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The construction of smart cities plays a pivotal role in promoting regional
sustainability by utilizing technology-driven urban development in the digital
era. This study employs the difference-in-differences model to empirically
analyze the impact of the smart city pilot policy on corporate carbon
intensity, using data from Chinese A-share listed corporates from 2009 to
2021. The findings are as follows: First, the smart city pilot policy significantly
reduces corporate carbon intensity in pilot cities, and this conclusion remains
robust after a series of sensitivity tests. Second, the policy exhibits heterogeneous
effects on corporate carbon intensity across different industries and city
locations, with more pronounced effects observed in central cities, traditional
industries, and heavily polluting industries. Third, mechanism analysis reveals that
the policy reduces corporate carbon intensity through three channels: promoting
technological innovation, increasing external market attention, and providing ex-
ante government subsidies.
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1 Introduction

Climate change presents an urgent and persistent threat to humanity. The continued
rise of greenhouse gas emissions is generating widespread and significant adverse effects on
global agricultural yields, socioeconomic stability, and human well-being, ultimately
jeopardizing the sustainable development of human society. At present, the Chinese
government attaches great importance to addressing climate change and is actively
implementing measures to conserve energy and reduce emissions. Enterprises are not
only themain body of market economic activities, but also themain implementors of energy
saving and carbon emission reduction (Haney, 2017; Chen et al., 2022). As a key factor for
enterprises to achieve carbon emission reduction breakthrough, green technology
innovation is significantly affected by urban strategy (Xie et al., 2021; Feng et al., 2024).
Smart city pilots promote sustainable urban development by building digital infrastructure
and knowledge ecosystems (Shen et al., 2023). The policy promotes green technology
innovation in enterprises by enhancing the level of digitization in enterprises. In 2008, IBM
introduced the concept of a “Smarter Planet,” which significantly influenced China’s
approach to urban development. On 5 December 2012, the General Office of China’s
Ministry of Housing and Urban-Rural Development formally issued the “Notice on
Launching Pilot Projects for National Smart Cities”, along with the “Interim
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ManagementMeasures for the Pilot Projects of National Smart Cities”
and the “Indicator System for the Pilot Projects of National Smart
Cities (Trial)”. Between 2012 and 2015, China launched three batches
of pilot smart cities involving over 300 counties and cities. The pilot
program clearly required that cities applying for pilot status should
use the indicator system as a reference to develop achievable goals and
implementation plans tailored to their local context. The indicator
system encompasses various aspects such as security systems, network
infrastructure, public platforms and databases, intelligent
construction and livability, smart management and services, as well
as smart industries and economy. In 2014, the State Council issued the
“National New Urbanization Plan (2014–2020)”, elevating smart city
development to a strategic level and outlining six key directions:
broadband information networks, informatized planning and
management, intelligent infrastructure, convenient public services,
modernized industrial development, and refined social governance.
This research examines the intersection of smart city initiatives and
corporate sustainability: Do smart city pilot programs, implemented
alongside global energy and emissions reduction goals, tangibly
influence corporate carbon reduction endeavors? What policy
levers drive this relationship?

Mitigating carbon dioxide emissions presents a pressing
challenge for both contemporary society and the corporate
sector. The escalating concentration of carbon dioxide, a key
driver of global warming, presents a multitude of challenges to
human development. These include economic stagnation, adverse
health impacts, a heightened frequency of extreme weather events,
and rising sea levels (Mora et al., 2018; Dahlmann et al., 2019; Liu L.
et al., 2022). The topic of corporate carbon reduction has attracted
widespread attention from scholars, with numerous studies
exploring its various aspects. A substantial body of research
examines the influence of firm-level characteristics on corporate
carbon performance, with studies highlighting the roles of firm size,
stakeholder pressure, and export behavior, among other factors
(Sadler, 2016; Kumarasiri, 2017; Cui et al., 2016; Richter and
Schiersch, 2017). Other studies examine external factors, finding
that internationalization level, financial support, pollution
prevention actions and institutional regulations all influence
corporate participation in carbon reduction (Sadler, 2016; Wang
et al., 2019; Niu et al., 2023; Feng et al., 2023).

Researchers have employed various methodologies, including
double difference model, panel quantile regression model, and
synthetic control method, to validate the inhibitory effect of smart
city construction on carbon emissions in pilot cities (Zawieska and
Pieriegud, 2018; Wang et al., 2021; Guo et al., 2022). In terms of
mechanisms, smart cities foster digital technology innovation that
directly contributes to reducing carbon emissions (Jiang et al., 2021),
while also facilitating urban carbon reduction through industrial
upgrading, enhancing energy efficiency, bolstering carbon
absorption capacity among other measures (Caragliu and Del Bo,
2019; Chu et al., 2021; Shen et al., 2024). Smart city construction not
only promotes inclusive financial development and addresses energy
poverty issues within enterprises to curtail enterprise-level carbon
emissions (Gao and Yuan, 2022), but also reduces household
transportation and education-related emissions through the
development of smart technology (Wu, 2022). Some scholars
categorize smart city pilot policies into three types: smart
governance, smart industry, and smart livelihood, suggesting that

smart industry policies reduce carbon emissions by driving data
aggregation and optimizing industrial structures, while smart
governance and smart livelihood policies promote carbon
reduction by stimulating green technology innovation and
enhancing energy efficiency (Nicolas et al., 2021). It is evident that
existing research still requires further exploration in several areas.
First, the existing literature lacks a comprehensive framework that
integrates both smart city development and corporate carbon
emissions intensity. There is a notable absence of research
exploring the theoretical underpinnings and inherent mechanisms
through which smart city initiatives influence a firm’s carbon
footprint. Second, current studies predominantly focus on the
construction of smart cities themselves, with insufficient theoretical
research on how smart city construction affects corporate carbon
emissions. Third, there is a dearth of empirical research that delves
into the relationship between smart city development and corporate
carbon emission intensity using granular, micro-level data.

