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Introduction: Climate change isone of the major challenges facing the world
today, causing frequent extreme weather events that significantly impact human
production, life, and the ecological environment. Traditional climate prediction
models largely rely on the simulation of physical processes. While they have
achieved some success, these models still face issues such as complexity, high
computational cost, and insufficient handling of multivariable nonlinear
relationships.

Methods: In light of this, this paper proposes a hybrid deep learning model based
on Transformer-Convolutional Neural Network (CNN)-Long Short-Term
Memory (LSTM) to improve the accuracy of climate predictions. Firstly, the
Transformer model is introduced to capture the complex patterns in cimate
data time series through its powerful sequence modeling capabilities. Secondly,
CNN is utilized to extract local features and capture short-term changes. Lastly,
LSTM is adept at handling long-term dependencies, ensuring the model can
remember and utilize information over extended time spans.

Results and Discussion: Experiments conducted on temperature data from
Guangdong Province in China validate the performance of the proposed
model. Compared to four different climate prediction decomposition
methods, the proposed hybrid model with the Transformer method performs
the best. The resuts also show that the Transformer-CNN-LSTM hybrid model
outperforms other hybrid models on five evaluation metrics, indicating that the
proposed model provides more accurate predictions and more stable fitting
results.
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1 Introduction

Climate change, as one of the most important global issues of the 21st century, has attracted
extensive attention from governments, scientists, and the public. The extreme weather events
brought about by climate change, such as floods, droughts, heatwaves, and storms, have not only
caused significant impacts on human society and the economy but also had profound
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destructive effects on natural ecosystems Akpuokwe et al. (2024).
Therefore, accurately analyzing and predicting climate change trends
has become a focal issue for both academia and industry.Climate
prediction methods are generally classified into five areas: (1) game
theory models, (2) basic methods, (3) simplified models, (4) statistical
models, and (5) artificial intelligence (AI) methods. Among these,
statistical and AI approaches are most widely used due to their
effectiveness. Statistical methods, among the earliest used in climate
prediction, rely on historical time series data and external factors.
Common techniques include Regression Models (RM) Sreehari and
Ghantasala (2019), Autoregressive (AR) Broszkiewicz-Suwaj and
Wyłomańska (2021), ARIMA Amjad et al. (2022), Transfer
Function (TF) Ruigar and Golian (2016), GARCH Pandey et al.
(2019), and ARMAX Sarhadi et al. (2014). However, climate time
series are highly volatile and complex, complicating prediction tasks.
Traditional statistical methods, usually based on linear assumptions,
struggle to capture the nonlinear relationships in climate data. Climate
time series often show significant fluctuations, noise, and time-varying
properties, requiring more sophisticated models to adapt to these
characteristics. Missing data further complicates predictions, as
preprocessing is needed to address these gaps. External factors such
as solar radiation, volcanic activity, and human activities add to the
complexity of climate systems, making accurate predictions more
challenging. AI methods, such as deep learning, offer enhanced
modeling capabilities to address these issues. They are better suited
for handling nonlinear patterns, high-frequency data, and changing
climate conditions. However, these methods typically demand large
datasets, significant computational resources, and may lack
interpretability. Researchers often turn to more advanced algorithms
to improve predictive accuracy despite these challenges. With the
availability of data and the development of machine learning
algorithms, the use of artificial intelligence methods for climate
prediction has surged in recent years. Artificial intelligence methods
include machine learning and deep learning. In the early 21st century, a
number of papers attempted to use Artificial Neural Network (ANN)
models to predict climate. Pande et al. used Support Vector Machines
(SVM) as a basic model for climate prediction Pande et al. (2023).
Weirich et al. achieved high accuracy using Random Forest models
Weirich-Benet et al. (2023). Compared to machine learning methods,
deep learning methods can analyze deep and complex nonlinear
relationships through hierarchical and distributed feature
representation Bauer et al. (2023). Several deep learning methods are
widely used for climate prediction, including Deep Neural Networks
(DNN), Recurrent Neural Networks (RNN), Long Short-Term
Memory (LSTM), and Gated Recurrent Units (GRU). Among these
deep learning methods, climate prediction often involves using LSTM
andGRUmodels because they can address long-term dependencies and
prevent gradient explosion issues.As climate science evolves and
extreme weather events become more frequent due to climate
change, the complexity of accurate climate prediction has intensified.
Researchers have increasingly turned to hybrid models, which combine
multiple machine learning approaches, to enhance prediction accuracy.
These hybrid models consistently outperform traditional machine
learning and deep learning models like SVM and LSTM Peng and
Ni (2020). Among these, various feature selection methods play a
crucial role in climate prediction. Convolutional Neural Networks
(CNNs) have proven especially effective in feature extraction for
hybrid models, as they excel at capturing both spatial and temporal

