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The Yellow River basin is an important ecological security barrier and ecologically
vulnerable region in China. Landscape ecological risk assessment and influencing
factor analysis based on land-use/land-cover change (LUCC) and boosted
regression tree (BRT) models are of great significance to the coordinated and
sustainable development of regional ecological environment and social
economy. Based on LUCC and driving factor data from 1980 to 2020, the
ecological risk index (ERI) model was constructed to evaluate the
spatiotemporal evolution characteristics of ecological risk in the past 40 years.
Especially, a newmethod of influencing factor analysis based on the BRTmodel is
proposed. The final index size of the influencing factors was further quantitatively
evaluated. The results showed that the spatial distribution pattern of landscape
ecological risk in the Yellow River basin was “highest in the north and lowest in the
south, highest in the west and lowest in the east.” During the periods, the overall
ecological risk and high risk increased first and then decreased. Elevation (24.8%)
was the most important factor affecting landscape ecological risk, followed by
precipitation (17.8%), GDP (15.2%), and temperature (14.6%). It showed that the
particularity of the geographical location of the Yellow River basin eventually led
to the stronger influence of natural factors on the change in landscape ecological
risk under the interference of human activities. This study will provide a new
perspective for quantitative assessment of the final contribution rate of landscape
ecological risk factors.
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1 Introduction

As an important part of national and international security, ecological security is an
important foundation for sustainable economic and social development and an important
guarantee for promoting the construction of ecological civilization (Xie and Li, 2004). In
recent years, with the increase in human disturbance to the natural environment, it has not
only aggravated the degradation of ecosystem function, the reduction in water conservation
function, the frequent occurrence of natural disasters, and other problems but also has
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seriously endangered the local residents’ production and life and the
sustainable development of regional economy (Vetrova et al., 2020;
Choi et al., 2009). Therefore, scientific evaluation of landscape
ecological risk is an effective way to find out the ecological
environment problems in the Yellow River basin. It is also an
important cornerstone to promote the high-quality development
of the Yellow River basin and build up the national ecological
security barrier (Leuven and Gne, 2010).

In recent years, landscape ecological risk assessment has become
a hot topic of research in the field of environmental ecology (Naser,
2015). The early ecological risk is evaluated by specific risk sources
such as agricultural pollution source diffusion, water pollution, and
soil erosion (Liu and Wang, 2007; Yan et al., 2011). Currently, the
ecological risk assessment based on LUCC focuses on the coupling
relationship between ecological processes and spatial patterns. The
evaluation model of “dividing risk plot-calculating ecological risk-
estimating risk probability-analyzing spatial heterogeneity” is
adopted. It not only describes the heterogeneity and scale change
of ecological risk in temporal and spatial dimensions but also reveals
the comprehensive expression and spatial distribution
characteristics of multidimensional risk sources. It has gradually
become the mainstream of ecological risk assessment, but the studies
on the Yellow River basin are relatively few (Parker et al., 2003;
Foster et al., 2017). The Yellow River basin plays an important role in
the economic and social development and ecological security in
China. However, with population growth and rapid economic
development, the natural ecosystem of the basin has been
destroyed. The biggest problems in the Yellow River basin are
the shortage of water resources and ecological fragility. The
wetland in the upper reaches of the Yellow River has been
degraded, and the middle reaches of the Yellow River pass
through the Loess Plateau, which is a region with severe soil
erosion in the world. The decreasing amount of sediment makes
the Yellow River delta shrink, which seriously threatens the
ecological security of the estuary area. Therefore, it is urgent to
study the ecosystem of the whole Yellow River basin (Veerle and
Andreas, 2023).

The interaction of various factors inside and outside the
landscape pattern at different spatial and temporal scales leads
to the change in landscape ecological risk. The effective
identification of driving factors of ecological risk change is of
great significance to clarify the specific protection objectives of the
study area and avoid the occurrence of ecological risks and the
sustainable development of the ecological environment (Kgaphola
et al., 2023). At present, the research on the driving factors of
landscape ecological risk usually adopts the methods of
geographical detection, geographically weighted regression, and
correlation analysis. Although the transformation from a single
factor to multi-source and multi-level factors has been realized,
they all belong to qualitative research on the influencing factors of
ecological risk, and there are relatively few quantitative studies (Liu
et al., 2008; Leuven and Gne, 2010). The advantage of the BRT is
that it can process different data types, quantitative relationships,
and missing data at the same time. It can better explain the
contribution of independent variables to dependent variables,
and quantification shows the relationships between variables. It
is widely used in the quantitative study of the influence of multiple
factors in fields such as medicine and chemistry, but there are

relatively few studies on the influencing factors of ecology (Lu and
Mu, 2014).

