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The prediction of dust concentration in open-pit mine is a critical foundation for
minimising dust pollution. In order to improve the prediction accuracy of dust
concentration in an open-pit mine, the combined prediction algorithm model of
GA-LSSVM and Elman-Adaboost based on the integration of error reciprocal
approach was investigated. Firstly, the monitoring equipment of dust
concentration and meteorological factors was installed in the open-pit mine
site to collect important data, and the distribution law of dust concentration,
meteorological and production intensity data was analyzed. The mutual
information feature screening algorithm was utilised to efficientlyly remove
the redundant and disruptive model prediction performance. The
characteristic variables, according to the importance of information, select
four indicators of stripping amount, temperature, humidity and wind direction,
and then determine the input variables of the prediction model. The dust
concentration prediction model was then developed using the genetic
algorithm optimised least squares support vector machine (GA-LSSVM) and
the Elman neural network optimised adaptive enhancement algorithm (Elman-
Adaboost) models. The final prediction results were integrated using the error
reciprocal method, and then the combined prediction model of dust
concentration in open-pit mine in winter was constructed. Finally, the sample
data is divided into a training set and a testing set in a 7:3 ratio to predict dust
concentration, and the model evaluation index and test method are proposed.
The results show that, using PM2.5 as an example, the model’s input variables are
historical PM2.5 concentration data and external environmental factors selected
based on mutual information. The evaluation indexes of the model include the
correlation coefficient R2, root mean square error RMSE, and standard deviation
SD. The combined model had an R2 of 0.893, RMSE of 11.697, and SD of 22.174.
Compared to the GA-LSSVM model and Elman-Adaboost models, the R2

increased by 24.5% and 41.2% respectively, while the RMSE decreased by
31.0% and 36.7% respectively. When compared to the original sample data set
SD (23.528), it is evident that the combined model clearly has higher prediction
accuracy.
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Highlights

• The distribution law of dust concentration, meteorology, and
production intensity in an open-pit mine was analyzed.

• The mutual information feature screening algorithm is
proposed to construct the dust concentration
prediction index set.

• The GA-LSSVM and Elman-Adaboost combined prediction
algorithm model integrated by the error reciprocal method is
established.

• The combined model has high prediction accuracy.

1 Introduction

Open-pit mining generates productive dust at all stages of
production, including drilling. This type of dust remains
suspended in the air for long periods of time, This type of dust
remains suspended in the air for long periods of time, reducing
visibility in the workplace and endangering the open-pit mine
environment. Furthermore, due to variations in dust’s physical
and chemical properties, exposure can cause a variety of
pathological changes in the body, raising the risk of serious
occupational diseases such as pneumoconiosis. Currently, dust

pollution and occupational hazards associated with dust in open-
pit mines have emerged as major industry challenges that require
immediate attention (Xiao et al., 2023a; Xiao et al., 2024; Xiao et al.,
2023b). However, the complexity of the open-pit mining
environment, the randomness and uncertainty of dust,
significantly reduce the accuracy of predicting future trends in
dust concentration (Jiang et al., 2022). Therefore, the urgent
development of an accurate predictive model for the
concentration of dust in open-pit mines can effectively prevent
and control the generation of dust, provide.

Scholars both domestically and internationally have been
devoted to developing effective and precise techniques for
predicting dust concentration. Numerous studies have been
conducted on the prediction of dust concentration. These
methods can be divided into two main categories: statistical tools
and machine learning algorithms (Dong et al., 2019). Additionally,
due to the potential coupling relationships among multiple
influencing factors of dust. This indirectly leads to continuous
fluctuations in the input variables of the predictive indicators.
Therefore, we will analyze existing research by focusing on the
model approach and the predictive input. For example, Balaga et al.
(2021). developed a functional model based on a power function by
analyzing dust particle distribution characteristics. This model can
predict mine dust even in the absence of empirical data. Wang et al.
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(2021) proposed the ARIMA prediction model based on a time
series of mine dust concentration. Using the Bayesian information
criterion, they compared the benefits and drawbacks of the models
and chose the best model to improve prediction accuracy. Sastry
et al. (2015) utilized various statistical tools to construct
mathematical models for predicting and analyzing the dispersion
of dust during drilling operations in an open-pit coal mine. While a
single dust concentration time series can represent the regression
prediction of dust concentration data for a future period, these
methods, while simple and user-friendly. The main reliance is on the
mathematical description of the dispersion extent of a single dust
concentration, constrained by various factors such as geographical
conditions (Dong et al., 2022), may fail to capture all external
influences on dust concentration data in open-pit mines. As a
result, the predicted outcomes may have limited reference
significance.