The contributions of this study are threefold: Firstly, while
previous studies have often relied on aggregate or per capita
carbon emission data, this research adopts carbon emission
intensity as a more precise indicator of corporate-level
performance, especially given the unique dynamics of developing
economies. Secondly, starting from the smart city pilot policy, a
rigorous quasi-natural experimental design is employed to identify
its net policy effect on corporate carbon emission intensity. This
clarifies the mechanism by which the smart city pilot policy helps
reduce corporate carbon emission intensity, revealing specific
pathways through green technology innovation, external attention,
and government subsidies. Specifically, smart city development
promotes the digital economy, improves the efficiency of resource
allocation such as talent, capital, and land, increases R&D investment,
and fosters corporate green technology innovation (Yang et al., 2024;
Guo et al., 2024). It also enhances investors’ environmental awareness
(Guo et al., 2024), improves corporate information transparency
(Mahmood et al., 2020), and strengthens market external
supervision capabilities (Liu et al., 2020), thereby increasing market
external attention to enterprises. Carbon emission is an important
aspect of smart city development (Li, 2022), and the improvement of
urban digitalization and informatization levels also enhances the
efficiency of government subsidies, thereby reducing corporate
carbon emission intensity. Thirdly, to ensure robust findings, this
study carefully accounts for potential confounding effects arising from
other policy interventions.

The remainder of this study is organized as follows: Section 2
establishes the theoretical framework and research hypotheses.
Section 3 outlines the data sources and research design
employed. Section 4 presents the empirical analysis. Section 5
explores potential avenues for further research. Finally, Section 6
concludes the study.

2 Theoretical analysis

2.1 Smart city construction and corporate
carbon intensity

Smart cities represent an advanced stage of urban digitalization,
where pilot policies focus primarily on leveraging information
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technology transformations to elevate urban governance models,
fostering innovation in resource allocation, emerging industries, and
related technologies and products (Xin and Qu, 2019). Essentially,
this involves providing support and assurance for environmental
governance and emission control through technological innovation.
The construction of smart cities enables local governments to
enforce environmental laws using modern information
technology methods. Given the emphasis on environmental
sustainability in smart cities, the environmental requirements
imposed by the government are often stricter than those in other
ordinary cities. For instance, China’s “National Smart City Pilot
Indicator System” explicitly mandates that smart cities must achieve
intelligent management of urban ecological environments, build
city-level carbon emission monitoring platforms based on smart city
infrastructure, and collect carbon emission and energy usage data
accurately and in real-time. By interconnecting data across various
stages and employing visualization techniques, real-time carbon
emission monitoring is enabled, thereby enhancing governmental
decision-making capabilities and strengthening institutional-level
environmental supervision (Xu et al., 2023). Smart city pilot
policies have driven enterprises towards a green and low-carbon
transformation. The development of smart cities enhances
digital infrastructure, allowing enterprises to access and share
big data resources more conveniently, optimize production
processes and resource allocation, and reduce energy
consumption and waste emissions. Smart city policies also
promote the formation of smart industrial clusters, providing
companies with more opportunities for collaboration and
innovation, facilitating industrial structure optimization and
upgrading, and lowering corporate carbon emission intensity.
Additionally, in policy implementation, there is a focus on
developing new models of digital industrialization and
industrial digitalization, encouraging enterprises to
continuously explore these innovative models to enhance
production and resource efficiency, thereby aiding in reducing
corporate carbon emissions.

Hypothesis 1. Smart city development contributes to a decline in
corporate carbon intensity.

2.2 The role of green technological
innovation

The pilot policies for smart cities have provided enterprises with
the motivation and opportunities for innovation by promoting
green technology innovation, effectively reducing corporate
carbon emissions. These policies aim to integrate advanced
information technology and intelligent systems to enhance urban
digitalization, improve the allocation efficiency of labor, land, and
capital, and drive green technology innovation (Yang et al., 2024). In
the process of building smart cities, government environmental
subsidies, corporate environmental awareness, and R&D
investment have facilitated green technology innovation in
enterprises (Guo et al., 2024). For instance, the “smart city” pilot
index system explicitly includes elements such as digital
management, smart environmental protection, and innovation
investment. The level of digitalization (Han et al., 2021), R&D

investment (Wang et al., 2016), and environmental expenditure
(Chen et al., 2020) are crucial factors influencing green technology
innovation in enterprises. The 14th Five-Year Plan mentions that
“smart city” pilots need to advance the construction of new
technology infrastructure, the transformation and upgrading of
traditional industries, and the establishment of a new generation
of information infrastructure systems. This trend has accelerated the
iteration of information technology, providing a favorable external
environment for enterprise technology R&D (Zhan and Li, 2022). In
the Pidu District of Chengdu, Sichuan Province, China, the
implementation of the “149” smart construction project has
comprehensively promoted the digital transformation of Chengdu
enterprises, facilitating the integration of new-generation
information technology with traditional enterprises. Green
technology innovation can boost clean production in enterprises,
enhance energy-saving efforts, reduce resource consumption from
the production side, and foster new energy consumption methods. It
empowers the optimization and upgrading of industrial structures,
aiding the transition to low-carbon green industries, and reducing
corporate production carbon emissions, thereby achieving source
control of carbon emissions (Liu et al., 2020). The use of green
technology innovation in the energy sector can accelerate the
development of photovoltaics, wind power, and renewable
energy, effectively promoting the development of the new energy
sector. It facilitates the transition of the energy consumption
structure towards green, low-carbon, and clean energy, directly
reducing carbon dioxide emissions. Green technology innovation
can effectively control decarbonization costs and provides technical
support for the research and large-scale application of carbon
dioxide utilization, capture, and storage technologies, creating a
“technology dividend” effect that enhances carbon emission
performance. In summary, this paper proposes research
Hypothesis 2.

Hypothesis 2. By encouraging the adoption of green technologies,
smart city initiatives contribute to lowering corporate
carbon intensity.

2.3 The role of external market attention

Smart city pilot policies provide significant external impetus for
enterprises to reduce carbon intensity by guiding public attention,
particularly the scrutiny of investors and media. Market investors
are not only concerned with short-term economic returns but are
also beginning to incorporate environmental responsibility into
their investment considerations. This green investment preference
encourages enterprises to pay more attention to their own green
development and reduce carbon emissions. In addition, as
important supervisors in the capital market, media coverage
creates a “watchdog effect”, increasing the pressure on enterprises
to expose their environmentally polluting behaviors. This effect
compels non-compliant enterprises to enhance their
environmental awareness and reduce carbon emissions (Ahern
and Sosyura, 2015). Moreover, intelligent interconnected
platforms utilizing digital technologies enhance enterprise
information transparency. This enables external market players to
conveniently access enterprise information and improves
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supervision effectiveness. Digital technologies represented by digital
supply chain platforms can extend outwards, bringing efficient
communication models to enterprises and increasing the level of
integration with external stakeholders (Ivanov et al., 2022). For
example, Liu et al. (2023) utilized the textual content of government
environmental attention to empirically examine the impact of
government oversight on corporate emissions, finding that
government environmental attention significantly reduced
corporate carbon emissions.