Therefore, based on the LUCC and BRT model, this study
evaluated the variation characteristics of landscape ecological risk
in the Yellow River basin and quantitatively analyzed the
contribution of influencing factors. The specific objectives of
this study are as follows: 1) to analyze the distribution
characteristics and dynamic degree of LUCC in the Yellow
River basin from 1980 to 2020; 2) to reveal the spatial–temporal
variation and aggregation characteristics of landscape ecological
risk in the Yellow River basin from 1980 to 2020 based on ERI and
Moran’s I index; and 3) to quantitatively evaluate the contribution
of natural and human factors to landscape ecological risk using the
BRT model. It provides a scientific basis for effectively preventing
and resolving ecological risks and promoting ecological protection
and high-quality development in the Yellow River basin in
the future.

2 Study area and data sources

2.1 Overview of the study area

The Yellow River flows through nine provinces and regions
(Figure 1). The Yellow River basin spans the eastern, central, and
western parts of China. The terrain is highest in the west and lowest
in the east, with a drop of 4,480 m (Cui, 2008). Fromwest to east, it is
classified into upper, middle, and lower reaches. The upstream area
is from the Yaladaze Peak in Bayan Har Mountains of Qinghai
province to Hekou town in the Inner Mongolia Autonomous
Region. The average elevation of this area is greater than
4,000 m. The land cover is mainly grassland. There are
“Zhonghua Water Tower” in the Sanjiangyuan area and many
rivers and lakes/wetlands, which are important areas for water
supply. However, in recent years, due to climate change and
human activities, problems such as land desertification and
wetland function degradation have begun to occur (Kooistra
et al., 2005). The area from Hekou town to Taohua Valley in
Henan province includes the middle reaches of the river, with an
elevation of 1,000–2000 m, which experiences a relatively severe soil
erosion. The area from the Taohua Valley to the Bohai Sea in
Shandong province is the downstream area, and this area has the
lowest elevation and rich biological resources. However, the annual
sediment deposition has been gradually decreasing, resulting in a
serious threat to biodiversity and soil quality (Xin et al., 2003).

2.2 Data sources

The data collected in this paper mainly include the following: 1)
LUCC data: LUCC data from 1980 to 2010 were obtained from the
Science Data Center of Chinese Academy of Sciences (http://www.
resdc.cn). The LUCC data for 2020 were obtained from the National
Basic Geographic Information Center (https://www.webmap.cn).
This study reclassified the above data into six types: grassland,
farmland, forest, urban, water, and bare land. 2) Driving factor
data: they mainly comprise natural factors and human factors.
Natural factors include DEM, slope, annual average temperature,
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and annual precipitation. Human factors include population, GDP,
distance from road, and distance from resident areas. The
spatialization method and data source of these eight driving
factor data can be found on http://www.resdc.cn/, and the spatial
distribution is shown in Figure 2.

3 Methods

The overall methods of ecological risk assessment and impact
factor analysis in the Yellow River basin are shown in Figure 3. First,
the land-use transfer matrix was calculated based on the LUCC data
from 1980 to 2020, and the landscape ecological risk model was
constructed by combining the landscape structure index and
landscape vulnerability index. Second, spatial autocorrelation and

other methods were used to analyze the spatial and temporal
distribution and spatial aggregation characteristics of ecological
risks. Finally, the BRT model was used to analyze the
contribution of landscape ecological risk from the perspective of
natural factors and human factors.

3.1 Land use transfer matrix

The transfer matrix represents the quantitative structure
characteristics of land use change at the beginning and end of a
certain period in the study area and the transfer changes in various
types in the study time interval. It is expressed by the formula Sij
(Bang et al., 2019), where S is the area i and j are the land use types at
the beginning and end of the study period, respectively. Sij is the area

FIGURE 1
Location of the study area.