features from grid-like climate data, surpassing other machine learning
architectures. Chen et al. (2019) introduced a CNN-LSTM hybrid
model, which demonstrated superior accuracy, generalizability, and
practicality compared to single models and other hybrid approaches.
Similarly, a CNN-GRU hybrid model Han et al. (2023) also achieved
strong predictive performance.While GRU offers competitive accuracy,
LSTM has been more extensively researched and applied in a wider
range of tasks, providing a wealth of resources and expertise, making it a
favorable choice for many researchers. Thus, this paper selects CNN-
LSTM as the coremodel. However, climate data containmixed features,
and selecting optimal model hyperparameters remains challenging,
limiting the CNN-LSTM model’s potential for further advancements
in prediction accuracy. To address these limitations, feature
decomposition can play a crucial role. Utilizing Transformers for
data decomposition can help uncover hidden patterns and trends in
climate sequences Ye et al. (2021). Additionally, optimizing
hyperparameters can further refine predictions, leading to more
accurate and reliable climate forecasting. This paper adopts the
Transformer to process raw climate sequences and proposes a new
hybrid method for climate prediction. By combining the strengths of
each component, this method aims to improve accuracy and capture
long-term dependencies in the data. The key innovation of our work is
the application of the Transformer to data decomposition, enhancing
the model’s performance by effectively decomposing complex time
series data into its underlying components. The combination of CNN
and LSTM allows for the extraction of information features and the
capture of local and long-term dependencies, respectively. The
contributions of this paper can be summarized in the following
three aspects:

• This paper introduces the Transformer model, which
leverages its strong sequence modeling capabilities to
decompose complex climate time series into trend,
seasonality, and noise components, enhancing the model’s
accuracy and robustness in handling diverse patterns
in the data.

• This paper employs Convolutional Neural Networks (CNNs)
for local feature extraction from climate data, capturing local
patterns and spatial features. This improves short-term
predictions by focusing on short-term fluctuations and local
variations in the climate data.

• This paper uses Long Short-Term Memory (LSTM) networks
to capture long-term dependencies in climate data. LSTM
effectively remembers and utilizes long-span historical
information, improving the accuracy and stability of
climate predictions by accounting for past data trends.

2 Related work

2.1 Importance of climate prediction

Climate prediction holds extremely important significance in
modern society. Firstly, it can significantly enhance disaster
prevention and mitigation capabilities. By providing early
warnings of extreme weather events such as typhoons, floods,
droughts, and snowstorms, relevant departments can take timely
emergency measures, effectively reducing the damage caused by

Frontiers in Environmental Science frontiersin.org02

Liu et al. 10.3389/fenvs.2024.1464241

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1464241


natural disasters and safeguarding people’s lives and property.
Secondly, climate prediction plays a crucial role in agricultural
production. Accurate climate forecasts can help farmers schedule
planting and harvesting times reasonably, select suitable crop types
and planting methods, improve agricultural production efficiency,
and mitigate the adverse effects of climate change on agriculture,
thereby ensuring food security Butt et al. (2024). Furthermore,
climate prediction has significant impacts on water resource
management and energy utilization. By forecasting precipitation
and hydrological conditions, reservoir scheduling can be optimized,
water resources can be allocated rationally, and water use efficiency
can be improved. In the energy sector, especially the utilization of
renewable energy such as wind and solar power, which highly
depends on weather conditions, climate prediction can optimize
energy dispatch, ensuring a stable energy supply. Moreover, climate
prediction is indispensable for ecological protection and urban
planning. Accurate climate forecasts can help ecological
protection departments take measures in advance to maintain
ecological balance, protect endangered species, and promote
biodiversity. In terms of urban planning and infrastructure
construction, understanding future climate trends aids in
designing city layouts and infrastructures that are more adaptable
to climate change, enhancing the sustainable development capacity
of cities. Lastly, climate prediction is also of significant importance
to public health. Climate change affects the spread of diseases and
public health conditions. Through climate prediction, health
departments can take preventive measures in advance to prevent
and control the outbreak of climate-related diseases, thereby
ensuring public health Sang et al. (2023). Therefore, climate
prediction not only plays a critical role in responding to the
direct impacts of climate change but also holds significant
importance in promoting the coordinated and sustainable
development of various social sectors.

2.2 Feature selection

Feature selection is a crucial step in climate prediction to avoid
the curse of dimensionality. It involves selecting the most relevant
and informative subset of features from the original dataset as inputs
for machine learning or deep learning models Fahad et al. (2023).
The aim of feature selection is to reduce the dimensionality of the
data while retaining its important characteristics, thereby
simplifying the task of pattern recognition and accurate
prediction for machine learning or deep learning models.
Research on feature selection algorithms is generally categorized
into three types: filter, wrapper, and embedded methods Liu et al.
(2023). Specifically, filter methods apply proxy measures to evaluate
the relevance of features independently of the machine learning or
deep learning model. Typical examples of filter methods include
correlation-based feature selection, mutual information-based
feature selection, and chi-square feature selection. However, filter
methods cannot adapt to changes in data or machine learning
models. Once features are selected, they are fixed and cannot be
updated or modified Tao et al. (2022). Additionally, filter methods
have limited capacity to handle nonlinear relationships between the
selected features and the target variable. In machine learning or deep
learning models, wrapper methods are often used instead of filter

methods for feature selection. Using wrapper methods can improve
the accuracy and interpretability of machine learning models,
especially in cases where the interactions between features and
the target variable are complex and nonlinear. Finally, embedded
methods integrate feature selection into the model training process,
enabling the model to learn which features are most relevant to the
task. Embedded methods can accelerate model training and have
lower computational costs compared to wrapper methods Rahman
et al. (2023). As climate prediction becomes increasingly complex,
feature selection methods may vary depending on the prediction
model used. Particularly, climate exhibits nonlinear dynamics.
Traditional feature selection methods in filter, wrapper, and
embedded methods may be limited in climate prediction Villia
et al. (2022). To address this issue, nonlinear filter methods such
as decision trees, neural networks, and SVMs have been proposed,
which can enhance the performance of machine learning models.
Recently, researchers have focused on using deep learning methods
for feature selection in climate prediction, especially when dealing
with time series data. The advantage of deep learning methods lies in
their ability to automatically extract relevant and complex features
from time series data, with the potential for high accuracy and
robustness. In deep learning models, CNNs are consistently used as
information feature selection methods because they can extract
features at multiple scales or resolutions. CNNs are well-suited
for handling grid-like data, such as time series data, and can
capture various patterns and trends in climate data. By
combining CNNs with machine learning or deep learning
models, highly accurate and efficient climate prediction models
can be constructed.