In order to overcome the limitations of traditional prediction
models, machine learning algorithms that are adept at handling
multiple variables, such as neural networks, support vector
machines (Sun et al., 2023), and meteorological factors are
currently known to have a significant impact on dust
suspended in the air (Lin et al., 2021). Meteorological factors
must be considered when predicting dust concentrations in open-
pit mines. Many scholars have addressed this issue and used
meteorological factors as input variables in their prediction
models. Lu et al. (2021) analyzed the regression prediction of

PM2.5 in open-pit mines by employing different time intervals
and utilizing particle swarm optimization gradient enhancement
machine. Yan et al. (2023) for example, considered the main
factors influencing dust concentration and used an Elman neural
network model to analyze and predict the changing trend of dust
concentration in bucket shovels in deep open-pit mines. Qi et al.
(2020) used PM and individual meteorological data as model
input variables and proposed a hybrid algorithm using particle
swarm optimization RF. The results showed that the algorithm
had a high prediction performance. Liu et al. (2023) investigated
the dust concentration and meteorological environment data
collected in the open-pit mine, as well as the causes of the
dust concentration changes. They developed a dust
concentration prediction model based on an LSTM neural
network. The findings revealed significant variations in dust
concentration characteristics across seasons. The model’s
prediction results showed a fitting degree of approximately
0.88, with a small prediction error. Hoven (Wen et al., 2021)
et al. analyzed and ranked the influencing factors of dust
concentration based on feature importance. Among them,
relative humidity had the greatest impact on the prediction
effect. Building on this finding, they developed a random
forest algorithm prediction model that takes into account
external environmental factors, allowing them to predict
PM2.5, PM10, and TSP dust concentrations in open-pit mines.
Chen et al. (2020) used the Hammerstein recurrent neural

TABLE 1 Technology of dust concentration prediction menthod and its application.

Categories of
methods

Prediction technique Submitter Domain of application Characteristic

Traditional statistical
tools

Method of statistical regression analysis
Mortality table method

Han et al. (2018) Prediction and early warning of
coal mine dust and coal worker

pneumoconiosis

Semi-quantitative prediction with low
accuracy

Bayesian decision analysis technique Yang et al. (2018) Prediction of dust exposure in
highway tunnel excavation work

Quantitative assessment conducted on the
probability of risks enhances objectivity to a

certain extent

Grey theory Chen, (2000) Prediction of mine dust
concentration

Trend prediction is susceptible to the quality
of data and the influence of features due to
the cumulative relationship between data

Fractional order cumulative grey
prediction model

Liu et al. (2021) Prediction and fitting of changes in
dust emission concentration

ARIMA model Wang et al. (2021) Prediction of mine dust
concentration

The model is simple and suitable for time
series data, but it can only capture linear

relationships in the data

Machine learning
algorithms

Artificial neural network (ANN) Lal and Shankar
Tripathy, (2012)

Prediction of dust in various
locations of a mine

The non-linear prediction method is highly
adaptable, but it has limited methods and

poor robustness
Random Forest Support Vector

Machine
Yaozhong et al.

(2022)
Model for predicting dust

concentration in a multi-factor
environment

BP neural network model optimized by
genetic algorithm

Zhou et al. (2023) Prediction of dust concentration in
a certain mining face

The prediction accuracy is high and the
stability is good. It can be extended to

multiple algorithm combinations, but it is
prone to getting stuck in local optimaLong short-term memory networks and

attention mechanisms for predictive
modeling

Lin et al. (2021) Concentration of total suspended
particulate matter in Pingshuo
Anjialing open-pit coal mine

A hybrid prediction model combining
variational mode decomposition and
improved whale optimization algorithm

Guo et al. (2018) Modeling and forecasting of
PM2.5 in the Beijing-Tianjin-

Hebei region of China

The direct integration of decomposed
ensemble models or simple superposition of

their results may lead to a decrease in
predictive performance
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network (CHRNN) prediction model and selected time and
meteorological factors as input variables to predict
PM2.5 concentration. However, in the production
environment of open-pit mines, dust concentration is
influenced not only by meteorological factors, but also by the
mine’s operating conditions. To accurately forecast future dust
concentration trends in open-pit mines, the established model
should take into account a variety of factors such as
meteorological parameters and production intensity. For
example, Wang Zhiming et al. (2023) used weather forecast
data and mine production data as model inputs, combined six
optimization algorithms to improve the RF algorithm, and
developed a new model for predicting daily dust concentration
in open-pit mines. It is worth noting that there has been little
research into the production intensity of open-pit mines as an
input variable in the dust prediction model. This could be because
the mining intensity of open-pit mines fluctuates, making it
difficult to quantify production data.

To summarize, a multitude of studies have been carried out to
forecast the levels of dust concentration in open-pit mines.
Previous prediction models predominantly relied on established
index parameters to estimate the concentration of dust. The input
index has transitioned from a solitary time series data of dust
concentration to a comprehensive multi-index. The prediction
method has evolved from an initial mathematical statistical tool to
a machine learning algorithm that is extensively employed for

managing multivariate data. Identifying the key factors that
influence dust concentration in open-pit mines is difficult due
to the intricate and unpredictable internal environment. When
dealing with the prediction of multiple data features, statistical
tools and machine learning algorithms each have their own
strengths and weaknesses (Table 1). The lack of research on the
time series of dust concentration in open-pit mines hampers the
development of dust concentration prediction models. Therefore,
it is necessary to make reasonable choices regarding the factors and
models that influence dust concentration and propose more
scientific prediction methods to effectively improve prediction
performance (Dong et al., 2024).