FIGURE 2
Spatial distribution map of driving factor data; part labels description: Note: (A) DEM is the elevation of the study area; (B) Slope represents the
steepness degree of surface units; (C) Temperature is the annual average temperature; (D) Precipitation represents annual precipitation; (E) Population is
population per unit area (1 km2); (F)GDP is gross domestic product; (G) distance from road represents distance to the center line of the road; (H) distance
from resident areas is distance to the center point of the resident areas.
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of the i-land type at the beginning of the study period converted into
the j-land type at the end of the study period. The numbers 1, 2, 3, 4,
5, and 6 represent farmland, forest, grassland, water, urban, and bare
land, respectively. The calculation formula is Equation 1:

Sij �

S11 S12 S13
S21 S22 S23
S31 S32 S33

S14 S15 S16
S24 S25 S26
S34 S35 S36

S41 S42 S43
S51 S52 S53
S61 S62 S63

S44 S45 S46
S54 S55 S56
S64 S65 S66

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (1)

3.2 ERI

LUCC types from 1980 to 2020 are different landscape
components. The study area was divided into 3,868 risk zones by
using the fishing net tool in ArcGIS 10.7. The ERI of each risk zone
was calculated by using the landscape vulnerability index, landscape
structure index, and the area proportion of each risk zone (Zhu et al.,
2012). The calculation formula is Equation 2:

ERI � ∑n
i�1

Aki

Ak
Fi × Si, (2)

where n represents the number of landscape types in the risk zone.
Aki denotes the area of the ith landscape in the kth risk zone. Ak

shows the area of risk zone k. Fi represents the landscape
vulnerability index. Through the expert scoring method, the
values are assigned, in turn, as follows: urban, 1; forest, 2;
grassland, 3; farmland, 4; water, 5; and bare land, 6. The
vulnerability index of each landscape type was obtained by

normalization processing (Trevisan et al., 2020). Si represents the
landscape structure index, which is calculated as Equation 3:

Si � aCi + bNi + cDi, (3)
where Ci, Ni, and Di, respectively, represent landscape

fragmentation, landscape separation, and landscape dominance
and a, b, and c are the weights of each landscape index, which
are assigned as 0.5, 0.3, and 0.2, respectively (Boori, 2014).

3.3 Spatial autocorrelation analysis

GeoDa software was used to calculate global and local Moran’s I
to analyze the degree of autocorrelation between spatial attribute
values. The global Moran’s I represents the correlation between the
spatial attribute values of the entire study area. Moran’s I > 0, <0,
and = 0, respectively, indicated that the landscape ecological risk of
the study area presented an aggregated, discrete, and random spatial
distribution pattern (Xie et al., 2006). Local Moran’s I represents the
correlation between the spatial attribute values of adjacent risk
zones. Moran’s I > 0 indicates that high–high or low–low has a
higher degree of aggregation. Moran’s I = 0 indicates that the degree
of aggregation is not significant. Moran’s I < 0 indicates that the
aggregation degree of high–low or low–high is low (Li et al., 2010).

3.4 BRT model

The BRT model is a combination of the regression tree
algorithm and boosting algorithm. The regression tree algorithm
is used to divide the dataset into many easy-to-model groups by

FIGURE 3
Flow chart of ecological risk assessment and influencing factor analysis.
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recursion, and then the linear regression method was used to model.
The boosting algorithm is used to improve the accuracy of the weak
classification algorithm by constructing a series of prediction
functions and then combining them into a prediction function in
a certain way (Martin et al., 2011). The BRT model randomly
extracts a certain amount of data in multiple iterations during
the operation. The influence degree of independent variables on
dependent variables was analyzed. The remaining data are used to
cross-validate the fitting results. Finally, the mean value of the
generated multiple regression tree is taken and output (Froeschke
and Froeschke, 2016). The BRT model can calculate the relationship
between the independent variable and the dependent variable when
the other independent variables are averaged or unchanged and
obtain the contribution of the independent variable to the dependent
variable (Zhang et al., 2019). The biggest advantage of the BRT
model is that it does not need to consider the interaction between
independent variables. Data can have default values, and data types
are flexible and diverse.

The process of calculating the weight of each influencing factor
using the BRT model is as follows: first, all influencing factors
involved in the model are determined. Second, the BRT model is

constructed by using R language to select the suitable fitness
function and control variable according to influencing factors
and target variables. Then, statistical software is used to select
appropriate parameter estimation methods to fit the BRT model.
Finally, the entropy weight method and fuzzy synthesis method are
used to determine the weight of each factor according to the fitting
results of the BRT model.

4 Result analysis

4.1 Land-use change

From 1980 to 2020, the proportion of grassland and farmland is
the largest, followed by forest. It accounts for more than 88% of the
total area (Figure 4). During the periods, farmland, forest, and urban
areas showed an increasing trend, while grassland, water, and bare
land areas showed a continuously decreasing trend (Table 1).
Among them, the area of the farmland increased by 34,300 km2

in 40 years, and the increased area was the largest, which was mainly
transferred from the grassland. The forest area increased by

FIGURE 4
Land-use change in the Yellow River basin from 1980 to 2020.

