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Introduction

Urban biodiversity faces major obstacles resulting from simultaneous reductions in
green space, habitat fragmentation, and environmental changes (Beninde et al., 2015). All of
these affects biodiversity in urban areas as well as the provision of the associated ecosystem
services with direct negative consequences for all living organisms in urban areas including
humans (Cardinale et al., 2012). Nature-based solutions (NbS), which involve sustainable
management and restoration of ecosystems to address societal challenges and enhance
human wellbeing and biodiversity (Cohen-Shacham et al., 2016), are crucial for improving
urban biodiversity. These solutions include green roofs and facades, urban parks, gardens
and urban agriculture, all of which becomes increasingly important (Dempsey and Jenks,
2010; Filazzola et al., 2019). The successful implementation of these elements into urban
landscapes strongly depends on the quality of the soils or substrates used. Recent studies
have shown that multifunctionality and soil resilience, strongly depend on their biotic
properties, including biomass, diversity of micro- and macro-organisms along with their
activity (Zak et al., 2003; Lange et al., 2015; Weisser et al., 2017; Prommer et al., 2020).
However, the microbiome of urban soils and substrates is often in a dysbiotic state, i.e., both
the identity and diversity of microbiota is different from natural soils (Clayton et al., 2021).
Therefore, improving the diversity and activity of the soil microbiome may result in several
advantages for the respective soils or substrates. However, strategies on how to manage low
microbial diversity in urban soils and substrates are still not well established (Fulthorpe
et al., 2018). Here we discuss if strategies from agriculture or restoration ecology can be
implemented in urban settings to manage microbial diversity.

Technosols – what is special about soils and
substrates in urban settings?

As a result of construction activities in urban areas, such as excavations, compression
from heavy machinery, and calcium accumulation from cement, gypsum, and irrigation,
urban soils are characterized by increased pH values and numerous disturbances (Pouyat
et al., 2010). These result in compaction, poor soil structure, including a lack of aggregates
and soil pores of all size classes, reduced nutrient and organic matter contents, and
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increased concentrations of organic and inorganic pollutants
(Pouyat et al., 2010). The consequences of these disturbances for
life in the soil are exacerbated by additional stress factors such as the
urban heat island effect (Buzzard et al., 2021) and prolonged periods
of drought mainly in summer (Changnon, 2000). Subsequently
negative effects for water permeability, gas exchange, and the
ability of plant roots to grow in such environments are
frequently observed (Craul, 1985; Byrne, 2007; Pouyat et al.,
2010; Faeth et al., 2011). Urban soils range from semi-natural
soils (e.g., in parks) to Technosols and in worst case to Ekranic
Technosols. According to the WRB classification of soils,
Technosols are characterized by a strong human influence and
contain a large proportion of artefacts (IUSS Working Group
WRB, 2022), where the Ekranic Technosols are referring to
sealed surfaces, which however will be out of scope as they likely
need a very special treatment. Importantly, Technosols are not a soil
class with clearly defined genesis and chemical properties as other
soils in the soil classification but vary dramatically in their chemical
and physical properties (Schad, 2018). Another special case of urban
Technosols are substrates used for green roofs or facades. Their
physical properties like weight and water holding capacity are
optimized for the built environment. For example, the mixture of

artificially modified and recycled materials used for green roofs is
much lighter than finite natural soils and requires minimal irrigation
and fertilization due to the materials it contains (Ampim et al.,
2010). However, biotic properties supporting ecosystem functions
and plant microbe interactions are often hampered (Ondoño et al.,
2014; Fulthorpe et al., 2018), but are beneficial for plant performance
under the relatively harsh abiotic conditions with shallow soil depth
and direct sunlight on green roofs (Ampim et al., 2010).

The importance of positive feedback
loops between above- and below-
ground biodiversity for the resilience
and multifunctionality of soils

Under optimal conditions soils promote plant growth by
providing nutrients, water and diverse ecological niches
(Breure, 2004; Guilland et al., 2018). This enables the growth
of different plants, which in turn increases carbon transfer to the
soil, leading to higher carbon stocks (Barrios, 2007) and greater
microbial diversity and activity (Ehrenfeld et al., 2005). These
interactions between soil, plants, and microbes influence each