In order to optimize the use of data and reduce the impact of
personal biases, this study utilizes a mutual information feature
selection algorithm to evaluate the effects of various environmental
factors on dust concentration data. The objective of this approach is
to guarantee the impartiality of selecting prediction indices and to
establish a systematic prediction index system for measuring dust
concentration in open-pit mines. The study employs the Genetic
Optimization Least Squares Support Vector Machine (GA-LSSVM)
model and the Elman Neural Network Optimization Adaptive
Enhancement Algorithm (Elman-Adaboost) model to forecast the
dust concentration in the open-pit mine. Therefore, the error
reciprocal method is chosen to integrate the final prediction
results by weight, resulting in the construction of a combined
prediction model for dust concentration in a winter open-pit

FIGURE 1
Site monitoring point layout diagram.

TABLE 2 Monitoring variables and their technical parameters.

Monitored object PM2.5、PM10 Temperature Humidity Wind speed Wind direction Rain fall

Monitoring range 0–1,000 μg/m3 −40–120°C 0–99 %RH 0–70 m/s 8 bearing 0–8 mm/min

Precision ±10 μg/m3 ±0.5°C ±3 %RH ±0.3 m/s — ≤±5%

Resolution 1 μg/m3 0.1°C 0.1 %RH 0.1 m/s 1 bearing 0.2 mm/min
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mine. This presents a novel approach for forecasting the amount of
dust in an open-pit mine.

2 Materials and methods

2.1 Mine overview

Weijiamao Open-pit Coal Mine is located in the southeast of
Jungar Coalfield, which is owned by North United Electric Power
Co., Ltd. The majority of the mining area is covered in Quaternary
loess and aeolian sand, leaving only the bedrock exposed in the local
beam top or gully. The Weijiamao Open-pit Coal Mine began
construction in 2009, with stripping using a single bucket-truck
intermittent process and coal mining using a single bucket-truck-
semi-fixed crushing station-belt conveyor semi-continuous process,
with a design production capacity of 6 million t/year. The open-pit
mine is located in a typical continental arid climate zone, with cold
winters, hot summers, a large temperature difference between day
and night, and low total rainfall. The annual average temperature
ranges from 5.0°C to 7.8°C, with minimum temperatures as low
as −37°C. In general, the freezing season lasts from October to April
the following year, with the majority of rainfall falling between June
and September. The rainiest months are July and August, with
annual total precipitation ranging from 231 to 459mm, accounting
for 25.2% of total annual precipitation (Zhang, 2019). Because of the
perennial drought climate and low relative humidity in the air at
Weijiamao Open-pit Coal Mine, a large amount of dust generated
during daily production is easily accumulated and causes serious
dust pollution. As a result, selecting an open-pit mine for dust
concentration prediction research can provide a useful
theoretical reference.

2.2 Data acquisition

Based on existing literature, the data set for the prediction model
in this paper consists primarily of dust concentration data and
meteorological data with a time interval of 10 min recorded by the
winter monitoring of Weijiamao Open-pit Coal Mine, as well as
production intensity (stripping amount) data provided by the open-
pit mine’s production department. The monitoring point is located
on the 1,112 level of the eastern end of the open-pit mine, near the
slope top line, as shown in Figure 1. PM2.5, PM10, temperature,
humidity, wind speed, wind direction, rainfall, and stripping amount
are among the 1,160 data sets presented. Table 2 shows the data
monitoring variables and their technical parameters.

2.3 Data pre-processing

The quality of the sample data has a direct impact on the analysis
of subsequent data changes and the model’s prediction effect, so
preprocessing is critical. Observing the obtained data reveals that
there are missing and abnormal conditions. This could be due to the
original data in the real-time monitoring process experiencing
equipment power failures, network delays, and other issues
resulting in storage failures, as well as external factors such as
bad weather causing missing and abnormal data (Xia et al.,
2020). Furthermore, due to the comprehensive nature of the
monitoring data, which includes multiple variables with different
dimensions and levels, the model training process must avoid
interference from extreme data values. As a result, this paper
focuses primarily on preprocessing the data in three areas:
handling missing values, addressing outliers, and
standardizing the data.

FIGURE 2
Data processing result diagram.
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2.3.1 Missing, abnormal value processing
The presence of missing values makes complete data analysis

difficult, resulting in the loss of some useful information in data
mining modeling, which is detrimental to the development of robust
models. Data comparison reveals that some data are missing between
17:10 and 18:50 on 30 January 2024. The direct deletion and
interpolation methods are the most commonly used for restoring
and repairing this type of data. Given the continuous nature of the
monitoring data in this paper, and the total number of missing data is
11 groups, the mean interpolation method is used to fill the gaps.

χt �
1
3

∑t−1
m�t−3

χm + ∑t+3
m�t+1

χm⎛⎝ ⎞⎠ (1)

In the formula, χt represents the filled missing value, and χm
represents the current position data value. A total of 6 sets of data are
selected to take the average value to balance the less filled
missing values.

The method for processing abnormal values is similar to that
used for processing missing values. The sample data is time series
data, so there is a logical relationship between adjacent data. To
ensure the integrity of the relevant data as much as possible, the
average value of the adjacent data from Equation 1 is used to correct
the abnormal value.

2.3.2 Data standardization
Data standardization processing can accelerate the

convergence effect of the model and reduce the adverse effects
of the difference in dimensional levels on the training of the

prediction model. In this paper, the deviation standardization
method (Min-Max standardization) is used to linearly
transform the original data, and the values are mapped to [0,1],
but the linearity and periodicity of the data are not changed. Please
refer to Equation 2 for further details.