TABLE 1 Land-use transfer matrix of the Yellow River basin from 1980 to 2020 (area: 104 km2).

Total 1980 2020

Farmland Forest Grassland Water Urban Bare land

25.25 15.26 1.05 7.32 0.51 0.65 0.47 Farmland

11.95 1.27 6.53 4.02 0.03 0.02 0.08 Forest

34.68 3.56 3.15 24.05 0.25 0.09 3.58 Grassland

0.79 0.09 0.02 0.16 0.37 0.01 0.13 Water

2.77 1.53 0.07 0.39 0.05 0.65 0.08 Urban

3.83 0.10 0.04 1.43 0.14 0.00 2.12 Bare land

79.28 21.82 10.86 37.36 1.35 1.42 6.45 Total
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10,900 km2, mainly from grassland and farmland. With the
continuous advancement of human activities and urbanization,
the urban area has increased by 13,500 km2. However, the
grassland area decreased by 26,800 km2, and the bare land
decreased by 26,200 km2. Compared with the bare land, the
water area has undergone less change. It means that the forest
has been well-protected and the bare land has been well-developed
and utilized in the past 40 years.

4.2 Spatiotemporal changes of landscape
ecological risk

The ERI of 3,868 risk zones in the study area was interpolated by
Kriging. With the help of the natural breakpoint tool of ArcGIS 10.7,
the ecological risk of the study area is divided into five levels: highest
risk (ERI > 0.20), higher risk (0.16 < ERI ≤ 0.20), moderate risk
(0.14 < ERI ≤ 0.16), lower risk (0.12 < ERI ≤ 0.14), and lowest risk
(ERI ≤ 0.12) (Figure 5).

It can be seen from the spatial distribution map of ecological
risk in the Yellow River basin that, in general, the spatial pattern is
“highest in the north and lowest in the south, highest in the west
and lowest in the east.” The lowest-risk areas are mainly
distributed at the junction of Qinghai province, Shaanxi
province, Henan province, Shanxi province, and the boundary
line of the Yellow River basin. A small part is distributed at the
junction of Gansu province and Qinghai province, Zibo city and
Jinan city in Shandong province, the north-central part of the
Baotou city, and Hohhot city in Inner Mongolia Autonomous
Region. The lower-risk regions are mainly distributed at the
junction of Shaanxi province and Shanxi province, most of
Qinghai province, and its junction with Gansu province. A
small part is distributed in the eastern part of Inner Mongolia
Autonomous Region, the northwest of Henan province, and the
west of Shandong province. The moderate-risk areas are mainly
distributed in the junction of Gansu province and Ningxia Hui
Autonomous Region and most of Yulin city, Shaanxi province. It is

scattered in most areas of Qinghai province and Inner Mongolia
Autonomous Region. The higher-risk regions are mainly distribute
in most of the central part of Ordos city and the south of
Bayannaoer city in Inner Mongolia Autonomous Region and
northwest of Yulin city in Shaanxi province. It is scattered in
most areas of Qinghai province. The highest-risk areas are mainly
distributed in the central part of Hangjinqi county, the junction of
Wushenqi county and Etuokeqi county in Ordos city, Inner
Mongolia Autonomous Region. A small part is distributed in
the west of Qinghai province, the west of Ruoergai County,
Sichuan province, and the north of Shapotou District, Ningxia
Hui Autonomous Region.

The ArcGIS 10.7 grid calculator tool was used to calculate the
annual average values of landscape ecological risk ranking: 2000 ERI
(0.1,439) > 2010 ERI (0.1,438) > 1990 ERI (0.1,436) > 1980 ERI
(0.1,418) > 2020 ERI (0.1,389). The results showed that the overall
landscape ecological risk value of the study area increased first and
then decreased, reaching the maximum in 2000. According to the
changes in the area and proportion of each ecological risk level from
1980 to 2020 (Table 2), it can be seen that the area with lowest risk
has decreased first and then increased in the past 40 years. In 2000, it
reached the minimum of 109,100 km2, accounting for 13.75% of the
total area. The area with lower risk is generally increasing, with a
total increase in 48,600 km2 in 40 years. The area of moderate risk,
higher risk, and high risk increased first and then decreased. In 1990,
the area/proportion of moderate risk and higher risk reached the
maximum value of 236,900 km2/29.87% and 115,200 km2/14.53%,
respectively, while the area/proportion of the highest risk reached
the maximum value of 44,400 km2 in 2010.