FIGURE 1
Ecosystem services of urban soil - a direct correlation exists between the various soil properties (pH value, organic matter content, fragment
composition, bulk density, etc.) and the ecosystem services provided. Properties marked in green show the positive and those marked in red the negative
effects on biodiversity and the functionality of the ecosystem due to the differences of natural and urban soils. The dysbiosis shown affects the four areas
of ecosystem services provided (supporting, regulating, providing and cultural services, respectively). The figure was created with BioRender.com.
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other’s functions positively and have an impact on the ecosystem
services provided (Ehrenfeld et al., 2005). Based on the
classification by Adhikari and Hartemink (2016), we posit that
the disturbed properties of urban soils, which are centrally
considered due to their significant influence, adversely affect
the quality of ecosystem services (Figure 1). Nutrient-rich soils
with diverse microbial communities promote higher above-
ground biomass, while diverse plant communities support
below-ground biodiversity (Morel et al., 2015; Saccá et al.,
2017; Prommer et al., 2020). These beneficial interactions,
particularly with plant growth-promoting bacteria (PGPB) and
fungi (PGPF) improve soil colonization (Cecchi et al., 2021;
Singh et al., 2023). Positive feedbacks between above- and
below-ground biodiversity in natural and seminatural areas
are well-documented (Eisenhauer, 2012; Jing et al., 2015). A
wide cropping sequence or catch crops, for example, improve
soil biodiversity and crop yields through increased nutrient
mobilization and pathogen control (Pattnaik et al., 2021).
However, such concepts are missing for urban soils, where
management strategies for Technosols must consider their
unique properties and constraints.

How to improve andmaintain microbial
biodiversity in Technosols?

Studies of natural chronosequences like glacier forefields
demonstrated that microbial succession to a climax ecosystem
can take hundreds of years (Baer et al., 2002; Schulz et al., 2013).
To accelerate this process, restoration ecology uses targeted actions
to restore disturbed ecosystems faster (Waterhouse et al., 2014; Luna
et al., 2016; Perkins and Hatfield, 2016). Here we outline options
inspired by strategies from agriculture and restoration ecology to
increase and maintain microbial biodiversity in urban Technosols.

Introducing microbial inoculants has been successfully applied
to increase soil microbial diversity (Calvo et al., 2014; Delmont et al.,
2014), making it a popular strategy for restoration and agriculture
(Luna et al., 2016; Schmid et al., 2020). Single strain inoculation used
as biofertilizer (Wong et al., 2014) or biopesticide (Müller and Berg,
2008), can also be used to generally improve ecosystem services
(Dwivedi and Soni, 2011). The effectiveness of inoculation depends
on parameters like organic matter (Farrell et al., 2020), available
nutrients like phosphorus (Rooney and Clipson, 2009), and
pH (Ferguson et al., 2013), as well as the competitiveness of the
existing microbial community (O’Callaghan et al., 2022). In urban
settings, successful strains must improve soil quality and initiate
positive feedback loops with above-ground biodiversity, while being
resilient to urban soil constraints like pollution and poor structure.
Although single strains can enhance plant stress tolerance, for
example against heavy metals, the numerous stressors in
Technosols makes it unlikely that a single strain can provide all
needed functional traits. Instead, defined microbial consortia with
complementary functions and synchronized interactions may be
more effective. The development and application of such synthetic
communities (SynComs) (Shayanthan et al., 2022), can be tailored to
address the different environmental stressors like drought, heat,
salinity, and pollutants. This novel approach thus enables the
customized use of microbial inocula depending on the conditions

in urban environments. Recent high-throughput strain isolations
provide numerous microbes with known physiology for such
strategies (Valliere et al., 2020) like microbes which induce
stress-resistance, e.g., by forming exopolysaccharides or by
degrading pollutants.

Another approach to improve urban soil microbiomes is soil
inoculation, which uses a small amount of natural soil as inoculum
instead of poor surface capping materials available in huge amounts
(Wubs et al., 2016). Similar approaches were already used to
improve other soil properties like bulk density by adding
compost (Kranz et al., 2020). The inoculation of microbes by
using small amounts of soil has been already successfully used in
restoring degraded terrestrial ecosystems, such as German post-
mining areas, where loess material is mixed with 10% original soil
and improves soil quality within a few years (Pihlap et al., 2019;
Schmid et al., 2020; Vuko et al., 2020). Although cost-efficient and
easy to implement, this black box approach lacks detailed knowledge
of the inoculum composition (Allison and Martiny, 2008), making a
targeted use difficult. Additionally, the original soil must be
preserved during construction work, which requires advanced
planning. If the original soil is lost or contaminated, it can be
difficult to find similar soils with suitable abiotic properties for
transplanting (Boivin et al., 2002). Metalliferous or soils with high
organic matter content (e.g., naturally occurring phenols), where the
corresponding soil microbiome had centuries to adapt to the
prevailing conditions and could be considered ‘extremophilic’,
may serve as valuable sources for the inoculating urban soils.