2.3 Recent models for climate prediction

Single models (such as a single machine learning or deep
learning model) can predict climate based on input features. The
advantage of single models is that they are relatively simple and
straightforward, and may require fewer computational resources.
However, single models might not meet some critical needs in
climate prediction. Additionally, they may struggle to capture the
complexity and variability of climate data. When using deep
learning models to handle the randomness and distribution
imbalances of climate, single models might encounter issues of
overfitting. For the above reasons, developing hybrid models has
become a popular topic in the field of climate prediction research.
Hybrid models combine the strengths of different approaches. For
instance, statistical methods can be used to preprocess data, machine
learning methods to select relevant features, and deep learning
methods to make predictions. Nikseresht and Amindavar (2023)
established a hybrid method based on ARFIMA and enhanced
fractional Brownian motion for short-term climate prediction.
The results showed that the hybrid method outperformed other
models or methods, such as statistical models or individual neural
networks. Kou et al. (2023) proposed a new combined prediction
model for predicting precipitable water vapor (PWV). This model
combines Variational Mode Decomposition (VMD) and the Multi-
Objective Harris Hawks Optimization (MOHHO) algorithm,
integrating four nonlinear models and two linear models.
Through effective data preprocessing and weight optimization,
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FIGURE 1
Overall algorithm flowchart.

FIGURE 2
Structure diagram of Transformer.
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the model significantly improved the accuracy and stability of PWV
predictions, providing technical support for selecting the timing of
artificial rainfall operations. Vo et al. (2023) proposed a hybrid
model based on Long Short-Term Memory networks and climate
models (LSTM-CM) for drought prediction. The study
demonstrated that LSTM-CM showed higher accuracy and lower
uncertainty in drought prediction compared to the single LSTM
model (LSTM-SA) and the climate prediction model GloSea5 (GS5).
The hybrid model combined the low bias of LSTM-SA with the
physical process simulation capabilities of GS5, effectively
improving predictions for 1, 2, and 3 months. Mukhtar et al.
(2024) proposed a GIS-based Multi-Criteria Decision Analysis
(MCDA) method combined with large climate data records to
assess flood risk in the Hunza-Nagar Valley in northern Pakistan.
They developed a comprehensive flood risk map considering nine
influencing factors, assigned weights to each factor using the
Analytic Hierarchy Process (AHP), and integrated GIS with
geospatial data to generate the flood risk map. This method
performed excellently in flood risk modeling. Chin and Lloyd

(2024) proposed a hybrid model based on autoregressive Long
Short-Term Memory networks (LSTM) for climate change
prediction. The study used the ensemble mean version of the
ERA5 dataset to develop a baseline machine learning model
capable of predicting the overall long-term trends of Earth’s
climate and weather, accurately capturing seasonal patterns.

3 Methods

The overall flowchart of the algorithm in this article is shown in
Figure 1, illustrates our proposed Transformer-CNN-LSTM hybrid
model. This model integrates LSTM layers for capturing temporal
dependencies, a Transformer layer block for leveraging multi-head
attention to enhance feature extraction, and 1D-CNN blocks for
refining the extracted features, ultimately leading to a dense
classification layer that outputs the final prediction results.The
proposed Transformer-CNN-LSTM hybrid model, designed for
climate prediction, can be highly useful in several real-world

FIGURE 3
Structure diagram of one-dimensional CNN.

FIGURE 4
Structure diagram of LSTM.
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applications, particularly those where accurate climate forecasts are
critical for decision-making: Energy Sector: Accurate climate
predictions are essential for energy companies, particularly in the
renewable energy sector. Wind and solar power generation are
highly dependent on weather conditions such as wind speed,
solar radiation, and temperature. By using our model, businesses
can optimize energy production forecasts, reduce operational costs,
and ensure better resource allocation. Agriculture: Farmers rely on
precise weather forecasts to make decisions on crop planting,
irrigation, and harvesting. Our model can improve agricultural

productivity by predicting extreme weather events, helping
farmers minimize damage, reduce water usage, and optimize crop
yields, which leads to better planning and reduced financial risks.
Disaster Management and Insurance: Insurance companies and
disaster management agencies can use our model to assess the
risk of weather-related disasters such as floods, hurricanes, or
droughts. Improved prediction accuracy helps these organizations
set premiums more accurately, improve disaster preparedness, and
provide timely warnings to reduce potential losses. Supply Chain
and Logistics: Climate conditions can significantly affect supply
chains, especially in sectors like transportation and retail. With
accurate weather predictions, businesses can better plan routes,
adjust inventory, and prevent disruptions due to extreme
weather, leading to cost savings and efficiency improvements.

3.1 Transformer architecture

The Transformer architecture is mainly used to process
sequence data tasks and relies on the attention mechanism to
capture dependencies in the input sequence. Its algorithm
architecture diagram is shown in Figure 2. The architecture
consists of two parts: an encoder and a decoder. The encoder
maps the input sequence to a potential representation space,
while the decoder generates an output sequence from this
potential representation. Each encoder and decoder is
composed of multiple identical layers stacked together
Alerskans et al. (2022).