The global Moran‘s I index of landscape ecological risk in the
study area from 1980 to 2020 was calculated using GeoDa software
and found to be 0.657, 0.648, 0.642, 0.641, and 0.624 (Figure 6). It
showed that the landscape ecological risk of the whole Yellow River
basin presents a high spatial aggregation pattern. Local Moran‘s I
was used to calculate the correlation between the spatial attribute
values of adjacent risk zones. The results showed that the landscape
ecological risk in the study area was dominated by high–high and

FIGURE 5
Spatial distribution of ecological risk in the Yellow River basin from 1980 to 2020.
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low–low aggregation types, and high–low and low–high were
sporadically distributed.

4.3 Analysis of influencing factors of
ecological risk

The 8,000 sample points were randomly sampled by ArcGIS.
Based on these sample point data, the landscape ecological risk value
of the Yellow River basin is taken as dependent variable Y and
8 driving factors were used as independent variable V. They are
elevation (V1), slope (V2), temperature (V3), annual precipitation
(V4), population (V5), GDP (V6), distance from road (V7), and
distance from habitation (V8). As shown in Figure 7, none of the
eight independent variables V has high correlation.

In the process of BRT model establishment, 70% of the data were
randomly selected for analysis each time. The remaining 30% of the

data were used for training and 10-fold cross validation. The BRT
model needs to determine three basic parameters: learning rate (lr),
tree complexity (tc), and tree number. In order to achieve the optimal
model, this study selected lr = 0.01, 0.005, and 0.001 and tc = 1, 5, and
10 for fitting. Figure 8 showed the relationship between the predicted
deviation and the number of deciduous trees in different lr and tc
values of the BRT model. The blue dotted line in the figure represents
a standard error. The blue solid line represents the average value of the
prediction deviation change. The vertical red line represents the
number of trees used to generate this value. The horizontal red
line represents the minimum value of the average value of the
prediction deviation change. When the error of the predicted value
is the smallest, the number of corresponding decision trees is optimal.
The prediction deviation of the BRTmodel decreases with the increase
in tc. When tc increases to 10, the decrease in model prediction
deviation is not obvious. The prediction deviation of the BRT model
decreases with the value of lr. Due to the influence of hyperparameters

FIGURE 6
Global and local spatial autocorrelation of ecological risk in the Yellow River basin from 1980 to 2020.

TABLE 2 Area (104 km2) and proportion (%) of each ecological risk level in the Yellow River basin from 1980 to 2020.

Risk level 1980 1990 2000 2010 2020

Area Percent Area Percent Area Percent Area Percent Area Percent

Lowest risk (ERI ≤ 0.12) 13.93 17.57 13.12 16.54 10.91 13.75 11.58 14.61 15.69 19.79

Lower risk (0.12 < ERI ≤ 0.14) 29.65 37.39 26.89 33.90 31.80 40.10 31.62 39.87 34.51 43.51

Moderate risk (0.14 < ERI ≤ 0.16) 21.96 27.70 23.69 29.87 22.08 27.84 21.89 27.60 18.26 23.03

Higher risk (0.16 < ERI ≤ 0.20) 9.86 12.44 11.52 14.53 10.09 12.74 9.76 12.31 7.14 9.00

Highest risk (ERI > 0.20) 3.89 4.91 4.08 5.15 4.42 5.57 4.44 5.60 3.71 4.67
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on the model fitting results, the deviation is reduced instead. When tc
is 10 and lr is 0.005, the number of trees is 6,138. At this time, the
prediction deviation of the BRT model is the smallest, and the model
achieves the best fitting effect. The final model will use all the data to
construct the model parameters, and the correlation coefficient of 10-
fold cross validation is 0.88. It shows that the precision of the BRT
model is high.

The optimal parameters of the BRT model were used to analyze
the relative importance of each factor to landscape ecological risk in
the Yellow River basin (Figure 9). The results showed that elevation
(24.8%) was the most important factor affecting landscape ecological
risk, followed by precipitation (17.8%). GDP and temperature were
also considered to be unfavorable factors affecting landscape
ecological risk, with levels 15.2% and 14.6%, respectively. The
relative importance of other influencing factors was ranked as
follows: distance from habitation (9.6%) > slope (7.4%) >
population (6.9%) > distance from road (3.7%). Referring to
previous studies, when the contribution rate of a single
independent variable was greater than 10% in the BRT model, it
was considered that the independent variable had a significant impact
on the landscape ecological risk. Therefore, the influencing factors
that played a significant role in the influencing factors were elevation,
precipitation, GDP, and temperature.

