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The Qilian Mountains and Huangshui River Basin (HRB) represent significant
ecological functional areas and carbon reservoirs within China. The estimation
and prediction of vegetation net primary productivity (NPP) in this area is
beneficial for the management of China’s terrestrial ecosystems. Nevertheless,
the existing estimation methods for vegetation NPP at the local scale are
characterised by considerable uncertainty and error, and have not accounted
for the influence of multi-factor interactions. Accordingly, this study initially
sought to quantify the vegetation NPP data within the HRB from 2000 to
2019 through the implementation of an improved Carnegie-Ames-Stanford
Approach (CASA) model. Subsequently, it endeavoured to elucidate the
spatiotemporal evolution patterns and influencing factors of vegetation NPP
within the HRB over the years. Subsequently, the ConvGRU spatiotemporal
prediction model was employed to investigate the prospective trajectory of
vegetation NPP in the HRB. The findings revealed a notable upward trajectory
in the annual variation of vegetation NPP in theHRB between 2000 and 2019. The
majority of regions have demonstrated a notable increase in vegetation NPP,
although a few areas have exhibited a decline. Furthermore, the correlation
between vegetation NPP and PRE, TEMP, SR, and NDVI exhibits regional
disparities. Furthermore, the spatial variation characteristics of vegetation NPP
in the HRB in the future also demonstrate an overall increasing trend. Additionally,
the vegetation NPP in the HRB exhibits significant spatial distribution
characteristics, with evident trends of hot spot contraction or cold spot
expansion. This study provides pivotal methods and theoretical support for
the assessment of carbon sequestration status in the HRB of the Qilian
Mountains and analogous regions.
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1 Introduction

The capacity of terrestrial ecosystems to sequester carbon has played a significant role in
mitigating climate change (Sha et al., 2022). It is considered an important cornerstone for
achieving carbon neutrality goals in China and globally. The net primary productivity
(NPP) of vegetation is a crucial factor in determining the carbon sink of terrestrial
ecosystems. It characterises the carbon sequestration capacity of vegetation in nature
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and reflects the carbon balance capacity of ecosystems (Song et al.,
2021; Zhi et al., 2024). Consequently, it is a significant indicator of
regional climate change. The spatiotemporal evolution of vegetation
NPP is of great significance in comprehending the driving
mechanisms of vegetation change, predicting future carbon sink
trends in terrestrial ecosystems, and managing the ecological
environment (Lyu et al., 2023). A number of factors exert
varying degrees of influence on regional vegetation NPP (Wei
et al., 2022; Xi et al., 2023). It is essential to accurately estimate
the spatiotemporal changes in regional vegetation NPP under a
range of scenarios and quantify their response relationships with
various factors.

The methods used to estimate vegetation NPP have evolved over
time, moving from traditional field measurements to model
simulation estimation and from single measured data to multi-
source fusion data as technology has progressed (Liu et al., 2022). In
the present era, ecosystem process models driven by remote sensing
data have become the principal methodology for estimating
vegetation NPP (He et al., 2021). The Carnegie-Ames-Stanford
Approach (CASA) model is a popular choice due to its high
computational accuracy, concise structure, and ease of obtaining
data and parameters (Shi et al., 2023; Bai et al., 2023). This model
incorporates a comprehensive account of the light energy use
efficiency of environmental conditions and vegetation
characteristics, thereby facilitating a more precise estimation of
vegetation NPP. Some researchers have employed the CASA
model and its improved variants to quantify and assess NPP in
disparate regions, including the Yangtze River Basin and plain areas.
These studies provided important references for understanding
ecosystem functions and the sustainability of agricultural
production (Yang et al., 2021; Wan et al., 2022; Zheng et al.,
2020). Although the CASA model is effective at estimating larger
scales, there are still uncertainties and systematic errors in its results
for certain small-scale ecological regions. These errors may be
attributed to the imprecise resolution of data, the selection of
inappropriate model parameters, and the choice of inappropriate
boundary and initial conditions (Su et al., 2022). Moreover, research
has indicated that the primary source of uncertainty in ecosystem
modelling is the value of maximum light energy utilisation efficiency
(LUEmax). LUEmax is influenced by the type of vegetation present
and exhibits pronounced seasonal fluctuations (Zhao et al., 2021).
To enhance the accuracy of estimations, the constant LUEmax has
been adjusted to a dynamic value that varies according to both space
and season (Gan et al., 2021). It is of significant importance to
predict future changes in vegetation NPP in the region, as this will
inform ecological protection and governance measures.