Each encoder layer contains two main parts, a self-attention
mechanism and a feedforward neural network. The self-attention
mechanism captures global information by calculating the
correlation between each position in the input sequence and
other positions. Specifically, for the input sequence
X � [x1, x2, . . . , xn], the self-attention mechanism calculates the
attention weights between each pair of positions. First, the query,
key, and value matrices are calculated Equation 1:

Q � XWQ, K � XWK, V � XWV (1)
where WQ, WK, and WV are trainable weight matrices.

FIGURE 5
Model training and testing process.

FIGURE 6
Study site and location.
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Next, calculate the attention score Equation 2:

Attention Q,K,V( ) � softmax
QKT��
dk

√( )V (2)

Here, dk is the dimension of the key vector, which is used to scale
the attention score.

Each encoder layer also contains a feedforward neural network
that processes the representation of each position independently
Equation 3:

FFN H( ) � ReLU HW1 + b1( )W2 + b2 (3)

In addition to the encoder-like self-attention and feedforward
neural network, the decoder layer also adds an attention
mechanism that interacts with the encoder output. The
encoder-decoder attention mechanism is used to interact the
decoder’s query with the encoder’s keys and values, thereby
utilizing the contextual information captured by the encoder
Equation 4:

FIGURE 7
The original climate data is decomposed by transformer (A–D).
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Attention QD,KE,VE( ) � softmax
QDK

T
E��

dk

√( )VE (4)

where QD is the query matrix of the decoder, KE and VE are the key
and value matrices of the encoder, respectively.

The Transformer architecture uses self-attention mechanism
and feed-forward neural network to effectively capture complex
patterns and long-distance dependencies in sequence data, and has
significant advantages in processing time series tasks such as climate
prediction.

3.2 Convolutional neural network

CNN has demonstrated remarkable capabilities in computer
vision tasks, particularly in image recognition and processing. CNNs
are specifically designed to process pixel data, and they are equipped
with three key strengths: a local sensing field, weight sharing, and
down sampling Kareem et al. (2021). These three strengths can
decrease the complexity of the network. The CNN model is
composed of a convolutional layer, a pooling layer, and a fully
connected layer. In particular, the convolutional layer is the
fundamental component of the CNN model for automatic feature
extraction. If a two-dimensional feature is provided as input, the
convolutional layer can be represented as follows Equation 5:

a �
a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .
am1 am2 . . . amn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (5)

where m × n is the shape of input vector a. The input two-
dimensional feature is convolved with filters Wk at the
convolution layer Equation 6.

Wk �
W11

W21

. . .
Wi1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (6)

After the convolution, output map is formed and the feature
map at the given layer is given by Equation 7

f a( ) � f Wk × x + bk( ) (7)
whereWk is the weight matrix and bk is the bias value, k is the filter,
which is the total number of filtering in convolutional layer.

Typically, a rectified linear (ReLU) function is used as the
activation function after each convolutional layer, owing to its
reliability and ability to accelerate convergence. The ReLU
function is defined as follows Equation 8:

f a( ) � max 0, a( ) (8)

TABLE 1 The comparison forecast results of different hybrid models based on different decomposition methods (with random error range).

Dataset Method MAE MAPE RMSE IA TIC

Dataset 1 (spring) CNN-LSTM 0.10213 ± 0.027 0.0606 ± 0.011 0.08367 ± 0.024 0.87 ± 0.029 0.1447 ± 0.018

WT-CNN-LSTM 0.02096 ± 0.020 0.1196 ± 0.019 0.02747 ± 0.022 0.93 ± 0.021 0.0497 ± 0.012

EMD-CNN-LSTM 0.02341 ± 0.025 0.1024 ± 0.014 0.01185 ± 0.011 0.96 ± 0.017 0.0071 ± 0.028

VMD-CNN-LSTM 0.01855 ± 0.012 0.1041 ± 0.029 0.01581 ± 0.016 0.94 ± 0.015 0.0272 ± 0.024

Transformer-CNN-LSTM 0.01061 ± 0.017 0.0977 ± 0.022 0.01842 ± 0.011 0.98 ± 0.013 0.0031 ± 0.026

Dataset 2 (summer) CNN-LSTM 0.84763 ± 0.024 0.1426 ± 0.021 0.08591 ± 0.017 0.9 ± 0.013 0.1214 ± 0.016

WT-CNN-LSTM 0.02418 ± 0.013 0.01000 ± 0.012 0.02747 ± 0.011 0.92 ± 0.022 0.0634 ± 0.018

EMD-CNN-LSTM 0.02261 ± 0.011 0.1024 ± 0.013 0.01185 ± 0.024 0.95 ± 0.016 0.0087 ± 0.019

VMD-CNN-LSTM 0.01844 ± 0.028 0.1167 ± 0.011 0.01185 ± 0.014 0.94 ± 0.012 0.1028 ± 0.022

Transformer-CNN-LSTM 0.01724 ± 0.013 0.0950 ± 0.024 0.01138 ± 0.015 0.99 ± 0.019 0.0044 ± 0.017

Dataset 3 (autumn) CNN-LSTM 0.47633 ± 0.016 0.1773 ± 0.018 0.06724 ± 0.014 0.89 ± 0.025 0.0912 ± 0.028