Figure 10 is the response curve of each influencing factor to
ecological risk based on the BRT model. The horizontal coordinate
represented the numerical change in each influence factor. The vertical
coordinate indicated the relative influence degree of different factors on

ecological risk. The relative impact of elevation on landscape ecological
risk showed that when the elevation was in the range of 15–1,150 m,
1,450–3,350m, and 4,550–4,832m, the impact on the ERI was negative,
and the remaining effects on the ERI were positive. When the slope was
less than 7°, the effect on the ERIwas positive, andwhen the slopewas in
the range of 18.5°–23°, the effect on the ERI was negative. The slope of
the remaining interval had no significant effect on the ecological risk.
When the temperature was less than 2.5°C, the effect on the ERI
decreases with the increase in temperature, and when the temperature
was higher than 2.5°C, the effect on ERI increases with the increase in
temperature. When the precipitation was 30–550 mm, the impact on
ERI was positive, and the rest of the impact on ERI was negative. When
the population was less than 1,300 people/km2, the impact on ecological
risk was positive. When the population was greater than 1,300 people/
km2, the impact on ecological risk was negative. When the population
increased to 2000 people/km2, the impact on ecological risk remained
unchanged. The impact of GDP on ecological risk decreases with the
increase in GDP.When GDP was less than 5,000 yuan/km2, the impact
on ecological riskwas positive.WhenGDPwas greater than 5,000 yuan/
km2, the impact on ecological risk was negative.WhenGDP increases to
6,800 yuan/km2, the impact on ecological risk does not change. When
the distance from road is 45,000–130000 m, the impact on ecological
riskwas positive, and the rest of the impact on the ERIwas negative. The
distance from habitation was similar to the distance from road. When
the distance from habitation was 120,000–190,000m, the impact on the
ecological risk was positive, and the rest of the impact on the ERI
was negative.

FIGURE 7
Correlation coefficient of influence factors.
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5 Discussion

5.1 The change in landscape ecological risk

As a key ecological security barrier area in China, the ecological
risk of the Yellow River basin increased first and then decreased
from 1980 to 2020 and reached the maximum in 2000. It reflected
that with the development of social economy and technological
progress, the efficiency of human land use was constantly improving

and the awareness of ecological environment protection was
increasing. It showed that China had long adhered to ecological
environment governance and ecological civilization construction
and achieved certain results. It showed that the ecological risk in the
Yellow River basin was effectively avoided and reduced through the
implementation of policies such as forest protection, rural
residential renovation, and development and utilization of bare
land (Wei et al., 2013; Agrawal and Dixit, 2024). From the
perspective of space, due to the large longitude span of the

FIGURE 8
Relationship between the prediction deviation of BRT models with different hyperparameters and the number of decision trees. (A–I) represent the
relationship between the predicted deviation and the number of deciduous trees when tc = 1 and Ir = 0.01; the relationship between the predicted
deviation and the number of deciduous trees when tc = 1, Ir = 0.005; the relationship between the predicted deviation and the number of deciduous trees
when tc = 1, Ir = 0.001; the relationship between the predicted deviation and the number of deciduous trees when tc = 5, Ir = 0.01; the relationship
between the predicted deviation and the number of deciduous trees when tc = 5, Ir = 0.005; the relationship between the predicted deviation and the
number of deciduous trees when tc = 5, Ir = 0.001; the relationship between the predicted deviation and the number of deciduous trees when tc = 10, Ir =
0.01; the relationship between the predicted deviation and the number of deciduous trees when tc = 10, Ir = 0.005; the relationship between the
predicted deviation and the number of deciduous trees when tc = 10, Ir = 0.001, respectively.

FIGURE 9
Relative importance of each factor to the ERI.
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Yellow River basin, the significant differences in topography and
climate, and the uneven economic development, the highest-risk
areas mainly existed in the upper reaches of the Yellow River basin
and the central and northern regions (Zhang et al., 2017).