The Huangshui River Basin (HRB) in the Qilian Mountains
represents a vital ecological protection barrier and a primary water
resource conservation area within the Hexi Corridor region of China
(Gao et al., 2021; Li et al., 2024). This region plays a significant role
in the economy, social development, and ecological security of
Qinghai Province (Bi et al., 2023; Liu et al., 2023), including the
Qinghai–Tibet Plateau and the northwest. However, the ecological
environment in the HRB has been significantly degraded in recent
years, which has the potential to negatively impact vegetation
growth and ecosystem health. The majority of research on
vegetation NPP in the HRB has focused on the spatiotemporal
variation characteristics of past vegetation, based on existing data (Li

et al., 2021). These studies have not been subjected to examination
with regard to the effects of multiple factor interactions, and they
exhibit a number of uncertain nonlinear characteristics (Dong
et al., 2021).

This study employs an improved CASA model, drawing upon a
multitude of data sources, to investigate the spatiotemporal
alterations in the vegetation NPP over time within the HRB.
Subsequently, the relationship between these changes and various
factors is analysed, and future trends in vegetation NPP in the region
are predicted. Subsequently, the future trends of vegetation NPP
changes in the HRB are predicted in order to provide early warnings
for future vegetation growth hazards. The research objectives are as
follows: The study aims to simulate and estimate the vegetation NPP
in the HRB from 2000 to 2019, predict the future trends of
vegetation NPP in the HRB, and explore the spatiotemporal
variation patterns of vegetation NPP in the HRB and analyse its
response to different factors. The findings of this study offer
theoretical and empirical support for the assessment of the
carbon sink status in the HRB of the Qilian Mountains.

2 Research area and data sources

2.1 Overview of the research area

The HRB covers an area of approximately 32,900 km2 (102°57′-
105°40′E, 35°30′-38°22′N), with the majority of the river’s course
situated in the southern and northwestern regions of the Qilian
Mountains in China. The Huangshui River is an important tributary
in the upper reaches of the Yellow River (Figure 1). The Huangshui
River and its largest tributary, the Datong River, flow through two
valleys in the north and south, exhibiting geomorphic features such
as valley terraces and floodplains (Lv et al., 2021). The terrain of the
HRB exhibits a north-south gradient, with the highest elevations in
the northwest and the lowest in the southeast. This is accompanied
by a complex topography comprising highmountains and loess hills.
The HRB experiences a typical temperate continental climate,
characterised by abundant sunlight and significant temperature
differences between day and night. The precipitation in the basin

FIGURE 1
Overview of the research area.
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gradually decreases from the southeast to the northwest due to the
uplift of the Qinghai–Tibet Plateau and the influence of the
northwest monsoon. Consequently, the wind strength also
increases in the same direction. The climate of the HRB is
characterised by long, cold winters and short, cool summers. The
HRB is predominantly comprised of temperate grasslands and
deserts, with a plethora of plant species that are resilient to
drought and cold (Hua et al., 2023). The vertical distribution of
vegetation in the watershed is clearly discernible, with grassland,
desert grassland, and desert occurring in a vertical sequence from the
top to the bottom. The HRB’s geographical location and severe
climatic conditions result in low vegetation coverage, a fragile
ecosystem, and a need for long-term monitoring and prediction
of early warnings.

2.2 Data sources

2.2.1 Remote sensing data
In this study, normalized difference vegetation index (NDVI)

data were used to estimate vegetation NPP data and analyze their
response using the CASA model. The NDVI provides vegetation
information and controls the photosynthesis rate in CASA
estimation, thereby improving the simulation accuracy of CASA
models (Xu et al., 2024). The NDVI data for the HRB from 2000 to
2019 were obtained from the LAADS database. The data were
collected at 16-day intervals and had a spatial resolution of
250 m. At the same time, quality assurance (QA) information
was provided to ensure the reliability of the data. The MODIS
reprojection tool (MRT) was employed for data preprocessing. To
reduce the effects of clouds on the data, we used maximum value
composites (MVCs) to synthesize and trim the processed data into
NDVI annual data. To reduce the effects of soil background and
improve the information in the NDVI data, we excluded areas with
NDVI values less than 0 throughout the study period and extracted
feature attribute values (Akanbi et al., 2024).

Furthermore, a consistency analysis was conducted between the
MODIS NPP data and the CASA NPP estimation results. The
MODIS NPP data originate from the annual NPP dataset in the
MOD17A3H version products. The dataset has a temporal
resolution of 1 year and a spatial resolution of 500 m, and was
processed through calibration and cloud removal. The dataset was
then concatenated and cropped, with outliers removed, to obtain the
NPP accuracy validation dataset from 2000 to 2019.

2.2.2 Meteorological data
The environmental factors of temperature and precipitation

exert a considerable influence on ecosystems, with a notable
impact on the carbon cycle and energy flow of terrestrial
ecosystems (Li et al., 2021; Ma et al., 2024). To achieve a more
accurate simulation of these processes, we combined temperature
(TEMP) and precipitation (PRE) data and conducted
comprehensive research using the CASA model. The scarcity of
data in the HRB has resulted in the introduction of significant
interpolation errors. To enhance the precision of the simulation, we
selected monthly average temperature and precipitation data from
110 out of 120 meteorological stations in the northwest region. The
initial step is to preprocess any missing or abnormal values. Data

with missing measurements for a period exceeding 6 months were
excluded. In the case of data with less than 6 months of
measurement, linear interpolation was conducted using ArcGIS
Pro software. Finally, data with precipitation below 0 mm were
replaced with the mean of the previous and subsequent months.
Subsequently, the temperature and precipitation data were
interpolated and cropped using ANUSPLIN software, thereby
obtaining monthly temperature and precipitation distribution
maps of the HRB from 2000 to 2019. Following the combination
of the bands, the temperature and precipitation datasets
were obtained.