WT-CNN-LSTM 0.01878 ± 0.011 0.1197 ± 0.022 0.02747 ± 0.013 0.93 ± 0.015 0.0545 ± 0.024

EMD-CNN-LSTM 0.01861 ± 0.024 0.1084 ± 0.011 0.01185 ± 0.025 0.96 ± 0.012 0.0032 ± 0.014

VMD-CNN-LSTM 0.01637 ± 0.017 0.1106 ± 0.019 0.05427 ± 0.021 0.95 ± 0.016 0.0234 ± 0.027

Transformer-CNN-LSTM 0.01265 ± 0.012 0.0924 ± 0.026 0.01439 ± 0.018 0.99 ± 0.013 0.0026 ± 0.015

Dataset 4 (winter) CNN-LSTM 0.03612 ± 0.022 0.1623 ± 0.015 0.05126 ± 0.021 0.9 ± 0.018 0.0845 ± 0.019

WT-CNN-LSTM 0.01419 ± 0.011 0.1186 ± 0.017 0.02747 ± 0.013 0.93 ± 0.011 0.0639 ± 0.012

EMD-CNN-LSTM 0.01367 ± 0.014 0.1024 ± 0.025 0.01185 ± 0.023 0.95 ± 0.012 0.0073 ± 0.011

VMD-CNN-LSTM 0.01265 ± 0.017 0.1024 ± 0.014 0.01578 ± 0.024 0.95 ± 0.022 0.0423 ± 0.015

Transformer-CNN-LSTM 0.00934 ± 0.012 0.0886 ± 0.013 0.02173 ± 0.014 0.98 ± 0.019 0.0058 ± 0.016
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The pooling layer performs a down-sampling operation that
reduces complexity, enhances efficiency, and mitigates the risk of
overfitting. The pooling layer can be expressed as Equation 9

Woutput � Wa − P

S
+ 1 (9)

whereWoutput is max pooling output,Wa is the function of the input
volume, p is Pooling window size, S is stride.

After multiple convolutional and pooling layers, the output data
is fully connected and usually flattened as the final output of the
network. CNN uses the concept of weight sharing to provide better
accuracy in highly nonlinear climate prediction problems. The one-
dimensional convolution and pooling layer is shown in Figure 3.

3.3 Long Short-Term Memory

LSTM is a excellent variant of Recurrent Neural Network
(RNN), which is designed to solve the vanishing gradient
problem of RNN. The memory cell in the LSTM model is a
crucial component that addresses the limitations of traditional
RNN Liu et al. (2022). The memory cell is governed by three
gates: a forget gate ft, an input gate it, and an output gate ot.
These gates work together to regulate the flow of information
through the memory cell. In the LSTM model, the forget gate is
particularly important as it determines which information from the

memory cell should be retained or discarded. The forget gate
controls the information flow through the cell state and is
calculated using the equation below.

ft � σ Wi ht−1, xt[ ] + bf( ) (10)

Here, σ denotes the sigmoid function, which maps the input
values to the interval (0, 1). ht−1 is the previous hidden state. xt is the
current node. Wf represents the weight parameters. bf represents
the bias parameters. The weight and bias parameters are learned
during the LSTM training process.

The Input gate in the LSTM model is responsible for
incorporating new data into the memory cell by element-wise
multiplication with the new input. It comprises the input
activation gate and the candidate memory cell gate, which enable
the LSTM to update and control the data in the memory. The Input
gate determines which values of the cell state should be modified
based on the input signal, and it is calculated using the equation
below in the LSTM network. This modification is carried out using a
sigmoid function and a Hyperbolic tangent (tanh) layer, as shown in
Equation 10, resulting in the Equations 11–13

it � σ Wi ht−1, xt[ ] + bf( ) (11)

tanh � ex − e−x

ex + e−x
( ) (12)

~ct � tanh Wc ht−1, xt[ ] + bc( ) (13)

FIGURE 8
(Continued).
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To update the previous memory cell ct−1, the input vector and
the candidate memory cell vector are combined, which is
represented as Equation 14:

ct � ft ⊙ ct−1 + it ⊙ ~ct (14)

where ⊙ denotes element-wise multiplication.

FIGURE 8
(Continued).
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The output gate in the given system is utilized to merge with the
existing memory cell, resulting in the production of the present
hidden state. This current hidden state subsequently affects the
output in the subsequent time step. The computation process can be
illustrated as follows Equation 15:

ot � σ Wo ht−1, xt, ct[ ] + bo( ) (15)

The structure of LSTM is shown in Figure 4. The LSTMmethod
addresses the problem of long-term dependence in learning, which
provides good forecasting results Tzoumpas et al. (2024).

3.4 Model training and testing

Figure 5 illustrates the training and testing process of the model
proposed in this paper. First, the processed data is split into training
and testing datasets, with 70% and 30% proportions, respectively.

Subsequently, the training dataset is fed into the hybrid model,
which consists of different components such as Transformer, CNN,
and LSTM. The Transformer component helps decompose the time
series data into meaningful components, the CNN extracts spatial
features, and the LSTM captures temporal dependencies. Finally, the
hybrid model is trained using the training dataset. During this
process, once the model reaches the predetermined number of
iterations, a predictive model is obtained. In the testing phase,
the trained model is loaded, and the testing dataset is input for
prediction, resulting in experimental outcomes.