χ* � χ − χmin

χmax − χmin

(2)

In the formula, χ* represents the new data after standardization,
χ represents the original data, and χmax、 χmin represent the
maximum and minimum values of the original data, respectively.

2.3.3 Data processing result
To ensure the suitability of the sample data for further research,

the missing data is first supplemented. Then, the abnormal data is
detected and identified, and the original data is corrected and
smoothed using the mean interpolation method. This process
enhances the reliability of the analysis results. Figure 2 displays
the outcomes of the data processing. After undergoing
preprocessing, any invalid and non-standard data are eliminated,
and data redundancy is reduced. This results in a smoother data
trend, increased accuracy in overall prediction, and enhanced fitting
of subsequent prediction findings.

2.4 Data analysis

2.4.1 Analysis of distribution law
(1) Distribution of dust concentration data.

FIGURE 3
Distribution law of dust concentration.
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Figure 3 depicts the variation characteristics of PM10 and
PM2.5 mass concentrations that were monitored on site. The
figure shows that the mass concentrations of PM10 and
PM2.5 range from 20 to 191 μg/m³ and 18–171 μg/m³. The
overall data show a certain fluctuation, in which the change
trend of PM10 and PM2.5 is relatively consistent, with a strong
correlation, and the overall trend is presented as ‘two peaks and
two valleys’.

To investigate the dust concentration change rule further,
the data is processed every hour, as shown in Figure 4. The
hourly concentration changes of PM10 and PM2.5 are not
significantly different from the concentration changes every
10 min. The dust concentration is relatively stable from 0o to
9 o’clock, but then rapidly increases from 9o to 11 o’clock. The
maximum values of PM10 and PM2.5 are 102 and 92 μg/m³,

respectively. In the winter, the dust concentration fluctuates
after 11 o’clock.

This situation could be caused by the sun gradually rising
between 0o and 9 o’clock, resulting in a static and stable
atmosphere in the stope pit. This prevents air exchange with the
outside world, making it difficult for particulate matter to diffuse,
resulting in minimal changes in PM values during this time. Solar
radiation increases between 9:00 and 11:00 a.m. during the cold
winter months. Although rising temperatures can increase ground
turbulence, dust particles are still difficult to disperse due to the low
temperature environment. As production intensifies, dust
concentrations rise. The presence of a specific airflow in the
stope influences dust migration and diffusion (Peng, 2020). It
resulted in a sharp decrease in dust concentration between 12:
00 and 15:00; after that, the mine could not be directly exposed

FIGURE 4
Hourly distribution law of dust concentration.

TABLE 3 Descriptive statistical analysis results.

Descriptive statitics Temperature Humidity Stripping amount Wind direction Wind speed Rain fall

Average −4.23°C 66.13%RH 0.02Wm3 109.05° 1.47 m/s 0.00

Median −3.90°C 69.80%RH 0.026Wm3 22.00° 1.20 m/s 0.00

Standard deviation 4.99°C 15.84%RH 0.00Wm3 136.60° 0.98 m/s 0.00

Variance 24.86°C 250.97%RH 0.00Wm3 18658.75° 0.97 m/s 0.00

Maximum value 9.10°C 89.40%RH 0.11Wm3 360.00° 5.60 m/s 0.00

Minimum value −16.60°C 22.90%RH 0.01Wm3 0.00° 0.00 m/s 0.00
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to the sun, the wind speed decreased, the relative humidity
increased, and the mass concentration of particulate
matter fluctuated.

(2) The Distribution law of meteorological and stripping data.

Table 3 describes the overall distribution of meteorological and
stripping amount data using descriptive statistical analysis in this
paper, with the goal of better understanding the distribution pattern
of meteorological and stripping amount data. The analysis reveals
that the mine has low temperatures and humidity in winter, with
temperature ranging from −16.60°C to 9.10°C and humidity ranging
from 22.90 to 89.40%RH. The temperature and humidity show
opposing trends, Temperature and humidity show opposing trends,
consistent with meteorological principles. Throughout the
monitoring period, there was no rainfall, and the natural wind
speed averaged 1.47 m/s. Because of the location of the Weijiamao
open-pit mine, the prevailing wind directions in winter are northeast
and southeast. According to data provided by the mine’s production
department, stripping amount data is converted from daily to
10 min intervals. The stripping amount of data is typically in the
0.02 million square meter range.

2.4.2 Feature screening
In the field of open-pit mine dust prediction, not all features

contribute equally to improving the model’s performance.

Identifying the significant features in multivariate time series can
effectively eliminate redundant variables that disrupt the model’s
predictive performance. This process helps reduce the complexity of
model prediction and mitigates the risk of overfitting. Therefore,
feature screening is a critical preprocessing step. This study utilizes
the mutual information feature selection algorithm to rank the
importance of factors influencing dust concentration. This
approach relies on information theory to assess the significance
of relationships between variables. A higher mutual information
value indicates a stronger correlation between the variables (Zhang
et al., 2024). The specific methods are outlined below. See
Equation 3.

For any two random variables X and Y, the expression for
mutual information I(X;Y) is.

I X;Y( ) � ∑
x∈X

∑
y∈Y

p x, y( )log p x, y( )
p x( )p y( ) (3)

Among them, p(x)、p(y) is the probability distribution of
random variables X and Y, and mutual information I(·; ·) ∈ [0, 1],
The closer the interdependence between variables, the greater the
mutual information value.