Hypothesis 3. By attracting the interest of environmentally
conscious investors and consumers, smart city construction
encourages enterprises to embrace sustainable practices and
reduce their carbon intensity.

2.4 The role of government subsidies

The smart city pilot policy effectively reduces corporate
carbon emission intensity by increasing government subsidies,
thereby stimulating companies’ intrinsic motivation and
environmental awareness. Firstly, the smart city policy
considers urban carbon emissions as a crucial standard for
performance assessment and governance capability evaluation
(Li, 2022). As the leader in environmental governance, the
government transfers part of the economic benefits to micro-
market entities through financial subsidies, effectively stimulating
companies’ intrinsic motivation to reduce pollution and
emissions (Peng and Liu, 2018). Ex-ante subsidies can be used
for environmental initiatives such as upgrading environmental
technologies and purchasing energy-saving and emission-
reducing equipment, thereby lowering the economic costs for
companies in implementing environmental measures and
enhancing their enthusiasm and initiative for emission
reduction. Secondly, smart city development enhances the
transparency of corporate environmental information, enabling
the government to more accurately monitor and assess corporate
environmental performance and provide targeted ex-ante
subsidies to companies with good environmental performance.
Through real-time monitoring and data analysis enabled by smart
city technologies, the government can more precisely identify and
reward companies actively taking emission reduction measures,
further incentivizing them to lower carbon emissions.

Hypothesis 4.Government subsidies provided as part of smart city
construction initiatives help reduce corporate carbon intensity.

3 Methodology

3.1 Model

This paper investigates whether and to what extent smart city
development influences the carbon emission intensity of enterprises.
To address this question, we employ a difference-in-differences
(DID) methodology, exploiting the phased roll out of the smart
city pilot program. Building upon the work of Yao et al. (2020), we
construct the multi-period DID model (Equation 1).

Intensityijt � β0 + β1DIDit + ϕControlsijt + Cityi + Firmj + Yeart

+ εijt

(1)
where the subscripts i, j and t represent the city, enterprise and time,
respectively. The dependent variable Intensity denotes the carbon
emission intensity of enterprise. The explanatory variable, denoted by
DID, measures the implementation of the smart city pilot policy.
Controls represents a series of control variables, whose selection will be
explained in detail below. εijt is the random error term. β0 is the
constant term and β1 is the coefficient of the core explanatory variable,
which indicates the specific impact of the smart city pilot policy on the
carbon emission intensity of enterprises in the pilot areas.

3.2 Variables

3.2.1 The explained variable
The dependent variable analyzed in this study is corporate carbon

emission intensity (Intensity). To construct this metric, we first collect
data on firm’s reported annual carbon emissions (direct, indirect, and
total) from publicly accessible sources such as annual reports, social
responsibility reports, and environmental reports. For firms without
explicit emissions disclosures, we estimate their emissions by
multiplying their reported coal consumption by corresponding
industry-specific carbon emission coefficients. In reference to
Chapple et al. (2013), carbon emission intensity is operationalized as
carbon dioxide emissions scaled by the firm’s primary business revenue.

3.2.2 The core explanatory
Our primary variable of interest is the DID estimator,

operationalized as the interaction term between the treatment
group dummy (Treat) and the post-policy time dummy (Post).
Treat equals 1 for enterprises in cities designated as smart city pilot
zones and 0 otherwise. Post takes a value of 1 for the year of policy
implementation and subsequent years within the respective city, and
0 for pre-policy years.

3.2.3 The control variables
Referring to Yu et al. (2015), Wang et al. (2017), and Chen et al.

(2023), this paper controls for firm-level and region-level variables that
influence corporate carbon emission intensity, including firm size (Size)
measured by the logarithm of total assets, leverage ratio (Lev) measured
as the ratio of total liabilities to total assets, return on assets (ROA)
measured as the ratio of net profit to total assets, board size (Board)
measured by the logarithm of the number of board members, book-to-
market ratio (BM) measured as the ratio of book value to market value,
firm age (Age) represented by years since going public, growth rate of
operating income (Growth) calculated as the increase in current
operating income relative to previous operating income, regional
economic development level (LnperGDP) indicated by logarithm per
capitaGDP, and regional financial development level (RFDL) expressed
as loans balance from financial institutions relative to GDP.

3.2.4 The mediating variables
The level of green technology innovation (Innovation) is

measured by the logarithm of the number of green patents
obtained by enterprises. This paper examines the role of external
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market attention from two aspects: investors and media. Specifically,
investor attention (Investor-attention) is measured by the logarithm
of the median value of the Baidu search index for the year, which is
mainly derived from the search volume of listed companies in Baidu
search keywords; media attention (Media-attention) is measured by
the total number of times the company was reported in online media
news throughout the year. The research by Peng and Liu (2018)
classifies government subsidies into two types: ex-ante and ex-post
subsidies. Ex-ante government subsidies refer to subsidies that the
government provides to enterprises without compensation, which is
a form of ex-ante incentive. Ex-post government subsidies refer to
the subsidy policy in which the government returns a certain
amount of money to enterprises through tax reduction after the
project reaches the expected effect or is completed, which is a form
of ex-post incentive. This paper measures government ex-ante
subsidies using various direct subsidies to enterprises and
measures government ex-post subsidies using post-tax returns to
enterprises.

3.3 Data sources

This study draws upon data from A-share listed companies on
both the Shanghai and Shenzhen Stock Exchanges covering the
period from 2009 to 2021. Firm-level data, including carbon
emissions sourced from annual reports, environmental
disclosures, and social responsibility reports, are supplemented by
information from the CSMAR and Wind databases. City-level data
is sourced from the China City Statistical Yearbook and the EPS
database. The following data pre-processing steps were undertaken:
(1) removal of companies marked as ST, ST* or PT; (2) excluding of

samples from the financial sector, including banking and insurance;
(3) elimination of samples with less than 3 years of data or missing
values for key variables; (4) and winsorization of all continuous
variables at the 1% level at both tails. The final sample comprises
1,368 listed companies, yielding a total of 17,784 observations.
Among them, the manufacturing industry accounts for
14,488 observations, which is 81.47%; the mining industry
accounts for 606 observations, which is 3.4%; the electricity, heat,
gas, and water production and supply industries account for
881 observations, which is 4.95%; the transportation, storage, and
postal services industries account for 864 observations, which is
4.86%; and other industries account for 945 observations, which
is 5.31%. The descriptive statistical analysis of the data for the
aforementioned variables is presented in Table 1.