There is evidence to suggest that solar radiation (SR) plays a role
in providing energy input in CASA estimation (Huang et al., 2023).
In this study, solar radiation data is employed to facilitate the
simulation of vegetation growth status and carbon storage. A
total of 118 radiation station data sets were selected through
screening and preprocessing, and the inverse distance weighting
method was employed for interpolation. Furthermore, data
preprocessing was implemented to generate a solar radiation
dataset for the HRB. It is important to recognise that uncertainty
is an intrinsic aspect of the process of spatial interpolation. However,
in the subsequent NPP prediction work, this uncertainty was neither
quantified nor subjected to a thorough analysis to determine its
propagation.

2.2.3 Land use type data
In order to ascertain the maximum solar energy utilisation rate

in the CASA model, land use type data were employed. The dataset
provides 23 different types of land use (Xiao et al., 2023). To extract
land cover type data from the HRB, a mask was used, and the data
were converted into an Alberts projection. The spatial resolution was
then adjusted to match the NDVI data. Additionally, a dataset of
land cover types suitable for the CASA model in the HRB was
obtained. Table 1 provides specific information on the data used in
this study.

3 Methodology

In this study, multi-source data were employed to estimate
vegetation NPP data using an improved CASA model, which
revealed the spatiotemporal variation characteristics of vegetation
NPP in the HRB from 2000 to 2019. Subsequently, the ConvGRU
neural network prediction model was employed to investigate
prospective trend alterations in vegetation NPP in the HRB. A
quantitative analysis was conducted on the response mechanisms
between vegetation NPP and TEMP, PRE, SR, and NDVI.
Additionally, the spatial aggregation situation was explored. The
technical roadmap is presented in Figure 2.

3.1 Improved CASA model

The CASA model is a process-based remote sensing model that
integrates ecosystem productivity with soil carbon and nitrogen
fluxes (Yang et al., 2021). It can be used to estimate regional
vegetation net productivity, taking into account the land cover
changes caused by human activities. The model also improves
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the calculation of soil carbon cycling and total ecosystem nitrogen
availability related to plant uptake demand (Chen et al., 2024). The
present study employed the CASA model to estimate NPP in the
HRB on a monthly basis, with the driving variables being NDVI,
TEMP, PRE, and SR (Figure 3). The vegetation NPP is determined
by two variables: the absorption of photosynthetic active radiation

(APAR) and the conversion rate of light energy (LUE) (Lee et al.,
2024). The calculation method is shown in Equation 1.

NPP x, t( ) � APAR x, t( ) × LUE x, t( ) (1)
whereAPAR(x, t) is the photosynthetic effective radiation absorbed
by pixel x in month t (g·m–2·month–1), and LUE(x, t) is the actual

TABLE 1 Detailed information and sources of data used in this study.

Data Data resolution Time coverage Number Data usage Source

Spatial Temporal

MODIS NDVI 500 m 16-day 2000–2019 — Inversion LAADS

MODIS NPP 500 m yearly 2000–2019 — Validate LAADS

FPAR 500 m 8-day 2000–2019 Inversion LAADS

TEMP 500 m monthly 1970–2019 110 Inversion CEMC

PRE 500 m monthly 1970–2019 110 Inversion CEMC

SR 500 m monthly 1981–2019 118 Inversion CEMC

CLCD 30 m yearly 1985–2019 - Inversion NCDC

Note. Some abbreviations in the table are as follows: Level-1, and Atmosphere Archive and Distribution System (LAADS), CMA, Earth System Modeling And Prediction center (CEMC),

National Climatic Data Center (NCDC).

FIGURE 2
Overall technical roadmap.
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light energy utilization rate of pixel x in month t (gC·MJ–1). The value
of APAR is determined by the solar effective radiation that
vegetation can absorb and the proportion of the vegetation’s
absorption of incident photosynthetic effective radiation. LUE is
defined as the ratio of the chemical potential contained in dry matter
produced per unit area over a specified period of time to the
photosynthetic effective radiation energy projected onto that area
at the same time (Guo et al., 2021). The calculation method is shown
in Equations 2, 3.