This process involves data preprocessing, where the raw data is
cleaned, transformed, and split into training and testing sets. The
training dataset comprises the input features for model training,
while the testing dataset is used to evaluate model performance. The
hybrid model is trained on the training data to predict climate. The
model combines the Transformer for time series decomposition, the
CNN for capturing spatial or temporal patterns, the LSTM for
handling sequential data, and fully connected layers for complex
feature interactions. After training is complete, the model is loaded
for prediction, generating climate forecasts based on the input
features from the testing dataset.

3.5 Prediction results

In the experiment, five different metrics are used to evaluate the
predictive performance of climate prediction models. These metrics
are Mean Absolute Error (MAE), Mean Absolute Percentage Error
(MAPE), Root Mean Square Error (RMSE), Index of Agreement
(IA), and Theil’s Inequality Coefficient (TIC). Specifically, MAE and
MAPE are used to measure the accuracy of the model by calculating
the percentage difference between the predicted values and the
actual values. The formulas for these calculations are as follows
Equations 16, 17:

MAE � 1
N

∑N
i�1

Fi − Ai| | (16)

FIGURE 8
(Continued). Scatter Plot of Actual vs. Forecasted Values for the different models.
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MAPE � 1
N

∑N
i�1

Ai − Fi

Ai

∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣ × 100% (17)

RMSE is used to evaluate the effectiveness of the proposed
method and conventional strategy. The equation of RMSE is as
follows Equation 18:

RMSE �

���������������
1
N

× ∑N
i�1

Fi − Ai( )2
√√

(18)

IA is employed to evaluate the model’s forecasting ability. The
IA equation is Equation 19

IA � 1 −∑N
i�1

Fi − Ai( )2/∑N
i�1

Fi − �A
∣∣∣∣ ∣∣∣∣ + Ai + �A

∣∣∣∣ ∣∣∣∣( )2 (19)

TIC is used to assess the generalization ability of the model. The
TIC is defined as in equation Equation 20:

TIC �

���������������
1
N

× ∑N
i�1

Fi − Ai( )2
√√ / ���������

1
N

× ∑N
i�1

A2
i

√√
+

���������
1
N

× ∑N
i�1

F2
i

√√⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎠
(20)

4 Experiment results

The hybrid deep learning model for climate prediction was
validated using data from the Guangdong Meteorological Center,
and all experiments were implemented on a computer using
MATLAB 2018a.

4.1 Data collection

The climate temperature data for each season (spring, summer,
autumn, and winter) were collected from the Guangdong
Meteorological Center in China (see Figure 6). This study
utilized hourly climate temperature data for the entire year of
2021. Specifically, Dataset A covers 30 days from 1 April 2021, to
30 April 2021 (spring); Dataset B covers 30 days from 1 July 2021, to
30 July 2021 (summer); Dataset C covers 30 days from 1 October
2021, to 30 October 2021 (autumn); and Dataset D covers 30 days
from 1 January 2021, to 30 January 2021 (winter). Due to the impact
of extreme weather in summer, the range of climate fluctuations is
particularly large. To explain seasonal differences, the annual
climate data were divided into four seasons. This division can
improve the prediction accuracy when using the model.

4.2 Data preprocessing

The proposed Transformer technique was used to decompose
the raw climate data to effectively generate decomposition results.
Transformer is a data analysis technique used to decompose time
series into its Intrinsic Mode Functions (IMFs). Each IMF captures
specific oscillatory or trend behaviors within the time series. IMFs
are ordered based on their energy content, with the IMF containing
the highest energy considered the most significant component. By
summing the selected IMFs, the original time series can be
reconstructed. As shown in Figure 7, when using the

TABLE 3 The comparison forecast results of different hybrid models for four datasets.

Dataset Method MAE MAPE RMSE IA TIC

Dataset 1 (spring) Transformer-CNN 0.04158 0.1396 0.03747 0.9097 0.0497

Transformer-LSTM 0.05341 0.1,424 0.04185 0.9199 0.0571

Transformer-CNN-LSTM 0.00898 0.1009 0.01359 0.9338 0.0316

Dataset 2 (summer) Transformer-CNN 0.02418 0.1307 0.03947 0.9246 0.0634

Transformer-LSTM 0.02261 0.1445 0.04532 0.9342 0.0767

Transformer-CNN-LSTM 0.01724 0.0950 0.01138 0.9419 0.0144

Dataset 3 (autumn) Transformer-CNN 0.03878 0.1416 0.03747 0.9378 0.0545

Transformer-LSTM 0.04861 0.1598 0.04826 0.9346 0.0432

Transformer-CNN-LSTM 0.00898 0.1137 0.01376 0.9674 0.0132

Dataset 4 (winter) Transformer-CNN 0.03603 0.1586 0.03747 0.9194 0.0639

Transformer-LSTM 0.03422 0.1324 0.04285 0.9279 0.0473

Transformer-CNN-LSTM 0.01637 0.0946 0.01637 0.9678 0.0238

TABLE 2 Comparison of the Random Forest model with STL decomposition
and deep learning-based hybrid models using different decomposition
methods.