4 Results

4.1 Benchmark results

We use Stata 17 as the econometric analysis tool in this paper.
Table 2 presents the results of the difference-in-differences (DID)
estimation. Column 1 provides a baseline estimate of the smart city
pilot policy’s impact on firm carbon intensity without controlling for
other factors. Column 2 introduces firm, year, and city fixed effects
to address potential unobserved heterogeneity across these
dimensions. Column 3 builds upon this specification by
incorporating both company-level and city-level control variables
that may influence firm carbon intensity. The regression results
consistently demonstrate a statistically significant negative
relationship between the smart city pilot policy and firm carbon

TABLE 1 Descriptive statistics.

Categories Variable name Variable code Obs Min Max Mean Std. Dev

Explained Variable Carbon emission intensity Intensity 17,784 1.389 6.256 1.000 0.000

Core Explanatory Variable Smart city pilot programmes DID 17,784 0.000 1.000 0.466 0.318

Control Variables Firm size Size 17,784 20.022 26.337 1.331 22.356

Debt-to-equity ratio Lev 17,784 0.034 0.866 0.203 0.426

Net profit margin on total assets ROA 17,784 0.168 0.221 0.058 0.043

Revenue growth rate Growth 17,784 0.573 2.043 0.359 0.161

Board size Board 17,784 11.168 17.193 14.028 1.008

Age of business Age 17,784 1.386 3.466 0.400 2.808

Book-to-market ratio BM 17,784 0.141 1.180 0.247 0.642

Regional financial development level RFDL 17,784 0.000 3.449 0.721 1.445

Level of economic development LnperGDP 17,784 0.000 12.223 2.417 10.742

Mediating Variables Green technology innovation Innovation 17,784 0.000 3.832 0.447 0.703

Media attention Media-attention 17,784 0.000 30.52 2.861 4.429

Investor attention Investor-attention 17,784 0.000 8.922 5.965 2.436

Government subsidies ex-ante Subsidy 17,784 0.000 20.858 1.968 2.796

ex-post Subsidy 17,784 0.000 23.301 16.196 7.321

Frontiers in Environmental Science frontiersin.org05

Peng et al. 10.3389/fenvs.2024.1457801

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1457801


intensity. This finding holds across all three model specifications,
regardless of the inclusion of control variables. This robust result
suggests that the implementation of the smart city pilot policy has
contributed to a significant reduction in carbon emission intensity
among firms located within the pilot cities. From an economic
standpoint, using the comprehensive set of control variables in
Column 3, we observe an average reduction of 15.9% in the
carbon intensity of firms due to the implementation of the
policy. Simultaneously, the econometric results reveal that firm
size (Size), revenue growth rate (Growth), and book-to-market
ratio (BM) all have significant impacts on reducing corporate
carbon emission intensity. Specifically, firm size (Size)

significantly reduces carbon emission intensity, possibly because
larger firms face stricter environmental regulations, higher
requirements for environmental information disclosure, and have
greater capacity to adopt green technologies for emission reduction,
ultimately promoting a decrease in carbon emission intensity.
Conversely, a higher revenue growth rate (Growth) is associated
with higher carbon emission intensity, indicating that Chinese
companies have not yet completed their green transition, which
aligns with China’s current stage of reaching peak carbon emissions.
The book-to-market ratio (BM) has a positive impact on carbon
emission intensity, suggesting that the higher the market value of a
listed company (i.e., the lower the BM ratio), the more the company
values green and low-carbon development and is more capable of
adopting green and low-carbon technologies to transform its
production model and reduce carbon emission levels.

4.2 Parallel trend test

Following Imbens and Wooldridge (2009), we construct model
(Equation 2).

Intensityijt � ∂0 +∑
t�3
t�−3∂1reformit + φControlsijt + Cityi

+ Firmj + Yeart + εijt (2)

where Intensityijt is the explained variable in this paper, the variable
t < 0 denotes the number of years preceding the implementation of
the smart city pilot policy in city i, where enterprise j is located.
During this period, the reformit variable takes on a value of 0.
Similarly, when t = 0, it signifies the year of policy implementation.
Subsequently, for t > 0, it indicates the number of years following the
introduction of the smart city pilot policy, with the reformit variable
assigned a value of 1. Given the extended sample period, this study
focuses on illustrating the trend of the policy’s effect within the
initial 2–3 years following its implementation. To mitigate concerns
regarding perfect multicollinearity, the third year prior to policy
implementation serves as the base year, maintaining consistency
throughout the remaining model specifications.

Prior to the smart city pilot policy, there was no significant
difference in carbon emission intensity between enterprises in pilot
and non-pilot cities (Figure 1). This confirms the necessary
assumption for a valid difference-in-differences analysis. Notably,
the coefficients for the year of policy implementation and
subsequent years are significantly negative, indicating that the
policy has had a noticeable impact on carbon emission intensity
within pilot areas. This suggests that developing smart cities can
contribute to long-term and sustainable reductions in local business
carbon emissions.

4.3 Placebo test

To further validate our baseline regression analysis, we conduct
a placebo test using a non-parametric permutation approach (Cai
et al., 2016). This involves randomly assigning cities to a simulated
treatment group, effectively mimicking the implementation of the
smart city pilot policy in a randomly selected subset of cities instead
of the designated pilot cities. By evaluating this counterfactual

TABLE 2 Benchmark results.

(1) (2) (3)

Variables Intensity Intensity Intensity

DID −0.101*** −0.157*** −0.159***

(0.016) (0.058) (0.057)

Size −0.195***

(0.033)

Lev 0.200

(0.132)

ROA 0.370

(0.318)

Board −0.148

(0.100)

Growth 0.368***

(0.043)

Age −0.015

(0.155)

BM 0.682***

(0.101)

RFDL −0.022

(0.052)

LnperGDP −0.060

(0.053)

Constant 4.847***

(1.006)

Firm Fixed Effect NO YES YES

Year Fixed Effect NO YES YES

City Fixed Effect NO YES YES

N 17,784 17,784 17,784

R2 0.002 0.233 0.257

Note: (1) The figures in parentheses are clustered robust standard errors at the enterprise

level; (2) *, ** and *** indicate significance at the level of 10%, 5% and 1%, respectively; (3)

The same as below.
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scenario, we can assess the sensitivity of our initial findings to the
specific selection of pilot cities and strengthen the causal relationship
between the policy and observed reductions in carbon
emission intensity.