APAR x, t( ) � SOL x, t( ) × FPAR x, t( ) × 0.5 (2)
LUE x, t( ) � Tε1 x, t( ) × Tε2 x, t( ) × Wε x, t( ) × LUEmax (3)

where SOL(x, t) is the solar radiation of pixel x in month t
(gC·m−2·month−1) and FPAR(x, t) is the absorption ratio of the
vegetation layer to the incident photosynthetically active radiation.
A constant of 0.5 represents the solar effective radiation that
vegetation can utilize (wavelengths ranging from 0.4 to 0.7 μm),
and Tε1(x, t) and Tε2(x, t) are the proportion of total radiation and
represent the stress effects of low and high temperatures on light
energy utilization efficiency. Wε(x, t) is the coefficient of water
stress impact reflecting the influence of water conditions.

The traditional CASA model sets LUEmax as a fixed constant of
0.389 gC·MJ−1, thereby ignoring the regional differences caused by
vegetation type diversity. In order to enhance the precision of NPP
inversion, this study introduces the concept of seasonal adjustment
factors based on vegetation indices, which allows for the dynamic
simulation of LUEmax changes over specific time periods. To provide
a more accurate reflection of the spatiotemporal variation in light energy
utilisation efficiency under different vegetation types and environmental
conditions. The calculation method is shown in Equations 4, 5.

LUEmax�
a × SNDVI + b

FPAR
(4)

SNDVI � max 0.2, min
NDVI −NDVImin

NDVImax −NDVImin
( ), 1( ) (5)

where SNDVI is an additional NDVI seasonal adjustment factor; A and b
are linear regression parameters of SNDVI over the years; NDVImax and
NDVImin are the extreme values of monthly NDVI variation.

3.2 Statistical analysis

3.2.1 Correlation analysis
This paper employed Pearson correlation analysis to investigate

the response relationship between the interannual mean of

FIGURE 3
Process of estimating vegetation NPP using CASA model.

TABLE 2 Setting of correlation coefficient levels.

Correlation coefficient range Level

0.8<R Significant positive correlation

0.5<R < 0.8 Moderate positive correlation

0.3<R < 0.5 Mild positive correlation

0<R < 0.3 Weak positive correlation

−0.3<R < 0 Weak negative correlation

−0.5<R < −0.3 Mild negative correlation

−0.8<R < −0.5 Moderate negative correlation

R < −0.8 Significant negative correlation
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vegetation NPP and temperature, precipitation, radiation, and
NDVI in the HRB, with the objective of exploring the impact of
climate factors on vegetation NPP. Pearson correlation coefficients
(PCCs) are a commonly employed statistical measure for
determining the degree of directionality and correlation between
two or more related variables (Guo et al., 2024). The value range of
PCCs is [−1,1], with a value of 1 indicating a perfect positive
correlation and a value of −1 indicating a perfect negative
correlation. In this study, the correlation coefficient level was set
to four positive and four negative levels based on the F-test
results (Table 2).

3.2.2 Trend analysis
In this study, we employed a combined approach utilising Theil-

Sen median (TS) trend analysis and the Mann-Kendall (MK) test to
examine the alterations in vegetation NPP over the 2000–2019 and
2020–2030 timeframes. The TS trend analysis is a robust non-
parametric statistical method for calculating trends that can produce
reliable estimates of monotonic trends (Cao et al., 2023). TheMK test is
primarily employed to ascertain the statistical significance of a time
series’ trend and to identify potential inflection points (Ding et al.,
2024). The method does not require the sample to follow a specific
distribution, thereby effectively avoiding the influence of a few outliers
on the test results. A positive MK test result indicates an upward trend,
whereas a negative result indicates a downward trend. The values 1.645,
1.96, and 2.32 represent the trend of the MK test at confidence levels of
0.1, 0.05, and 0.01, respectively. Furthermore, this article employs a
significance level of 0.05 R2 to assess the efficacy of the single linear
regression model.

3.2.3 Global Moran’s I
Global Moran’s I index is a comprehensive tool for evaluating the

aggregation, dispersion, or random distribution of elements in space, as
well as quantifying the average correlation between all spatial units and
their neighbouring units across the entire region (Wan et al., 2024). This
study employed the Global Moran’s I index to examine the influence of
diverse factors on the spatial clustering intensity of NPP. Given the
spatial resolution of the NDVI dataset in the study area, which is 500m,
buffer zones were constructed with intervals of 500 m. NDVI values
were extracted from each buffer zone individually in order to calculate
the Global Moran’s I value, which reflects the spatial autocorrelation of
vegetationNPP in the study area. A comparison of the GlobalMoran’s I
values across years allows the trend of the spatial aggregation of
vegetation NPP to be discerned. Moreover, the Global Moran’s I
values between different influencing factors and vegetation NPP
were calculated, and combined with spatial distribution maps to
calculate the Global Moran’s I, Z values, and P values of each buffer
zone (Lotfata, 2020). This was done in order to reveal the specific impact
of each factor on the spatial aggregation pattern of vegetation NPP. The
calculation method is shown in Equation 6.