Model MAE RMSE MAPE TIC IA

Random Forest (STL) 0.0421 0.0912 0.0678 0.0324 0.91

CNN-LSTM 0.0184 0.0487 0.0389 0.0147 0.95

WT-CNN-LSTM 0.0209 0.0503 0.0412 0.0152 0.94

EMD-CNN-LSTM 0.0181 0.0465 0.0375 0.0139 0.96

VMD-CNN-LSTM 0.0175 0.0451 0.0368 0.0136 0.96

Transformer-CNN-LSTM 0.0106 0.0315 0.0267 0.0091 0.98
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Transformer method to decompose the hourly climate temperature
for the four seasons of 2021, 10 IMFs with different central
frequencies were obtained. The Transformer can effectively
capture the fundamental characteristics of the raw data and
significantly contribute to the overall success of the prediction
process. In our experiments, the dataset was split into 80% for
training and 20% for testing. We employed a random sampling
approach rather than a time-based split. This decision was made
with the goal of ensuring the model’s ability to generalize across
different time periods. While climate data inherently possess
temporal dependencies, we chose random sampling to allow the
model to learn patterns across various points in time, enhancing its
generalization capabilities. This approach ensures that both the
training and testing datasets contain data points spread across
different time periods, reducing the risk of overfitting to a
specific time range. Moreover, random splitting helps mitigate
any potential temporal bias and prepares the model to better
adapt to unseen future data.In our current model setup, we are
forecasting one time step ahead at a time, meaning that the model
predicts a single value for each future time step based on the input

data. However, the model is flexible and can be adapted to output a
vector of future values rather than just a single value. The
architecture of models like CNN-LSTM and Transformer-CNN-
LSTM inherently supports multi-step forecasting, where instead of
predicting just the next time step, the model can be trained to output
multiple future values simultaneously. This is referred to as multi-
step forecasting or sequence-to-sequence prediction, and it can be
achieved by adjusting the output layer to produce a vector of values,
as well as modifying the training process accordingly. So, while the
current experiments focus on single-step forecasting, the model can
be extended to forecast multiple steps ahead (vector output) with
some adjustments to the architecture and training approach.

4.3 Scenario I

In Scenario 1, the prediction results of CNN-LSTM, WT-CNN-
LSTM, EMD-CNN-LSTM, VMD-CNN-LSTM, and Transformer-
CNN-LSTM were compared to study the impact of different
decomposition methods on the climate prediction of hybrid

FIGURE 9
The comparison forecast results of different hybrid models for four datasets.
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models. As shown in Table 1, introducing decomposition methods
such as WT, EMD, VMD, and Transformer into the hybrid model
can improve the performance of CNN-LSTM-based prediction
results. According to the results of MAE, RMSE, MAPE, and
TIC, the proposed Transformer-CNN-LSTM hybrid model
outperforms the aforementioned hybrid models, and the IA
results of the proposed hybrid model are also superior. Figure 8
shows the correlation between the predicted values of CNN-LSTM
models with different decomposition methods and the actual values
for each season. It was found that the Transformer-CNN-LSTM
model is almost a linear function, indicating that the proposed
hybrid model is more effective than other decomposition methods.
Therefore, we conclude that the proposed Transformer method can
be used to effectively decompose raw climate data.The results

presented in Table 2 demonstrate a clear performance advantage
of the deep learning-based hybrid models over the Random Forest
model, which used STL decomposition. While the Random Forest
model performed reasonably well, achieving aMAE of 0.0421 and an
IA of 0.91, the deep learning models, particularly the Transformer-
CNN-LSTM hybrid, consistently outperformed it across all metrics.
The Transformer-CNN-LSTM model achieved the lowest MAE
(0.0106), RMSE (0.0315), and TIC (0.0091), indicating that it is
not only more accurate but also more stable in its predictions.
Moreover, the IA (0.98) of the Transformer-CNN-LSTM model is
notably higher, showcasing its superior ability to fit the data
compared to the Random Forest model and other hybrid models.
The other deep learning models, such as VMD-CNN-LSTM and
EMD-CNN-LSTM, also performed better than the Random Forest

TABLE 4 The comparison forecast results of the proposed hybrid model and other popular models for four datasets.