Figure 2 presents the results of the placebo test, which
encompassed 1,000 Monte Carlo simulations. The vertical dashed
line in the figure represents the estimated DID coefficients from our
baseline regression. As evident from the figure, the estimated
coefficient probability density within the placebo test exhibits an
approximately normal distribution. Importantly, these estimated
coefficients are consistently situated far from the baseline regression

results. Furthermore, a substantial majority of the p-values obtained
from the placebo test surpass the p-values associated with the DID
estimated coefficients in our baseline regression.

Therefore, we can confidently conclude that the baseline
regression results of our study have successfully passed the
placebo test. This outcome strongly supports the reliability and
robustness of our findings, effectively mitigating concerns regarding
spurious correlations or random fluctuations as potential drivers of
our observed results. The placebo test serves as compelling evidence
that our findings are likely to be genuine and not artifacts of our
research design.

FIGURE 1
Parallel trend test.

FIGURE 2
Placebo test.
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4.4 Robustness checks

4.4.1 Bacon decomposition
For staggered DID models, Goodman-Bacon (2021) points out

that earlier treatment groups are not good control groups (also called
“bad control groups”) because their pre-trends changed compared
with later-treatment groups or never-treated groups (also called
“good control groups”). The traditional two-way fixed effects model
can produce potential bias when conducting staggered DID
estimations precisely because of the existence of these “bad
control groups”. Therefore, this paper adopts the Bacon
decomposition method to decompose the estimator into weighted
values of each part to test this issue.

The decomposition of the estimated treatment effect is visually
represented in Figure 3. The figure reveals that the policy has a
significant net effect on reducing carbon intensity in pilot cities,
accounting for 94.5% of the total estimated effect. In contrast, only
5.5% can be attributed to “bad control groups”. This stark contrast
highlights the high credibility of our baseline regression results. In
our analysis, we utilize a “never-treated” group as the control for the
period under examination. This makes our estimates of the policy’s
effects more reliable and helps us accurately measure the overall
impact of the policy over time.

4.4.2 PSM-DID
To address potential sample selection bias, we employed a

Propensity Score Matching-Difference-in-Differences (PSM-DID)
approach, utilizing three matching techniques (1:2 nearest-
neighbor, caliper, and kernel density) to refine the control
group. This ensured comparability between treatment and
control groups.

Subsequent PSM-DID estimation confirmed a statistically
significant and negative impact of smart city pilot policies on
corporate carbon intensity, consistent with our baseline
regression findings (Table 3). This result suggests minimal

sample selection bias, further strengthening the robustness of our
initial conclusions.

4.4.3 Controlling competitive policy interference
During the sample selection period, the implementation of other

related policies could lead to coefficient bias in the core explanatory
variables. Many policies across different regions occurred
simultaneously or overlapped with the smart city pilot policy,
causing a certain degree of policy overlap effect and potentially
undermining the validity of regression results. Through researching
and collecting relevant information, it was found that the
implementation of the low-carbon city pilot policy and the
carbon emissions trading pilot policy overlapped in time with the
smart city pilot policy, which may affect the estimation results of the
model in this paper. Regarding the low-carbon city pilot policy, the
“National Low-Carbon City Pilot Progress Assessment Report”
published by China’s Ministry of Ecology and Environment
states that since 2010, China has conducted 81 national low-
carbon city pilot projects in three batches. These projects have
boldly explored five aspects: model innovation, system
innovation, technological innovation, engineering innovation, and
collaborative innovation, achieving positive results. As for the
carbon emissions trading pilot policy, based on China’s 12th
Five-Year Plan, the carbon emissions trading pilot program was
launched in 2011 in seven provinces (municipalities), including
Beijing. The first carbon trading market went online in June 2013
(Shenzhen), and by June 2014, the carbon trading markets of all the
pilot cities in the plan had begun operation, establishing the basic
framework of China’s carbon trading pilot markets. The timing for
announcing emission control standards and lists of controlled
enterprises across the pilot areas was concentrated in 2012–2013,
with the actual opening of the carbon trading markets occurring
mainly between 2013 and 2014. The implementation of the pilot
policies effectively reduced carbon emissions of enterprises in the
pilot regions (Li et al., 2023). To avoid interference from these

FIGURE 3
Bacon decomposition results.
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policies, dummy variables for the corresponding policies are added
in the regression analysis to control for the potential impact on the
estimation results.

To account for the potential impact of other climate-related
policies, our regression model includes variables representing low-
carbon city initiatives (DID2) and carbon emission trading
schemes (DID3). Even after accounting for other policies, our
key finding holds true: the smart city pilot policy is linked to a
significant decrease in corporate carbon emissions, as shown
in Table 4.

4.4.4 Controlling non-parallel trends and adjusting
clustering standard errors

Following the methodology of Liu X. et al. (2022), we included
linear, quadratic, and cubic time trend terms to capture the influence
of time-dependent factors on firms. This is shown in Column 1 of
Table 5. We also addressed potential issues related to standard error
clustering. To address potential serial correlation, we initially
clustered our data at the firm level. However, to address potential
time-based variations within firms, we further clustered at the firm-
year level (Column 2) and, considering the city-level
implementation of the policy, at the city level (Column 3).
Finally, to control for unobserved time-varying confounding
factors, we included firm-year, industry-year, and city-year
interaction terms in our DID model (Columns 4, 5, and 6).

The regression results consistently demonstrate a statistically
significant and negative coefficient for our core explanatory variable,
even after implementing various robustness checks. These checks
include controlling for non-parallel trends, adjusting clustered
standard errors at different levels, and incorporating fixed effects.
This consistent finding strongly supports the robustness of our
baseline regression results.

5 Further analysis

5.1 Heterogeneity analysis

5.1.1 Heterogeneity across high-tech and
traditional industries

Companies in high-tech industries typically employ advanced
technologies and production methods, characterized by strong
innovation capabilities, high growth potential, and significant
value (Cui and Mak, 2002). In contrast, traditional industries
may rely more on resource-intensive sectors and outdated
technologies, with policies potentially varying in terms of
environmental and emission reduction measures for different

TABLE 3 PSM-DID results.