I � n
S0

×

∑n
i�1
∑n
j�1
wijzizj

∑n
i�1
z2i

(6)

where n represents the total number of spatial units in the study area,
zi is the deviation between the attribute of element i and its average

value, zj is the deviation between the attribute of element j and its
average value, wij is the spatial weight between elements i and j, and
S0 is the set of all spatial weights. The value of I is between [−1,1], and
I > 0 indicates that the attribute values of all regions have a positive
correlation in space; that is, the larger (smaller) the attribute values
are, the easier they are to cluster together. I < 0 indicates that the
attribute values of all regions have negative spatial correlation,
meaning that the larger (smaller) the attribute values, the less
likely they are to cluster together. When I = 0, it indicates that
the area is randomly distributed and has no spatial correlation.

3.2.4 Cold and hot spot analysis
Cold and hot spot analysis identifies specific regions with

significantly higher (hot spots) or lower (cold spots) attribute
values compared to surrounding areas through spatial clustering
analysis of attribute values in geographic data. This method aims to
reveal the hidden distribution patterns in geographic data, explore
potential spatial correlations and their inherent laws. Thus, it can
compensate for the shortcomings of kernel density estimation
method in quantitatively expressing hotspot areas (Deng and
Cao, 2023). The calculation method is shown in Equation 7.

Z G*
i( ) � ∑n

j�1
wijxj − �X∑n

j�1
wij

2

s

������������
n∑n
j�1

wij
2− ∑n

j�1
wij( )2

n−1

√√ (7)

where G*
i represents the spatial dependence of feature I, xj is the

value of variable X at feature position j, the spatial weight between
elements i and j is wij, and n is the total number of elements. The
calculation method is shown in Equation 8.

G G*
i( ) � G*

i − Exp G( )[ ]
s

��������
Var G*

i( )√ (8)

where Exp(G) and Var(G*
i ) are the G*

i mathematical expectations
and theoretical variances. G(G*

i ) is positive and significant,
indicating a high degree of clustering of high values in the region
(hotspot area). On the contrary, it indicates that the clustering
degree of low values in the region is high (hotspot area).

3.3 ConvGRU model

The convolutional neural network (ConvGRU) is a hybrid model
that combines convolutional neural networks (CNN) and gated
recurrent units (GRU), rendering it particularly suitable for
processing data exhibiting spatiotemporal characteristics. In
comparison to traditional machine learning models, ConvGRU, as a
variant of Recurrent Neural Network (RNN), is capable of capturing
spatial features (such as geographic location, terrain, etc.) within data
through its convolutional layers, and of achieving parameter sharing
through convolution operations (He et al., 2024). In particular, the
ConvGRU employs convolutional layers in the computation of each
gate, thereby facilitating the extraction and integration of spatial features
through the sliding of the convolution kernel over the input data. The
calculation method is shown in Equations 9–12.
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zt � σ WzpXt + UzpHt−1 + bz( ) (9)
rt � σ WrpXt + UrpHt−1 + br( ) (10)

~ht � tanh WhpXt + Uhp rtpHt−1( ) + bh( ) (11)
ht � 1 − zt( )pHt−1 + ztp~ht (12)

Where ht represents the hidden state at time t; W and U are
convolutional weights; b is the bias term; σ is the sigmoid function;
tanh is a hyperbolic tangent function.

This study adopted a ConvGRU architecture and constructed an
end-to-end deep learning model with the objective of providing high-
precision spatiotemporal prediction capability for time-seriesNPPdata in
the HRB. This model follows the established Encoder-Predictor-Decoder
paradigm, which is effective for capturing complex spatiotemporal
dynamics (Figure 4). The Encoder performs sliding window and
convolution kernel operations on the input temporal NPP raster data
through convolutional layers. This process allows for thefine extraction of
local spatial features, which are then encoded into high-level abstract
representations (He et al., 2024). The Predictor is constituted by GRU
units, which effectivelymerge the historical hidden states with the current
convolution-enhanced feature inputs, thus generating hidden states that
contain information regarding future trends. The Decoder is responsible
for decoding the deep prediction information into precise output formats
(predicted values, classification labels, etc.), thereby ensuring that the
prediction results is accurate (He et al., 2023).

We used the annual NPP grid data obtained from the CASA
model as input to predict the distribution of NPP in the study area
for the next year. Within the time series range of all data, we used
sliding windows to segment the dataset with a step size of 12months.
The last 23 time steps of the sample were extracted as test set labels,

while the remaining samples were divided into training and
validation sets using K-fold cross-validation (K = 5) (Fang et al.,
2024). We attempted to compress the numerical scale of temporal
NPP raster data using function fitting to accelerate convergence and
prevent gradient vanishing or exploding.

4 Results

4.1 Difference test of vegetation NPP data

In this study, we compared and validated the NPP dataset
estimated using the CASA model with the NPP product dataset

FIGURE 4
An end-to-end network model structure based on ConvGRU.