Dataset Method MAE MAPE RMSE IA TIC

Dataset 1 (spring) LSTM 0.01844 0.1186 0.02096 0.9531 0.0497

BiLSTM 0.01724 0.140,970 0.02341 0.9637 0.0571

Random Forest 0.02341 0.1584 0.01855 0.9755 0.0273

Decision Trees 0.03855 0.1606 0.01523 0.9507 0.0116

RNN 0.02637 0.1383 0.01747 0.9743 0.0098

ANN 0.02265 0.1034 0.01123 0.9858 0.0044

Ours 0.01061 0.0977 0.00549 0.9912 0.0036

Dataset 2 (summer) LSTM 0.02418 0.1784 0.01778 0.9346 0.0545

BiLSTM 0.02261 0.1497 0.01412 0.9554 0.0639

Random Forest 0.01899 0.1584 0.01591 0.9246 0.0473

Decision Trees 0.01624 0.1606 0.01285 0.9642 0.0723

RNN 0.01185 0.1167 0.01138 0.9656 0.0138

ANN 0.01427 0.0950 0.00939 0.9706 0.0096

Ours 0.00536 0.0897 0.00732 0.9996 0.0044

Dataset 3 (autumn) LSTM 0.02747 0.1567 0.01466 0.9279 0.0245

BiLSTM 0.01185 0.1396 0.02627 0.9065 0.0182

Random Forest 0.02427 0.1424 0.01276 0.9378 0.0178

Decision Trees 0.01439 0.2141 0.01429 0.9346 0.0145

RNN 0.02747 0.0924 0.00778 0.9054 0.0081

ANN 0.01185 0.1106 0.01172 0.9674 0.0084

Ours 0.00434 0.0624 0.00549 0.9956 0.0026

Dataset 4 (winter) LSTM 0.02747 0.1197 0.01919 0.9279 0.0145

BiLSTM 0.01419 0.1416 0.02167 0.9065 0.0234

Random Forest 0.01367 0.1598 0.01165 0.9194 0.0139

Decision Trees 0.02265 0.2020 0.01178 0.9279 0.0073

RNN 0.00934 0.0886 0.00973 0.9065 0.0123

ANN 0.01578 0.0924 0.00785 0.9678 0.0158

Ours 0.00128 0.0663 0.00277 0.9965 0.0058
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model, though their results were slightly less impressive than the
Transformer-based model. These findings highlight the effectiveness
of decomposition methods, especially when integrated with
advanced deep learning architectures like the Transformer, in
improving the accuracy and generalization of climate predictions.
This comparative analysis confirms the superiority of the
Transformer-CNN-LSTM hybrid model in handling complex
climate data, validating its use in scenarios where precise and
reliable predictions are required.

4.4 Scenario II

From the results of Scenario 1, the Transformer method
outperforms other decomposition methods. In Scenario 2, the
Transformer method was combined with different comparison
prediction algorithms to compare the climate prediction results
of Transformer-CNN, Transformer-LSTM, and Transformer-
CNN-LSTM. The comparative prediction results of the
aforementioned hybrid models for the four datasets are
shown in Table 3 and Figure 9. Table 3 indicates that the
Transformer-CNN-LSTM hybrid climate prediction model
outperforms other hybrid models across five evaluation
metrics, demonstrating more accurate prediction effects and
more stable fitting results.

4.5 Scenario III

To compare with different popular climate prediction
methods, Scenario IV was designed, including BiLSTM, LSTM,
random forest, decision tree, ANN, RNN, and our hybrid
method. Table 4 shows the comparative prediction results of
the aforementioned models for the four datasets. As seen in
Table 4, the Transformer-CNN-LSTM hybrid climate prediction

model outperforms other models in the five evaluation metrics.
Specifically, the MAE values of the prediction results using the
proposed hybrid model for the four datasets are 0.01061, 0.00536,
0.00434, and 0.00128, respectively. The MAPE values for the four
datasets are 0.0977, 0.0897, 0.0624, and 0.0663, respectively. The
RMSE values for the four datasets are 0.00549, 0.00732, 0.00549,
and 0.00277, respectively. Lower MAE, MAPE, and RMSE values
indicate higher accuracy and that the predicted values are closer
to the actual values. Among these models, the Transformer-
CNN-LSTM has the lowest MAE, MAPE, and RMSE values.
The IA values of the prediction results using the proposed
hybrid model for the four datasets are the highest among all
models, at 0.9912, 0.9996, 0.9956, and 0.9965, respectively. The
TIC values for the four datasets using the proposed model are
0.00549, 0.00732, 0.00549, and 0.00277, respectively. A TIC value
of 0 indicates complete equality, meaning there is no inequality
between groups or time periods. According to these five
evaluation metrics, the proposed model demonstrates more
accurate prediction effects and more stable fitting results.For
the climate prediction task, the primary features included
Temperature (as the target variable), Humidity, Wind Speed,
Precipitation, and Atmospheric Pressure. To capture temporal
dependencies in the data, we incorporated a range of lagged
observations from 1 to 12 h, with intervals of 1 h between each
lag. This approach enabled the models to account for both short-
term and longer-term dependencies. In the proposed hybrid
model (Transformer-CNN-LSTM), these lagged values were
used to capture both local and global temporal patterns. For
comparison models like Random Forest, LSTM, and CNN, the
same set of lagged values was applied to ensure consistency across
experiments. This uniform feature set allowed for a direct
comparison of model performance. Figure10 is an example of
the original and forecasted data plotted using a line plot. The plot
shows patterns in both the original data and the forecasted
values, helping to visualize their similarities and differences.

FIGURE 10
Comparison of original and predicted values.
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This allows readers to better understand the model’s predictive
performance.

5 Disucssion and conclusion

This study developed a Transformer-CNN-LSTM hybrid
prediction model to forecast future climate temperatures. There
are five steps to selecting the optimal model with the best predictive
performance. First, climate data from Guangdong, China, was
collected and organized into datasets. Then, the Transformer
method was used to decompose the raw feature time series
matrix into a set of IMF components with different frequencies.
Third, the proposed CNN-LSTM hybrid model was used to
independently predict the multidimensional feature matrix.
Fourth, the performance of the proposed model was evaluated
using the MAE, MAPE, RMSE, IA, and TIC metrics. Finally, the
proposed hybrid model was compared with popular climate
prediction models using the evaluation metrics. The experimental
results indicate that the Transformer decomposition method in the
proposed hybrid framework performed best in Scenario I. Our
results also show that the Transformer-CNN-LSTM hybrid
climate prediction model outperforms other hybrid models in the
five evaluation metrics, demonstrating more accurate prediction
effects and more stable fitting results. Despite the numerous
advantages of the Transformer-CNN-LSTM hybrid model, there
are some limitations to this study. The first limitation is the use of
only one set of climate data from Guangdong, China. To verify the
generalizability of our hybrid deep learning model, future testing on
different climate datasets and expansion of our dataset is necessary.
Finally, several other influencing factors may significantly impact
climate temperature in this study, such as greenhouse gas emissions,
land use changes, ocean temperature and current changes, variations
in solar radiation, and human activities. In the future, we intend to
address these limitations and rectify these shortcomings.
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