(1) (2) (3)

Variables Nearest-neighbour matching Calliper matching (calliper = 0.04525) Nuclear matching

Intensity Intensity Intensity

DID −0.159*** −0.158*** −0.161***

(0.057) (0.057) (0.057)

Constant 4.847*** 4.847*** 4.847***

(1.006) (1.006) (1.006)

Control Variables YES YES YES

Firm Fixed Effect YES YES YES

Year Fixed Effect YES YES YES

City Fixed Effect YES YES YES

N 17,700 17,602 16,482

R2 0.251 0.257 0.277

TABLE 4 Control competition policy.

(1) (2) (3)

Variables Intensity Intensity Intensity

DID −0.153*** −0.154*** −0.149***

(0.057) (0.056) (0.057)

DID2 −0.022 −0.020

(0.024) (0.024)

DID3 −0.043 −0.042

(0.027) (0.027)

Constant 4.845*** 4.854*** 4.852***

(1.008) (1.008) (1.009)

Control Variables YES YES YES

Firm Fixed Effect YES YES YES

Year Fixed Effect YES YES YES

City Fixed Effect YES YES YES

N 17,782 17,782 17,782

R2 0.257 0.257 0.257
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industries. Given the significant differences in technological level
and innovation capabilities, this paper conducts a heterogeneity
analysis by categorizing companies into high-tech and traditional
industries, referencing the approaches of Li and Peng (2022), to
more accurately assess the impact of smart cities on corporate
carbon emissions. Specifically, according to the 2012 classification
guidelines for Chinese listed companies by the China Securities
Regulatory Commission, companies with classification codes C25-
C29, C31-C32, C34-C41, I63-I65, and M73 are defined as high-tech
industry companies. After classification, there are 934 companies
and 11,462 observations in the high-tech industry group, and
434 companies and 6,322 observations in the traditional
industry group.

As shown in Table 6, smart city pilot policies demonstrate a
statistically significant impact on carbon emission reduction within
traditional industries. However, the same policies do not yield a
statistically significant effect on the carbon intensity of high-tech
enterprises. The primary reason for this disparity is that traditional
industries are more susceptible to the direct influence of
technological and management innovations associated with smart
cities. Traditional industries often employ more conventional
production processes and management methods, making it easier
to implement and apply smart city policy measures such as
intelligent production monitoring systems and energy utilization
optimization technologies. In contrast, high-tech industries already
possess advanced production technologies and management
practices, resulting in relatively low carbon emissions. Therefore,

the impact of smart city policies on their carbon emission intensity is
less pronounced.

5.1.2 Heterogeneous effects across industries with
varying pollution levels

Industries characterized by heavy pollution typically use energy-
intensive production processes and have higher carbon emissions,
whereas light industries tend to adopt cleaner production
technologies resulting in relatively lower carbon emissions.
Considering the significant differences in carbon emission levels,
production processes, and energy consumption between them, this
paper conducts a heterogeneity analysis by categorizing companies
into heavy pollution and light pollution industries. This aims to
more accurately evaluate the impact of smart city policies on the
carbon emission intensity of different types of enterprises and to
develop targeted emission reduction measures and policy support.
According to the definitions of heavily polluting industries from the
“Notice on Issuing the Classified Directory of Environmental
Inspection Industries for Listed Companies” by the Ministry of
Ecology and Environment of the People’s Republic of China
(formerly the Ministry of Environmental Protection of the
People’s Republic of China), combined with the “Industry
Classification Guidelines for Listed Companies” revised by the
China Securities Regulatory Commission in 2012, and following
the approach of Pan et al. (2019), the codes for heavily polluting
industries are specified as B06, B07, B08, B09, C17, C19, C22, C25,
C26, C28, C29, C30, C31, C32, and D44. Based on this classification,

TABLE 5 Controlling non-parallel trends and adjusting clustering standard errors.

(1) (2) (3) (4) (5) (6)

Variables Controlling for
non-parallel trends

Cluster to
enterprise-year

Cluster to
cities

Control
enterprise × time

Control
industry × time

Control
city × time

Intensity Intensity Intensity Intensity Intensity Intensity

DID −0.095** −0.159** −0.159** −0.120** −0.159*** −0.147***

(0.046) (0.069) (0.063) (0.056) (0.057) (0.056)

Constant 4.827*** 4.847*** 4.847*** 90.104*** 4.844*** −12.172

(0.995) (1.004) (0.991) (11.759) (1.007) (9.574)

Control Variables YES YES YES YES YES YES

Number of
clusters (id)

1,368 1,368 —— 1,368 1,368 1,368

Number of clusters
(year)

—— 13 —— —— —— ——

Number of clusters
(city)

—— —— 260 —— —— ——

Number of clusters
(industry)

64 —— —— —— —— ——

Firm Fixed Effect YES YES YES YES YES YES

Year Fixed Effect YES YES YES YES YES YES

City Fixed Effect YES YES YES YES YES YES

N 17,782 17,782 17,782 17,782 17,782 17,782

R2 0.245 0.257 0.257 0.264 0.257 0.257
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the study samples are divided into two groups: heavy pollution and
light pollution industries, for grouped regression analysis, with the
regression results shown in Table 7.

The regression results reveal that the coefficient of DID is
negative in both groups of samples. The coefficient has a larger
absolute value and higher significance level in the sample of heavily
polluting industry enterprises. This suggests that the pilot policy has
a greater and more significant impact on reducing carbon emission
intensity in these industries.

The primary reason for this disparity lies in production
processes in heavily polluting industries. These industries
typically employ traditional energy-intensive processes with high
emission levels. The measures promoted by smart city policies, such
as intelligent monitoring systems and resource utilization

optimization technologies, can be more directly applied to
heavily polluting industries. Consequently, these policies enhance
production efficiency and optimize energy use, ultimately lowering
carbon emission intensity in heavily polluting industries.
Conversely, lightly polluting industries, having already adopted
cleaner production processes with inherently lower emissions,
experience a less pronounced impact on their carbon intensity
from smart city initiatives.