Whether the establishment of a plant beneficial microbiome is
successful strongly relies on the plant community as well as plants
provide the essential ecological niches and carbon sources for the
plant-associated microbiota (Tsiknia et al., 2021). Thus, a successful
inoculation approach requires a combined application of PGPB and
the target plant species that benefits from the functional properties of
the introduced microbes. Legumes (e.g., plants from the Fabaceae
family) and their symbionts are well-researched in this regard and
can be used on green roofs to improve soil structure and nutrient
contents. However, green roofs are extreme habitats with challenges
like substrate depth, temperature fluctuations, water availability, and
wind speed (Lundholm, 2006; Madre et al., 2014). Thus, current
plant selection focuses on adaptability to harsh conditions and
drought resilience (Lundholm and Walker, 2018), favoring
drought-tolerant species like Crassulaceae succulents, which have
low cooling performance, because of their CAM metabolism which
enables them to reduce their transpiration during the day/summer
(Blanusa et al., 2013). However, relying solely on Crassulaceae does
not improve soil structure, microbial communities, or above-ground
biodiversity. In contrast to roofs dominated by a single plant species,
diverse plant communities can be used, which are characterized by
high species richness and thus provide more and temporally stable
ecosystem function than less diverse communities (Allan et al.,
2011). At the same time, the number of ecological niches for the
microbiota increases, which reduces competition for nutrients and
space for the plants (Ashton et al., 2010). In this regard, Hoch et al.
(2019) showed that green roofs hosting diverse plant species of
wildflowers and grasses exhibited elevated diversity among root-
associated microorganisms along with reduced pathogen diversity
compared to green roofs consisting of sedum species only. Diverse
plant mixtures with grasses also retain rainwater better compared to
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classical succulents (Dunnett et al., 2008). Moreover, the use of
different plant species on green roofs can reduce urban
fragmentation and serves as a green corridor in an urban green
network with higher seed exchange and vegetative propagation
(Beninde et al., 2015). Thus, increased plant diversity on green
roofs has the potential to improve both the diversity of microbiomes
in the substrate as well as the overall performance of the ecosystem
inducing the described positive feedback loops between above-
ground performance and below-ground processes and activities.
Anyhow in many areas we are still lacking the right plant
communities for such approaches. In addition, usually plants are
chosen because of their aesthetic value, even if they are exotic and
sometimes invasive, with pronounced consequences for microbial
life in soil, as many of those plants are capable to produce
phytoalexins and other toxins, which are exuded into soil
(Kourtev et al., 2002).

Discussion

Soil microorganisms act as a linchpin between soil and plants, that
grow in it. In this publication, we have presented two options for
improving urban soils or substrates. Recently, the understanding of
mutual plant-microbe interactions has improved, and focus has
shifted to the important effects of soil microorganisms. We agree
withO’Callaghan et al. (2022) on the importance of understanding the
ecology and mode of action of vaccinated strains in order to optimize
their efficacy and targeted use. Therefore, careful consideration of site-
specific conditions and further research into microbial community
dynamics and potential unintended consequences are essential for
successful implementation. Stressors differ temporally and spatially in
an urban environment and the interactions caused by multiple
stressors also need to be better understood. Particularly in urban
settings, consequences for human health must be considered. This
includes the possibility to introduce potential human pathogens or
microbes, which may carry antibiotic resistance genes as a matter of
co-selection, which they can transfer to human pathogenic bacteria,
but also issues like allergens which might be introduced by plant
species used for maintaining microbial diversity in soil. Additionally,
the importance of soil conservation in urban areas must be
considered. Many of these soils can be considered at least as semi
natural and may not be real Technosols. A careful treatment of these
soils during construction, avoiding compaction and pollution would
improve the situation of urban soils (Kumar and Hundal, 2016).
Preserved soil can also be used as soil inoculant in already degraded

urban areas leading to self-regeneration cycles of those soils. Despite
the challenges described, we believe that there are implementable
opportunities to strengthen urban ecosystem services based on an
improvement of the soil microbiome. Here combined approaches of
microbial inoculation of single strains, SynComs or the
transplantation of soils together with the best fitting plant species
might open a window of new opportunities.
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