FIGURE 5
Data comparison verification. We compared the annual changes
between the NPP dataset estimated by the CASA model and the NPP
product dataset of the MOD17A3H series.
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of the MOD17A3H series. Both datasets showed a stable upward
trend in interannual NPP, with the initial maximum value
remaining within 50.0 g·m−2 after linear fitting. The difference
between the two datasets fluctuated between 1.2 and 72.6 g·m−2

(Figure 5). From 2000 to 2010, the overall MODIS NPP value was
higher than the estimated CASA value, with the most significant
difference occurring between 2002 and 2010. From 2011 to 2019, the
estimated CASA value was higher than the MODIS NPP value, with
the most significant difference occurring in 2017. Thereafter, the
difference between the two showed a decreasing trend. We
conducted a correlation test on the average annual values of the
two types of data at the pixel scale over a period of 5 years (Figure 6).
The correlation coefficients were 0.8251, 0.7568, 0.7409, and 0.7496,
respectively, indicating a high overall correlation in the data. This
suggests a positive correlation between the overall performance of
the CASA model and the MODIS NPP product (Sun et al., 2023).

While the MODIS NPP and CASA models show a strong
correlation, there are still some differences between them. The
MODIS NPP model primarily relies on satellite remote sensing
data and uses spectral analysis and machine learning methods to
estimate NPP. It focuses more on the feedback of surface NPP and is
therefore greatly influenced by land type (Suryakanti and Prasad,
2024). The CASA model uses a comprehensive approach of ecology
and environmental science based on ground observation data to

estimate NPP. The accuracy and quality of various driving factors in
the data influence NPP estimation (Wan et al., 2022; Jiang et al.,
2020). The differences in data sources and mechanisms used by the
two models result in variations in their estimates. Variations in
results may also arise due to the use of different algorithms and
technologies (Yan et al., 2021). Furthermore, the CASA model may
introduce uncertainty in the estimation of NPP due to limitations in
remote sensing data and errors generated during ground
observation data processing. To verify and correct the final
results, it is necessary to include more relevant driving factors
(Xu et al., 2022). This may result in discrepancies between the
NPP estimated by the CASA model and that obtained
from MODIS data.

4.2 Spatiotemporal variation characteristics
of vegetation NPP in the HRB

From 2000 to 2019, the vegetation NPP in the HRB showed a
downward trend in some time periods but showed a significant
growth trend overall (Figure 7). This trend in vegetation NPP
reflects regional vegetation coverage and growth. To analyze this
trend in depth, we conducted a time series analysis of the
interannual mean NPP estimated by the CASA model in the

FIGURE 6
Data consistency analysis. We performed correlation testing between the NPP dataset estimated by the CASAmodel and the NPP product dataset of
the MOD17A3H series. We conducted correlation tests on themean values of two types of data (A) 2000–2004, (B) 2005–2009, (C) 2010–2014, and (D)
2015–2019 at the pixel scale over a period of 5 years.
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HRB from 2000 to 2019. The HRB’s annual average vegetation NPP
exhibited a significant growth trend, with a growth rate of
13.721 gC·m−2·a−1. R2 reached 0.9197. The range of variation was
between 400 and 600 gC·m−2. It is noteworthy that the most
pronounced downward trend occurred from 2008 to 2019, with a
decline rate of 50 gC·m−2·a−1.

The spatial variation of the vegetation NPP in the HRB
showed a significant increasing trend over time (Figure 8).

The growth trend in most regions is extremely significant (P <
0.01), with only a few regions failing the significance test (P >
0.1), and very few regions showing significant and extremely
significant reductions (−0.05<P < 0). The growth rate of NPP in
most areas of the HRB was at a relatively high level. In addition,
the regions with a significant increase in NPP (>5 gC·m-2·a−1)
were mainly distributed in the northwest and central southern
boundary areas of the study area.

FIGURE 7
Interannual variation and spatial distribution of vegetation NPP in the HRB from 2000 to 2019. (A) interannual variation of vegetation NPP for many
years; (B–G) spatial variation of vegetation NPP in the HRB with a 3-year interval. We used the same color band to represent changes.
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4.3 Response relationship between
vegetation NPP and various factors

The response relationship between vegetation NPP and TEMP,
PRE, SR, and NDVI was analyzed based on the CASA model’s
estimation of vegetation NPP results. Overall, PRE, SR, and NDVI
had varying degrees of promoting effects on vegetation NPP, while
TEMP had an inhibitory effect on vegetation NPP (Figure 9). The
majority of regions showed a positive correlation between vegetation
NPP and PRE, with a moderate positive correlation of
approximately 79.20%. Only a few regions (0.96%) showed a
weak negative correlation. Similarly, there were very few regions
with a negative correlation between vegetation NPP and SR (<0.1%),
with most regions showing a positive correlation, mainly moderate
positive correlations (40.03%) or significant positive correlations
(53.87%). Approximately two-thirds (67.22%) of the areas displayed
a positive correlation between vegetation NPP andNDVI, while only
32.78% of the areas exhibited a negative correlation. Spatially,
regions with a positive correlation were primarily concentrated in
the eastern boundary of the basin, while regions with a negative
correlation were mainly scattered in the center of the basin.
Furthermore, 22.45% of the total area exhibited a positive
correlation between vegetation NPP and TEMP, primarily
concentrated in a weak positive correlation. Conversely, 77.54%
of the areas displayed negative correlations, mainly weak negative
correlations, with only a few areas demonstrating mild negative
correlations. These areas were primarily distributed in the central
boundary zone of the basin (Table 3).