Figure 5 shows the results of mutual information feature
screening. It reveals that the key factors in the screening of
PM10 and PM2.5 features are ranked as follows: stripping
amount > temperature > humidity > wind direction > wind speed.

FIGURE 5
Mutual information feature screening results.
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Due to the absence of rainfall throughout the monitoring period,
and the presence of high levels of humidity and rainfall, it was
determined that rainfall was the primary influencing factor on
humidity. Furthermore, during the monitoring period, the
fluctuation in wind direction exhibited a significant variability in
comparison to wind speed. As a result, wind direction played a
more crucial role than wind speed in determining the external
environmental factors affecting dust concentration. Based on the
quantitative screening results of mutual information, the preliminary
identification of the multi-input environmental variables for the winter
dust concentration prediction model of the open-pit mine includes
stripping amount, temperature, humidity, and wind direction.

2.5 Model construction

2.5.1 GA-LSSVM model
The Least Squares Support Vector Machine (LSSVM) model is a

variant of the Support Vector Machine (SVM) that addresses the
unequal constraint defects of SVM and facilitates the resolution of
linear equations. This model enhances both solution efficiency and
convergence accuracy (Li et al., 2022; Zhiyuan et al., 2023). The
LSSVM model can be expressed as. See Equations 4–9.

y � ωT · φ x( ) + b (4)
In the formula, y represents the value of the output variable, w

stands for the weight, φ(x) denotes the mapping function of the data
set kernel space, and b signifies the data deviation.

The LSSVM optimization model is then obtained.

min J � 1
2
ωTω + 1

2
γ∑N
i�1
ξ2i

s.t.yi � ωT · φ x( ) + b + ξ i

(5)

In the formula, J represents the deviation value of the predicted
output variable, γ stands for the penalty parameter, ξi denotes the
relaxation factor value (where i = 1, 2, ., N), and yi signifies the
output value of group i data.

The Lagrangian function is expressed as.

L ω, b, ξ, ∂( ) � J ω, ξ( )∑N
i�1
∂i ωTφi xi( ) + b + ξ − yi[ ] (6)

In the formula, L is the Lagrangian function, ∂i is the Lagrangian
multiplier, and xi is the Lagrangian function variable.

By eliminating the ω, ξ of the model, the following equation
is obtained.

0 lT

l K xi, xj( ) + γ−1I[ ] b
∂[ ] � 0

y
[ ] (7)

In the formula, I is the unit matrix, l is the input data of the KKT
condition, and xi is the Lagrangian function variable. When
l � [1, 1,/1]T, Mercer’s condition function can be expressed as
K(xi, xj), specifically:

K xi, xj( ) � e − xi−xj‖ ‖2/σ2( ) (8)

In the formula, σ is the kernel function.

The LSSVM model can be obtained by solving:

y x( ) � ∑n
i�1
∂iK xi, xj( ) + b (9)

In this paper, a genetic algorithm (GA) is used to optimize the
least squares support vector machine (LSSVM) model by adjusting
the relationship between the model and the parameters. The
specific steps are as follows: ① Select training and test samples
to achieve gene coding of γ and γ. ② Set the initial value of the
parameters. ③ Train the LSSVM model. ④ If the termination
criterion is not satisfied, perform operations such as crossover and
mutation again. ⑤ If satisfied, terminate the training.

2.5.2 Elman-Adaboost model
The Elman algorithm is a specific form of recurrent neural

network. The structure of a neuron is composed of four distinct
layers: the input layer, hidden layer, context layer, and output layer.
This network distinguishes itself from the BP neural network by
integrating a distinctive context layer that possesses a dynamic
memory function. This addition significantly improves the
network’s capacity to handle dynamic data and selectively
eliminate external interferences. See Equations 10–17.

The space of the nonlinear state of an Elman network is
expressed as:

y k( ) � g w3x k( )( ) (10)
x k( ) � f w1xc k( ) + w2 u k − 1( )( )( ) (11)

xc k( ) � x k − 1( ) (12)

In the formula, y represents the ranging distance; x represents
the middle layer node; u represents the multi-scale wavelet energy
difference; xc represents the negative feedback state vector; w1

represents the weight of the undertaking layer and the hidden
layer; w2 represents the weight of the input layer and hidden layer;
w3 represents the weight of the output layer and hidden layer; f(·)
represents the transfer function of the hidden layer; g(·) represents
the output layer transfer function.

Adaboost is an adaptive enhanced ensemble iterative algorithm
that assigns weak classifiers and sample weights to construct strong
learners. The model has a simple structure and can repeatedly train
the output prediction samples of Elman neural network. It can
handle continuous values and has significant advantages in
reducing deviation and improving learning accuracy (Wang
Yongqi et al., 2023). The core steps are.

(1) Training sample weight initialization.

Dt i( ) � 1/n (13)

In the formula,Dt(i) is the sample weight of the tth iteration; i =
1,2,., n; n is the total number of samples.

(2) Set k weak predictors according to the time and accuracy
requirements.

(3) Calculate the prediction error:

εt � 1
n
∑n
i�1
εi (14)
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In the formula, εi are the expected output and predicted
output errors.

