digital industrialization demonstrates a
significant inhibitory effect on carbon intensity. However, further
analysis is required to understand the total effect of industrial
digitalization development on carbon intensity. Third, regional
heterogeneity analysis indicates that in Northeast China, both
digital industrialization and industrial digitalization promote an
increase in carbon emission intensity. In the eastern region, the
development of the digital industry service sector and industrial
digitalization have a restraining effect on carbon emission intensity,
while the digital industry manufacturing sector has a promoting
effect. In the central and western regions, both digital
industrialization and industrial digitalization inhibit carbon
emission intensity. Forth, over the full-sample study period, the
development of the digital industry manufacturing sector exhibits a
“promoting and then suppressing” effect on carbon emission
intensity. On the other hand, the relationship between the digital
industry service sector and carbon intensity has surpassed the peak
of the Environmental Kuznets Curve (EKC) and entered the stage of
low-carbon development. The impact of industrial digital
development on carbon intensity demonstrates the pattern of
“promoting growth, suppressing, and then promoting growth.”

There is still room for improvement in this paper, primarily due
to data availability. The evaluation index system for the development
level of the digital economy is not comprehensive enough, leading to
an inaccurate final measurement result. In future research, we can
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enhance the measurement of industrial digitization and digital
governance and establish a more comprehensive indicator system
for the level of digital economic development. Additionally, with
newly released data, we can further extend the time span of panel
data for more in-depth research.

Based on the above conclusions, this paper proposes the
following suggestions: Firstly, it is important to fully utilize the
technological capabilities of the digital economy industry in both
upstream and downstream industries. This will help improve
operational efficiency within the industrial chain while also
promoting digital industrialization. The government should
support the digital transformation of upstream manufacturing
industries, enhance production efficiency and operation
management across various sectors such as construction and
transportation, and reduce carbon emissions from traditional
high-emission manufacturing sectors. Downstream enterprises
should be encouraged to embrace digital technology for online
operations, reduce investments in physical stores, decrease
reliance on heavy industries like steel and cement, and optimize
energy consumption structures. Secondly, there is a need to
strengthen the integration of digital technology across different
industries within the national economy in order to promote
industrial digitalization. According to the “China Industrial
Digitalization Report 2020,” emphasis should be placed on
efficiently utilizing data element resources for industrial
digitalization development. Enterprises can explore new
opportunities by building a digital economy ecosystem that
integrates online and offline operations based on customer needs
through data elements. This ecosystem relies on data resources
connected by digital technology groups supported by platforms.
The government must create a conducive policy environment for
industrial digital transformation while implementing targeted
measures to address challenges such as limited transformation
capabilities among Chinese enterprises, high transformation
costs, and shortage of digital talents. Thirdly, the development of
regional digital economy industries should be tailored to the specific
characteristics of energy, economy, and environment in each region.
Each region will pursue a unique path based on its own resource
endowments, effectively harnessing the economies of scale and
synergies within the industry. The flow of data will drive
technological advancements, capital investment, and talent
acquisition. All regions should continue to advance initiatives
such as “counting in the East and counting in the West,” while
also bolstering infrastructure development including 5G networks
and data centers in the western region. It is imperative to enhance

overall computing power supply and coordination between regions,
establishing a unified system for data center computing facilities and
network expansion.
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