The highest-risk areas in the upper reaches of the Yellow River
basin were densely populated with rivers and lakes, and the water
bodies were highly separated. Most of them were used for animal
husbandry, and the patches of grassland, forest, and bare land
showed staggered distribution. The high degree of separation and
serious fragmentation result in relatively poor resistance of the
ecological environment. The impact of human factors and
natural factors had become more sensitive, resulting in high
ecological risks (Liu et al., 2008). The highest risk areas in the
north-central Yellow River basin were mainly affected by sand of
storm. Land desertification intensified, bare land was increased, and
the surface was bare, mainly desert and Gobi desert. The landscape
type was single, the structure was fragile, and the agricultural
production mode was backward. Unreasonable agricultural
production activities led to frequent conversion of land-use types
in the region, resulting in a fragile ecological environment and high
ecological risk (Liu and Xiao, 2006). Therefore, for the highest-risk
areas in the upper reaches of the Yellow River basin, the overall
protection and restoration of forest, grassland, and bare land should
be strengthened. Take actions that suit local circumstances and
rational planning, and make good use of the local natural
environment and geographical resources and efficient use of
energy. We should strictly abide by the red line of ecological
protection, continue to implement natural forest protection,
return farmland to grassland, and restore the integrity of
landscape cover in damaged areas. Further deterioration of
landscape ecological risk should be effectively prevented and
controlled (Xin and Ye, 2007). For the highest-risk areas in the
north-central Yellow River basin, the bare land should be rationally
developed and utilized to reduce land desertification and increase
vegetation coverage. The structure of agricultural production should
be optimized, and ecological compound planting should be carried

out in the fragile area of the agricultural landscape. We should
change the mode of agricultural development and improve the levels
of informatization andmechanization so as to avoid the reduction in
ecological environment quality caused by inefficient agricultural
production activities (He et al., 2017).

5.2 Analysis of the influencing factors of
landscape ecological risk change

By analyzing the relationship between landscape ecological risk
and influencing factors, it was shown that the change characteristics
of landscape ecological risk in the Yellow River basin from 1980 to
2020 were complex and dynamic processes, which are affected by
many factors. On the whole, it was the result of the interaction
between natural factors and human factors. The relative stability of
natural factors was the most basic factor to determine the
distribution of landscape ecological risk, and human factors had
a short-term and significant impact on the change of landscape
ecological risk (Liu et al., 2012; Wei et al., 2010).

Natural factors include terrain conditions and climate change. In
terms of terrain conditions, the elevation of the Yellow River basin
was highest in the west and lowest in the east, and the slope was
highest in the southwest and lowest in the northeast. In the aspect of
climate change, the temperature was low in the west and highest in
the east, and the precipitation was highest in the southeast and low
in the northwest. When the elevation is between 3,400 and 4,550 m,
the slope was between 2° and 18°, the annual average temperature
was between 2°C and 5°C, and the annual precipitation was between
400 and 600 mm; the ecological risk of the higher-risk and highest-
risk areas in the upper reaches of the Yellow River basin was
relatively large. The decrease in the grassland vegetation coverage
was mainly due to the low temperature in this region. The land types
with high vulnerability, such as bare land and water body, showed
mainly staggered distribution, and the increase in landscape
fragmentation and the decrease in connectivity lead to high

FIGURE 10
Response curve of each image factor to ecological risk in the BRT model.
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ecological risk (Houet et al., 2010). When the elevation was
1,100–1,400 m, the slope was 0–2°, the annual average
temperature was 9°C–15°C, and the annual precipitation was
150–400 mm; the ecological risk of the higher-risk and highest-
risk areas in the middle and north of the Yellow River basin was
relatively large. It was mainly due to the dual effects of human
activities and harsh climatic conditions in the region. Multiple
natural disasters such as drought, storms, blowing sand, and frost
had caused more bare land and naked land, and the separation of
landscape patches had gradually increased, which caused great harm
to grasslands and crops, resulting in an increase in ecological risks
(Yan et al., 2020).

Human factors included social economy and human
interference. Community economy aspects included population
and GDP. The human disturbance included the distance from
road and the distance from habitation. The population was the
main body that had the greatest impact on the ecological
environment. GDP was the direct embodiment of social and
economic development, and it was also the best indicator to
measure the social and economic situations of the region. Social
and economic factors were closely related to ecological risks. As a
key element and hub of human activities, the road had a great impact
on human survival and production. Habitation directly reflects the
importance of geographical location, playing an indispensable role
in development (Wang et al., 2021). The above research showed that
the effect range of natural and human driving factors on landscape
ecological risk was limited, and it was not that the greater the driving
factors, the stronger the impact. When the relative impact reached a
certain extent, the landscape pattern in the study area was more
constrained by various factors, and the impact on ecological risk was
relatively small (Song et al., 2010).