(4) The calculation formula of weak predictor
performance weight is:

αt1 �
1
2
log

1 − εt
εt

( ) (15)

(5) The obtained weight αt1 is used to calculate the weight of the
next cycle training sample:

Dt+1 i( ) � Dt i( )
Z

exp −αt1yiht x( )( ) (16)

In the formula, Z represents the normalization factor; yi stands
for the expected output value; and ht(x) denotes the predicted
output value.

(6) After N cycles of training on weak predictors, the strong
predictor function is obtained by combining them. The calculation
formula is as follows:

C1 x( ) � sign ∑N
i�1
αt1f ht, α

t
1( )⎛⎝ ⎞⎠ (17)

In the formula, f(ht, αt1) is a function of k weak trainers
after training.

2.5.3 Prediction result integration
In order to enhance the prediction accuracy of the model, the

above algorithm assigns different weights using the error reciprocal
method. Subsequently, a combined prediction model for dust
concentration in an open-pit mine in winter is developed. The
error reciprocal method utilizes reciprocals to allocate weights based
on the error of each algorithm, effectively reducing the overall error
of the combined algorithm, and consolidating the final prediction
results (Figure 6). With the specific steps detailed in
Equations 18–20.

w1 � ε2
ε1 + ε2

(18)

w2 � ε1
ε1 + ε2

(19)
q � w1q1 + w2q2 (20)

In the formula, w1 and w2 represent the weight values of the
GA-LSSVM model and the Elman-Adaboost model, respectively.
ε1 and ε2 denote the error values of the GA-LSSVMmodel and the

FIGURE 6
Prediction model flow chart.
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Elman-Adaboost model, respectively. q1 and q2 stand for the
predicted values of the GA-LSSVM model and the Elman-
Adaboost model, respectively. q represents the final
predicted value.

2.5.4 Evaluating indicator
In order to verify the predictive accuracy of the

combined prediction model, this paper utilizes the
common correlation coefficient (R2), root mean square
error (RMSE), and standard deviation (SD) to assess the
model’s performance. The specific calculation formulas are as
follows. The specific calculation formula is as follows. See
Equations 21–23.

R2 � 1 −
∑n
i�1

yi
t − yi

p( )2
∑n
i�1

yi
t − �y( )2 (21)

RMSE �
������������
1
n
∑n
i�1

yi
t − yi

p( )2√
(22)

SD �
�����������∑n

i�1 yi − �y( )2
n − 1

√
(23)

In the formula, n the number of samples; yi
t、 yi

p represent the
true value and the predicted value, respectively; and �y represents the
average value of the sample.

Among them, the value of R2 ranges between 0 and 1. The closer
the value is to 1, the better the fitting effect of the prediction model.
RMSE reflects the error between the real and predicted values,
indicating the degree of deviation between the two. A smaller
error implies a more stable model. SD represents the data
aggregation index around the mean, reflecting the degree of
dispersion in the dataset.

Various indicators assess the model from distinct viewpoints,
and the simultaneous application of multiple indicators can yield a
more holistic understanding of model performance. The metrics R2,
RMSE, and SD serve as complementary measures, each illuminating
different facets of the model’s efficacy. Furthermore, employing R2,
RMSE, and SD for model evaluation can furnish more nuanced and
precise information, thereby facilitating improved decision-making.

TABLE 4 Super parameter setting of the model.

Parameter Numerical value

Maximum number of iterations 50

Activation function Relu

Bestc [0.1,1000]

Bestg [0.001,100]

Select 0.9

neurons 20

PRECT 30

FIGURE 7
Adaptation degree.
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3 Result and discussion

3.1 Model hyperparameter adjustment and
optimization

Model training is the procedure of utilizing algorithms and data
to modify and enhance the parameters of the model. To achieve
optimal prediction results, the prediction model is integrated with
the complex database in order to meet specific prediction
performance requirements (Jiang and Jintao, 2024). All model
prediction experiments in this paper were conducted in a
consistent development environment, and the specific parameter
settings can be found in Table 4. To improve the accuracy of
prediction results, it is crucial to continuously adjust and test
model parameters based on the data pattern of dust
concentration in the future. Figure 7 depicts the fitness value of
the model achieved by making continuous adjustments to the
parameters. The fitness value reaches a stable state at the 7th and
14th iterations, respectively, with the optimal fitness value
determined to be 0.05214. The most effective parameter
combination for the kernel function and penalty factor of the

GA-LSSVM model is (1.3992,16.7093). The AdaBoost regression
model, which is defined by the user, is utilized as the base learner
with a predetermined quantity of 100. The Elman network functions
as the fundamental regressor, consisting of 30 neurons, and the
number of training iterations is set to 100.

3.2 Analysis of model results

3.2.1 Multi-input variable prediction
Using PM2.5 as an example of the output variable for model

prediction, the mutual information feature screening algorithm
mentioned earlier identifies the significant prediction indices. The
input variables are ultimately identified as four external
environmental factors: stripping amount, temperature, humidity,
and wind direction. Furthermore, as PM2.5 dust concentration is a
substantial constituent of PM10, the concentration of PM10 can be
used as an additional point of reference. If needed, it can be used as
an input variable to improve the predictive accuracy of future
PM2.5 trends. In order to assess the prediction results based on
various input variables, four specific input scenarios are examined:

FIGURE 8
Scatter plot of different input variables.
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using only PM2.5, using only external environmental factors, using
both external environmental factors and PM2.5, and using both
external environmental factors and PM10. By performing a
comparative analysis of the model’s prediction results, we can
gain a clearer understanding of how multiple factors affect the
model’s predictive performance.