4.4 Prediction of future vegetation NPP
trends in the HRB

We used the ConvGRU model to predict future vegetation NPP
in the HRB. The annual vegetation NPP in the watershed from

2020 to 2030 exhibited significant temporal variability (Figure 10).
Over the past decade, the average annual growth rate was
3.1973 gC·m−2·a−1, with a range of 640–690 gC·m−2. The period
from 2021 to 2022 exhibited a downward trend, with a decline rate of
approximately 20 gC·m−2·a−1. Additionally, the spatial differences in
the vegetation NPP prediction results in the HRB were not
significant. The spatial variation characteristics of future
vegetation NPP in the HRB showed an overall increasing trend
(Figure 11). The NPP of vegetation in the central region of the
watershed showed an increasing trend, with only a few areas
exhibiting a contraction or decline trend. This growth trend
is expanding.

4.5 Spatial clustering of vegetation NPP

We used global Moran’s I and Getis-Ord Gi* to explore the spatial
clustering characteristics of past and future vegetation NPP. The aim
was to identify spatial hot spot and cold spot areas and enhance our
understanding of vegetation NPP changes in the HRB. The results
showed a clear spatial positive correlation and significant spatial
clustering of vegetation NPP in the HRB, indicating a non-random
distribution (Figure 12). The globalMoran index of vegetationNPPwas
0.843 from 2000 to 2019 and 0.846 from 2020 to 2030. The Z-scores
were 225.878 and 228.542, respectively, far exceeding the critical value
of 2.58. This indicates more than 99% confidence that the NPP does not
exhibit a random distribution in this region. The P-values were all 0,
further indicating that the spatial pattern of vegetation NPP cannot
generate random processes.

To analyze the spatial clustering characteristics of NPP in more
detail, we divided the vegetation NPP clustering areas into seven
categories based on the height and significance level of Gi*. We then
compared the distribution of vegetation NPP spatial hot and cold
spots from 2000 to 2019 and from 2020 to 2030. There was little
difference in the spatial distribution of NPP hot and cold points in

FIGURE 8
Spatial trend and significance analysis of vegetation NPP from 2000 to 2019.
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FIGURE 9
Spatial correlation between vegetation NPP and TEMP, PRE, SR, and NDVI from 2000 to 2019.

TABLE 3 Distribution proportion of correlation between vegetation NPP and various factors.

Correlation coefficient level

<-0.8 −0.8~-0.5 −0.5~-0.3 −0.3–0 0–0.3 0.3–0.5 0.5–0.8 >0.8

NPP-TEMP 0.00% 0.51% 3.85% 73.18% 21.94% 0.49% 0.02% 0.00%

NPP-PRE 0.00% 0.01% 0.11% 0.96% 4.46% 12.78% 79.20% 2.47%

NPP-SR 0.00% 0.07% 0.22% 0.57% 1.38% 3.87% 40.03% 53.87%

NPP-NDVI 0.00% 0.86% 6.20% 25.71% 22.17% 7.39% 22.31% 15.34%
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2000–2019 and 2020–2030. Themajority of regions fell within a 99%
confidence level, with only a few regions being insignificant. Hot
spots were mainly concentrated in the central region of the basin,
while cold spots were mainly distributed in the central and southern
edge areas of the basin. Meanwhile, certain regions in the northern
and northeastern parts of the HRB exhibited significant expansion of
hot spots or contraction of cold spots, whereas the southern and
western central areas displayed noticeable contraction of hot spots
or expansion of cold spots.

5 Discussion

5.1 Response mechanism

In this study, we used the CASA model to estimate vegetation
NPP in the HRB and analyzed the relationship between vegetation
NPP and various factors to reveal the response mechanism. The
results showed that PRE, SR, and NDVI had varying degrees of
promoting effects on vegetation NPP, while TEMP had an inhibitory