5.1.3 Heterogeneity across central and non-central
city enterprises

This paper also conducts a heterogeneity analysis by
distinguishing between central and non-central cities to examine
the heterogeneous impact of smart city pilot policies on enterprise
location. Central cities typically have more concentrated economic
activities and population density, with a larger number and scale of
enterprises. Their carbon emission intensity is significantly
influenced by factors such as transportation, buildings, and
industry. In practice, provincial and sub-provincial cities in
China are selected as central cities. Non-central cities, on the
other hand, may have different industrial structures and
development models, with relatively smaller enterprise scales but
unique characteristics in energy utilization and transportation
organization. In practice, prefecture-level cities, excluding central
cities, are chosen as the statistical standard for non-central cities.

Table 8 demonstrates that smart city pilot policies effectively
curb carbon emission intensity among enterprises situated in central
cities, while the same impact remains statistically insignificant in
non-central cities. This divergence likely stems from the distinct
characteristics inherent to central urban environments. These cities
typically boast denser economic landscapes, sophisticated
infrastructure, and heightened levels of technological integration.
Such attributes facilitate greater accessibility and adoption of
cutting-edge energy efficiency and emission reduction
technologies, enabling enterprises to streamline production
processes and ultimately diminish their carbon footprint.

TABLE 6 Heterogeneity across high-tech and traditional industries.

High-tech industry Traditional
industries

Variables (1) (2) (3) (4)

Intensity Intensity Intensity Intensity

DID −0.085 −0.083 −0.238** −0.249**

(0.070) (0.069) (0.106) (0.104)

Constant 0.009 4.743*** 0.116*** 5.216***

(0.021) (1.280) (0.037) (1.686)

Control Variables NO YES NO YES

Firm Fixed Effect YES YES YES YES

Year Fixed Effect YES YES YES YES

City Fixed Effect YES YES YES YES

N 11,454 11,454 6,311 6,311

R2 0.241 0.261 0.249 0.279

TABLE 7 Heterogeneous effects across industries with varying pollution levels.

Heavily polluting industries Lightly polluting industries

Variables (1) (2) (3) (4)

Intensity Intensity Intensity Intensity

DID −0.176** −0.181** −0.146* −0.154*

(0.087) (0.084) (0.083) (0.081)

Constant 0.070** 6.302*** 0.034 4.508***

(0.028) (1.815) (0.026) (1.222)

Control Variables NO YES NO YES

Firm Fixed Effect YES YES YES YES

Year Fixed Effect YES YES YES YES

City Fixed Effect YES YES YES YES

N 8,056 8,056 9,709 9,709

R2 0.234 0.264 0.254 0.271
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However, in non-central cities, factors such as relatively simple
industrial structures, smaller enterprise sizes and lagging
technological levels may limit the impact of pilot policies. This
condition could be attributed to a lack of advanced technological
support, insufficient resource allocation and limitations in policy
implementation.

5.2 Mechanism analysis

Based on the above analysis, the pilot policies primarily operate
through these three channels: promoting green technology
innovation, increasing external market attention and increasing

government subsidies. In mechanism analysis, most scholars use
the mediating effect model. However, this method may lead to
unreliable results due to endogeneity bias and other issues. This
study draws on the research method of Liu and Mao (2019) to
explore the impact of mechanism variables on the treatment effect of
pilot policies from the perspective of moderating effect.

Findings from Table 9 demonstrate that smart city pilot policies
effectively reduce enterprise carbon emission intensity, with a
statistically significant positive coefficient for the policy dummy
variable (DID) at the 1% level. This effect is achieved by promoting
green technology innovation. The pilot policy is committed to
integrating advanced information technology, intelligent systems
and sustainable development concepts to improve urban operation
efficiency, resource utilization efficiency and environmental quality.
As smart cities develop, enterprises are increasingly driven to invest
in green technology innovation. This trend is propelled by escalating
environmental pressures and stricter carbon emission regulations.
By introducing efficient energy-saving technologies and clean
production processes, green technology innovation can effectively
reduce energy consumption and carbon emissions during the
production process, achieving cleaner and low-carbon
production. Green technology innovation not only addresses
environmental pressures but also offers tangible operational
benefits. By optimizing resource utilization efficiency, it directly
contributes to reducing the carbon footprint of enterprise
production processes. Thus, Hypothesis 2 is verified.

Regression results presented in columns 2 and 3 of Table 6
indicate that smart city pilot policies demonstrably increase both
investor and media attention towards enterprises. The pilot policy,
by guiding external market attention, especially the supervisory
pressure from investors and the media, provides an important
external driving force for enterprises to reduce carbon emission
intensity. The attention of investors and the media to corporate
environmental protection and sustainable development encourages
enterprises to pay more attention to emission reduction. Firstly, the

TABLE 8 Heterogeneity across central and non-central city enterprises.

Central cities Non-central cities

Variables (1) (2) (3) (4)

Intensity Intensity Intensity Intensity

DID −0.279 *** −0.295 *** −0.060 −0.055

(0.105) (0.105) (0.067) (0.066)

Constant 0.095 ** 3.719 ** 0.022 5.450 ***

(0.038) (1.472) (0.019) (1.334)

Control Variables NO YES NO YES

Firm Fixed Effect YES YES YES YES

Year Fixed Effect YES YES YES YES

City Fixed Effect YES YES YES YES

N 7,371 7,371 10,406 10,406

R2 0.258 0.282 0.219 0.244

TABLE 9 Mechanism analysis.

Green technology innovation External attention Government subsidies

Variables (1) (2) (3) (4) (5)

Innovation Investor-
attention

Media-
attention

Ex-ante subsidy Ex-post
subsidy

DID 0.549*** 0.243*** 0.249** 0.353*** −0.187

(0.022) (0.058) (0.122) (0.132) (0.272)

Constant −0.523 1.978** 2.436 14.248*** 22.958***

(0.442) (0.794) (2.279) (2.141) (5.027)

Control Variables YES YES YES YES YES

Firm Fixed Effect YES YES YES YES YES

Year Fixed Effect YES YES YES YES YES

City Fixed Effect YES YES YES YES YES

N 17,782 17,782 17,782 17,782 17,782

R2 0.702 0.889 0.774 0.529 0.629
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increased attention of investors has improved the environmental
transparency and sustainable development evaluation standards of
enterprises. To maintain good investor relations and attract more
investment, enterprises tend to take more proactive emission
reduction measures to enhance their environmental image and
investment attractiveness. Secondly, continuous media attention
can increase the exposure and public awareness of enterprises. It
often increases public attention to corporate environmental actions,
thereby shaping the social image and reputation of enterprises.
Under the pressure of public attention, enterprises will take more
proactive emission reduction measures to maintain their image and
reputation. Therefore, the smart city pilot policy effectively reduces
the carbon emission intensity of enterprises by increasing the
attention of investors and the media, encouraging enterprises to
take more active emission reduction measures. Thus, Hypothesis 3
is verified.