Figure 8 displays the anticipated scatter plot of
PM2.5 concentration based on various input conditions. Upon
comparison, it is evident that the input external environmental
factors exhibit the highest degree of fitting with PM2.5. Following
this, the external environmental factors and PM10 are identified as
the subsequent input variables. This suggests that the effectiveness of
the model is significantly influenced by the input conditions, and
taking into account various factors can improve the accuracy of the
prediction model. In addition, incorporating output factors into the
input variables yields more precise prediction outcomes when
compared to only considering external environmental factors.

FIGURE 9
Prediction results of different models.

FIGURE 10
Model evaluation index analysis.

TABLE 5 Evaluation indicators of different models.

Model R2 RMSE SD

Combined model 0.893 11.697 22.174

GA-LSSVM 0.717 16.956 16.139

Elman-Adaboost 0.675 18.484 11.667
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Hence, it is essential to include past PM2.5 concentration data from
the previous day and the chosen prediction indexes based on mutual
information as input variables in subsequent forecasts to predict the
future trajectory of PM2.5 accurately.

3.2.2 Model comparison results
In order to verify the effectiveness of the combined prediction

model based on the error reciprocal method proposed in this paper,
in accordance with a 7:3 ratio, the sample data is partitioned into a
training set and a test set for the purpose of predicting dust
concentration. Specifically, the training set comprises
812 samples, while 348 samples are utilized for prediction. This
approach mitigates the risk that the integrated model may fail to

adequately capture the intricate patterns present in the data, thereby
enhancing overall model performance. GA-LSSVM and Elman-
Adaboost are selected as the comparison models, respectively.
The prediction results of different models are shown in Figure 9.

The Taylor diagram is utilized in conjunction with the
evaluation index to comprehensively assess and compare the
relationship between various model indexes from multiple
perspectives and dimensions. In Figure 10, the abscissa, radiation
line, and scale dotted line represent the standard deviation,
correlation coefficient, and root mean square error, respectively.
The evaluation indexes’ comparison results are displayed in Table 5.
The comprehensive calculation reveals that there is no significant
disparity in the prediction outcomes of the three models. Due to the
incorporation of the support vector machine model and the neural
network model, the composite model presented in this paper has
resulted in substantial enhancements in R2 and RMSE. The
combined model outperforms the GA-LSSVM model with a
24.5% increase in R2 and a 31.0% reduction in RMSE. The
Elman-Adaboost model was compared to and found to have a
41.2% increase in R2 and a 36.7% decrease in RMSE.
Furthermore, the statistical analysis reveals that the original
dataset has a standard deviation of 23.528. Additionally, the
combined model demonstrates superior accuracy when compared
vertically.

FIGURE 11
Model test result diagram.

TABLE 6 Model performance evaluation of different distribution ratios.

Distribution ratios R2 RMSE

6:4 0.676 15.751

7:3 0.893 11.697

8:2 0.736 12.859

9:1 0.787 11.871
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3.3 Model checking

The distribution ratios of the training set and test set can directly
impact the accuracy of model predictions, particularly in large-scale
data sample sets. Hence, this paper categorizes four prevalent
distribution ratios, namely, 6:4, 7:3, 8:2, and 9:1, and assesses the
model’s effectiveness using the correlation coefficient (R2) and root
mean square error (RMSE) of the evaluation index.

Figure 11 displays the model test results for various distribution
ratios. It indicates the number of samples in each of the four training
sets: 696, 812, 928, and 1,044. These results are used to assess the
prediction model’s generalization ability and actual effectiveness.
This evaluation aims to improve the credibility and scientific value
of the research findings. And Table 6 demonstrates that the model’s
training error does not improve even as the amount of training data
increases. When the dataset is trained with a distribution ratio of 7:3,
specifically with 812 training samples, the R2 and RMSE metrics
achieve their optimal state.

Moreover, the unique characteristics that the model learns from
the training data are absent in the test data, which makes it difficult
to evaluate the model’s generalization during the training phase. As a
result, external support tools are necessary to confirm and assess the
model’s effectiveness in real-world applications.

This paper employs the widely used k-fold cross-validation
method to evaluate the generalization capability for
hyperparameter selection. k-fold cross-validation is a more
effective approach for evaluating models compared to the
traditional method of partitioning the training set and test set. It

helps to prevent problems that may arise from improper data set
partitioning (Lu, 2023; Lei et al., 2022; Li et al., 2024).

The k-fold cross-validation generally involves repeating k
random segmentation processes. Typically, k is set to 5 or 10. In
this study, k = 5 is chosen for cross-validating the training set, which
consists of 812 sets. The dataset is divided into five nearly equal and
mutually exclusive parts. These parts are denoted as F1, F2,/F5,
|Dn| � n, |Ft| � m, representing the number of samples in the
training set data and the tth Ft, respectively. Then, n � km,
n � 812, m � 163, in turn, each of the 5-fold compromises of the
segmentation is used as the verification set, and the remaining 4-fold
is used as the training set to train the model. In this way, the trained
5 models can obtain 5 sets of verification errors. The average value of
the verification error is taken as the final model verification index,
and further compared with the final prediction error (Figure 12). It is
found that the trend of verification error and test error is roughly the
same, and there is no overfitting or underfitting phenomenon,
indicating that the model prediction performance has reached a
robust state at this time.