5.3 Countermeasures of landscape
ecological risk control in the Yellow
River basin

The Yellow River basin had a more urgent need for ecosystem
protection due to its special geographical location, complex terrain,
and social environment. In order to prevent further deterioration of
landscape ecological risk, the characteristics of different levels of
landscape ecological risk should be considered comprehensively,
and targeted ecological environment protection measures should be
introduced (Liu et al., 2012). For the highest-risk areas in the upper
reaches of the Yellow River basin, the policy of natural restoration as
the main method and artificial restoration as the supplement was
adopted. The north-central highest-risk area adopted the policy of
artificial restoration as the main and natural restoration as the
auxiliary method. Strengthened ecological protection, restoration,
and monitoring formulated ecological red lines, established a long-
term mechanism for landscape ecological protection, repaired
broken landscapes, and reduced landscape ecological risk levels.
It was necessary to strengthen the regulation and control of the
higher-risk areas and enhance the role of regional climate regulation,
water conservation, and windbreak and sand fixation. Ecological-
oriented government performance evaluation indicators were
formulated to prevent the increase in the landscape ecological
risk level. For middle-risk areas, the relationship between natural

environment and human activities should be coordinated, and the
classification and control of land types should be strengthened to
ensure that the area of dominant land types is not reduced. The
traditional farming methods should be changed, soil nutrients
should be gradually stabilized, and soil erosion should be
avoided. Good ecological environment protection and monitoring
work should be carried out in lower-risk areas and lowest risk areas,
and the development model of lowest risk areas should be
summarized and promoted.

5.4 Limitations and future research
directions

The landscape ecological risk assessment and influencing factor
analysis of the Yellow River basin based on LUCC and BRT models
achieved good results in the study, but there were also some
limitations. First of all, testing the optimal size of the risk zone
was an important prerequisite for improving the accuracy of
landscape ecological risk in the future. In the future, the
difference in landscape ecological risk between the administrative
boundary as the risk area and the grid as the risk area should be
verified. Second, using the BRT model to study the key influencing
factors corresponding to different landscape ecological risk levels
needed to be further revealed (Mousavi et al., 2019). Despite these
limitations, this study can provide a theoretical basis for the
coordinated development of ecological protection and health in
the Yellow River basin.

6 Conclusion

The research process of the landscape ecological risk assessment
and influencing factor contribution based on LUCCwas complex. In
this paper, BRT, ERI, andMoran ‘I methods were used to explore the
spatiotemporal evolution characteristics and driving factors of
landscape ecological risk in the Yellow River basin from 1980 to
2020. The research findings are as follows:

(1) The land-use types in the study area were mainly grassland,
farmland, and forest, accounting for more than 88% of the
total area. During the years 1980–2020, the LUCC types
changed significantly, especially the area of the farmland
changed the most, which increased by 34,300 km2 in this
period. It was mainly transferred from grassland, the urban
land was gradually expanding, and the bare land had been
well-developed, resulting in unreasonable changes in
LUCC structure.

(2) The spatial distribution pattern of landscape ecological risk in
the Yellow River basin was “highest in the north and lowest in
the south, highest in the west and lowest in the east.” During
the period, the overall ecological risk, moderate-risk, higher-
risk, and highest-risk area increased first and then decreased.
The overall ecological risk reached the maximum in 2000.
Low-risk areas showed a trend of decreasing first and then
increasing. Lower-risk areas increased. These regions showed
significant spatial correlation and high spatial aggregation,
mainly high–high and low–low aggregation types.
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(3) Elevation (24.8%) was the most important factor affecting
landscape ecological risk, followed by precipitation (17.8%).
GDP and temperature were also considered to be unfavorable
factors affecting landscape ecological risk, with levels of 15.2%
and 14.6%, respectively. It showed that the particularity of the
geographical location of the Yellow River basin eventually led
to the stronger influence of natural factors on the change in
landscape ecological risk under the interference of human
activities. Therefore, it is necessary to combine the
characteristics of high-risk occurrence. In the upper
reaches of the Yellow River basin, the policy of natural
restoration was adopted as the main method and artificial
restoration as the supplement. The central and northern parts
of the region adopt the policy of artificial restoration as the
main method and natural restoration as the supplement. The
negative impact of changes in the natural environment should
be minimized and the healthy development of the Yellow
River basin should be promoted.
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