The fourth column’s DID coefficient demonstrates that the
smart city pilot policy, by increasing government subsidies,
effectively reduces enterprise carbon emission intensity. These
subsidies, a key fiscal policy tool, lower the cost for businesses
investing in green technology adoption and energy-efficient,
emission-reducing equipment. This financial incentive
stimulates companies to proactively pursue emission reduction
measures. In addition, government subsidies can be used to
support enterprises in carrying out carbon emission
monitoring and reporting. By providing subsidies or rewards to
enterprises, they are encouraged to establish and implement
carbon emission monitoring and reporting systems, strengthen
the supervision and management of enterprise carbon emissions,
and encourage enterprises to take proactive emission reduction
measures to reduce carbon emission intensity. Therefore, the
smart city pilot policy effectively promotes enterprise emission
reduction actions and reduces the carbon emission intensity of
enterprises by increasing government subsidies. Thus, Hypothesis
4 is verified.

6 Conclusion and policy implications

This paper uses data from Chinese A-share listed companies
from 2009 to 2021 as a research sample to deeply analyze the
theoretical logic and underlying mechanisms by which smart city
construction affects corporate carbon emission intensity. Based on
this analysis, a multi-period differences-in-differences model is
constructed to empirically examine the impact of smart city pilot
policies on corporate carbon emission intensity. The study finds
that: ① Smart city pilot policies significantly reduce the carbon
emission intensity of enterprises in pilot cities, and this conclusion
remains robust after controlling for competitive policies and non-
parallel trends. ② The impact of smart city pilot policies on
corporate carbon emission intensity varies across different
industries and cities, with more pronounced effects observed in
central cities, traditional industries, and heavily polluting
industries. ③ Further mechanism analysis indicates that smart
city pilot policies reduce corporate carbon emission intensity
through three mechanisms: promoting green technological
innovation, increasing external market attention, and enhancing
pre-emptive government subsidies.

Based on the above conclusions, this paper offers the following
policy implications: First, continued investment and development of
smart cities will create significant opportunities for reducing
corporate carbon emissions. By providing targeted support to
enterprises and fostering a sustainable ecosystem, smart city
initiatives can effectively lower carbon intensity, encouraging
businesses to embrace low-carbon development models and
promoting a virtuous cycle of economic growth and
environmental protection. Local governments should prioritize
the development of robust smart infrastructure and promote data
sharing and transparency. Establishing cross-sector and cross-
industry data sharing mechanisms will be crucial. This will
facilitate information flow and cross-border collaboration,
ultimately providing enterprises with enhanced opportunities and
support for carbon emission reduction initiatives. At the same time,
policy guidance and incentive measures should be strengthened to
encourage enterprises to adopt more environmentally friendly and
energy-saving production methods, cooperation and exchanges
between smart city construction and enterprises should be
enhanced, and enterprises should be encouraged to participate in
smart city planning, construction and operation to jointly promote
low-carbon development.

Second, the government should implement differentiated smart
city pilot policies tailored to enterprises across various industries and
cities, taking into full account their unique characteristics and needs
to promote green and low-carbon development. For central cities, it
is essential to continue implementing smart city pilot policies,
focusing on enhancing the intelligence level of environmental
protection public facilities, leveraging economies of scale, and
reducing the costs of emission reduction and carbon abatement
for enterprises. In contrast, for non-central cities, it is crucial to
promptly adjust smart city pilot construction plans, considering
challenges such as relatively lagging economic development,
inadequate information infrastructure, and weak green transition
capabilities. Emphasis should be placed on leveraging the networked
and shared characteristics of modern information systems to
actively develop green and intelligent network service facilities
with cross-regional service functions, thereby reducing the costs
of green development in non-central cities. For traditional and
heavily polluting industries, where pilot policies have shown
significant effects on corporate carbon reduction, it is important
to continue implementing these policies while emphasizing the
application and secondary innovation of modern information
technology in these sectors. Through intelligent construction,
enterprises can enhance their green technology innovation
capabilities. For high-tech and low-pollution industries, where
the potential for carbon reduction through pilot policies is
limited, it is necessary to strengthen industrial technology
exchanges. This approach can drive the update of green
production technologies and improve energy-saving and
emission-reduction efficiency in traditional and heavily polluting
industries through the development of high-tech industries.

Third, enhancing smart city development and effectively
reducing the carbon emission intensity of enterprises require
collaborative efforts from the government, businesses, investors,
and the media. The government should establish a comprehensive
policy framework that includes specific incentives and guiding
policies to encourage increased investment in green technology
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innovation by enterprises. Various government subsidy types play
distinct roles in promoting corporate carbon reduction within low-
carbon city initiatives. Therefore, the government should strengthen
the implementation of pre-subsidy policies, rigorously monitor and
evaluate the use of subsidy funds, and further amplify the impact of
pilot programs on corporate carbon reduction. Additionally, the
government should utilize modern communication tools and social
media platforms to promote and guide sustainable development
concepts, such as green development and lifestyles, facilitating the
transition of businesses to green production methods and
encouraging residents to adopt greener lifestyles. The government
must fulfill its environmental oversight responsibilities by enhancing
environmental protection laws and regulations, strengthening the
supervision of carbon reduction efforts in polluting enterprises, and
reducing the carbon emission intensity of businesses.

Fourth, the effectiveness of smart city pilot policies depends on
the specific developmental stage and politico-economic conditions
of a region. As a government-led initiative, smart city pilot policies
represent a significant urban intelligence construction project. Given
that China is at a critical juncture as a developing country aiming for
carbon peaking, it faces the dual challenges of carbon reduction and
economic development. Successfully achieving a green and low-
carbon economic transition requires fully leveraging the
government’s regulatory role in the economy while respecting
market principles, technological advancement, and sustainable
development. The study’s conclusions and policy
recommendations are applicable to other developing countries at
a similar stage of development, facing the dual challenges of
economic growth and carbon peaking. Additionally, ensuring the
scientific formulation and effective implementation of smart city
pilot policies necessitates a strong and incorruptible government.
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