FIGURE 10
Interannual variation and spatial distribution of vegetation NPP in the HRB from 2020 to 2030. (A) interannual variation of vegetation NPP for many
years; (B–G) spatial variation of vegetation NPP in the HRB with an interval of 1 year. We used the same color band to represent changes.
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effect. An increase in PRE, SR, and NDVI can enhance vegetation
productivity, while an increase in TEMP may decrease it. This is
because appropriate PRE, SR, and higher NDVI values benefit
vegetation photosynthesis (Xue et al., 2023), promoting
productivity. However, excessive TEMP can cause rapid water
evaporation and insufficient soil moisture, and inhibit vegetation
growth (Qing et al., 2023). PRE is a crucial factor that affects
vegetation NPP. Moderate PRE is beneficial for improving
vegetation productivity, but excessive precipitation can lead to
excess soil moisture (Ardilouze et al., 2022), which affects root
respiration and reduces productivity. SR is also an important factor
that affects vegetation NPP. An increase in SR helps improve the
photosynthetic efficiency of vegetation, thereby enhancing
productivity. The NDVI reflects the productivity status of

vegetation to some extent, with higher values indicating higher
productivity. However, excessively high NDVI values may
indicate that the vegetation is too lush (Fan, 2023), leading to
insufficient illumination of the lower vegetation and ultimately
reducing overall productivity. The impact of temperature on
vegetation NPP varies regionally; moderate temperatures can help
improve productivity, while high or low temperatures may have a
negative impact on productivity (Chen and Zhang, 2023).

The vegetation NPP in the HRB displays a clear positive spatial
correlation and significant spatial clustering rather than a random
distribution. This suggests a certain spatial correlation in vegetation
productivity within the basin. Upon further observation, it was
found that certain areas in the northern and northeastern parts of
the watershed exhibited significant hot spot expansion or cold spot

FIGURE 11
Spatial trend and significance analysis of vegetation NPP from 2020 to 2030.

FIGURE 12
Spatial aggregation of vegetation NPP: (A) from 2000 to 2019; (B) from 2020 to 2030. The red box in the figure represents obvious hot or cold point
expansion, while the green oval box represents obvious hot or cold point expansion.
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contraction. The vegetation in these areas is expected to maintain a
positive growth trend, and the vegetation NPP is projected to remain
stable. However, the southern corner of the basin and the central
western region exhibited significant hot spot contraction or cold
spot expansion, indicating that the vegetation in these areas may be
at risk of degradation in the future, and the vegetation NPP is also
expected to decline. In recent years, environmental problems in the
HRB have become increasingly prominent. Illegal activities, such as
small hydropower projects and the non-standard operation of
tourism facilities, have caused serious damage to the environment
and led to the degradation of the ecological landscape (Wang et al.,
2023). These activities may lead to future ecological degradation of
cold point areas in the watershed. Furthermore, when human
activity reaches a certain intensity, it can negatively affect
regional NPP (Shao and Yang, 2024). It is essential to fully
consider the impact of human activities on the ecological
environment and to take effective measures to reduce their
negative impact.

5.2 Shortcomings and prospects

This study employed a multi-source dataset to conduct a
comprehensive analysis of the spatiotemporal dynamic changes of
vegetation NPP in the HRB. Furthermore, it used ConvGRU model
to predict future trends in this phenomenon. This initiative is designed to
furnish scientific reference and data support for the formulation of
ecological protection policies, continuousmonitoring of vegetation status,
and exploration of carbon cyclingmechanisms. Nevertheless, the study is
not without limitations. These include the presence of uneven data
quality and missing data, limitations in spatiotemporal resolution, and
challenges such as insufficient validation of neural network models and
uncertainty in model parameter optimisation. To further enhance the
credibility and accuracy of our research, we plan to adopt the following
strategies: firstly, we will strengthen the data-sharing mechanism and
establish a unified data quality standard to ensure the reliability and
consistency of data sources; secondly, we will use emerging technologies
such as high-resolution remote sensing technology and the integration of
ground observation networks to improve the resolution of data in both
temporal and spatial dimensions, thereby more accurately capturing the
dynamic changes of vegetation NPP. Furthermore, cross-validation
procedures will be incorporated, a range of performance indicators
will be introduced, and a comparative analysis between models will
be conducted to provide a more comprehensive depiction of the
spatiotemporal evolution characteristics and future development
trends of vegetation NPP in the HRB.

6 Conclusion

In this study, we estimated vegetation NPP data in the HRB from
2000 to 2019 using an improved CASA model. The spatiotemporal
evolution patterns and influencing factors of vegetation NPP in the
watershed were then revealed. The ConvGRU spatiotemporal
prediction model was used to predict the vegetation NPP in the
HRB from 2020 to 2029, and future spatiotemporal evolution trends
were explored. The data suggest that there are notable
spatiotemporal variations in the vegetation NPP within the HRB.

While most areas showed an increasing trend in vegetation NPP, a
few areas have experienced a decline. Additionally, there is a
complex correlation between vegetation NPP and environmental
factors. Vegetation NPP was negatively correlated with TEMP and
positively correlated with PRE, and its correlation with SR and
NDVI varied by region. The NPP of vegetation in most areas of the
HRB is expected to continue to increase in the future. The spatial
distribution of vegetation NPP in the region exhibits significant
characteristics, with a clear trend of hot spot contraction or cold spot
expansion. Analyzing and studying the spatiotemporal changes,
future trends, and response mechanisms of vegetation NPP in
the HRB can provide a reference for formulating small-scale
regional ecological protection policies, monitoring vegetation
changes, and researching regional carbon cycling.
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