4 Conclusion

4.1 Main conclusion

The accurate estimation of dust concentration plays an
important role in its control design. In this paper, the regression
prediction analysis of PM mass concentration in Weijiamao open-

FIGURE 12
Prediction error comparison.
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pit mine is carried out. Specifically, through the pre-processing and
analysis of the data obtained from the real-time monitoring of the
open-pit mine site, the mutual information screening algorithm is
further used to obtain the dust concentration data affected by the
meteorological and production intensity factors. The order is:
stripping amount > temperature > humidity > wind direction >
wind speed, and finally the external environmental impact indicators
of the model are quantitatively determined, including stripping
amount, temperature, humidity, and wind direction. In addition,
taking the output variable PM2.5 as an example, a combined
prediction algorithm model of GA-LSSVM and Elman-Adaboost
based on error reciprocal method is constructed. The training
sample set and test sample set of the prediction model are
established according to the PM2.5 sequence data according to 7 :
3, and the correlation coefficient R2, root mean square error RMSE
and standard deviation SD are proposed as the evaluation indexes of
the model. The findings indicate that an analysis of various input
variable conditions reveals a correlation between the input variables
and the output elements. Specifically, when the input variables
incorporate information regarding PM2.5 concentration values, the
accuracy of the prediction results improves. The combined model
demonstrates performancemetrics of R2 = 0.893, RMSE = 11.697, and
SD = 22.174. In comparison to the GA-LSSVMmodel and the Elman-
Adaboost model, the R2 value shows an increase of 24.5% and 41.2%,
respectively, while the RMSE exhibits a decrease of 31.0% and 36.7%,
respectively. These results suggest that the predictive performance of
the combined GA-LSSVM and Elman-Adaboost algorithm model,
which is based on the error reciprocal method, is relatively stable.

4.2 Application of the model

In recent years, integrating computer science into open-pit mining
engineering has become increasingly common. However, there is still a
gap in developing specific environmental parameters in this area.
Utilizing interdisciplinary approaches can expand perspectives and
offer new solutions to various challenges. The prediction capabilities
of the combinedGA-LSSVMandElman-Adaboostmodel, based on the
error reciprocal method presented in this paper, outperform other
algorithms. The findings provide a valuable resource for practical
implementation, presenting efficient tactics for improving
environmental management, preserving air quality, and integrating
production data in open-pit mining, while also mitigating the effects of
external environmental fluctuations on mining activities.

In particular, this is primarily evident in the following two areas:

(1) A precisemodel for forecasting dust concentration can evaluate
the extent of dust pollution in open-pit mines. By integrating
this model with the software on the host computer, we can
create a real-time monitoring system for open-pit mines. This
system will provide a visual representation of dust pollution
levels using different colors. This system enables the production
department to strategically plan the mine’s overall production
schedule, efficiently devise strategies to reduce dust, optimize
different parameters for dust control, and establish a
connection between the prediction model and dust
reduction equipment. This method aids in mitigating the
detrimental effects of dust pollution on mining machinery

and equipment, thereby diminishing the likelihood of severe
accidents and promoting the adoption of sustainable
mining practices.

(2) Dust pollution in open-pit mining operations contributes to
the degradation of the ecological environment and poses
significant health risks to workers. The purpose of
developing the predictive model is to reduce the influence
of human subjective biases and accurately define the
mathematical connection between dust concentration and
its main factors. This model is useful for managers to
improve the monitoring of occupational hazards related to
dust. It also helps in implementing early warning systems and
risk control technologies, which in turn helps in managing
and reducing occupational diseases such as pneumoconiosis.

4.3 Limitations and future research
directions

Considering the research background of expediting the
development of mine ecological civilization in the country, and
taking into account the intricate environment of open-pit mines and
the numerous factors that affect dust concentration, the
aforementioned study presents a model construction framework
for predicting dust concentration data in open-pit mines. This
framework establishes a foundation for subsequent dust control
efforts. Building upon the aforementioned research findings, this
study puts forth additional research prospects for predicting dust
concentration in open-pit mines. These prospects aim to stimulate
further discussion and implementation in future research endeavors.

In the future, advancements in predicting dust concentration in
open-pit mines will require enhancements to the selection
mechanism and foundation of the prediction model. It is
essential to further evaluate the input variables of the model and
introduce constraints to boost its accuracy. There should be a focus
on deepening fundamental theoretical research and conducting
seasonal analyses of dust concentration data. A comprehensive
examination of the variations in dust concentration across the
different seasons—spring, summer, autumn, and winter—will
help achieve precise predictions that account for both similarities
and differences in dust concentration data throughout the year.
Additionally, efforts should continue towards developing an
integrated system platform for monitoring, forecasting, early
warning, and intelligent prevention and control of dust in open-
pit mines, along with dedicated research on the monitoring,
prediction, and prevention systems specific to dust in this field.
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