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Water hyacinth (Pontederia crassipes) is an invasive weed that covers a significant
portion of Lake Tana. The infestation has an impact on the lake’s ecological and
socioeconomic systems. Early detection of the spread of water hyacinth using
geospatial techniques is crucial for its effective management and control. The
main objective of this study was to examine the spatiotemporal distribution of
water hyacinth from 2016 to 2022 using a random forest machine learning
model. The study used 16 variables obtained from Sentinel-2A, Sentinel-1 SAR,
and SRTMDEM, and a random forest supervised classificationmodel was applied.
Seven spectral indices, five spectral bands, two Sentinel-1 SAR bands, and two
topographic variables were used in combination to model the spatial distribution
of water hyacinth. Themodel was evaluated using the overall accuracy and kappa
coefficient. The findings demonstrated that the overall accuracy ranged from
0.91 to 0.94 and kappa coefficient from0.88 to 0.92 in thewet season and 0.93 to
0.95 and 0.90 to 0.93 in the dry season, respectively. B11 and B5 (2022), VH, soil
adjusted vegetation index (SAVI), and normalized difference water index (NDWI)
(2020), B5 and B12 (2018), and VH and slope (2016) are the highly important
variables in the classification. The study found that the spatial coverage of water
hyacinth was 686.5 and 650.4 ha (2016), 1,851 and 1,259 ha (2018), 1,396.7 and
1,305.7 ha (2020), and 1,436.5 and 1,216.5 ha (2022) in the wet and dry seasons,
respectively. The research findings indicate that variables derived from optical
(Sentinel-2A and SRTM) and non-optical (Sentinel-1 SAR) satellite imagery
effectively identify water hyacinth and display its spatiotemporal spread using
the random forest machine learning algorithm.
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1 Introduction

Water hyacinth, scientifically known as Pontederia crassipes, is an aquatic plant that
originates from South America. However, it has been introduced to numerous other regions
globally, where it frequently becomes invasive and leads to ecological issues (Coetzee et al.,
2009; Jones, 2009; Degaga, 2018; Ayanda et al., 2020; Simpson et al., 2022). It was brought
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into several countries of Europe, Africa, and North America over
100 years ago as an ornamental aquatic plant species to adorn the
water bodies due to their appealing blue, lilac, or purplish flowers
and round or oval leaves (Bhattacharya and Kumar, 2010; Zhang
et al., 2010). Over time, in the place of introduction into new
habitats, the plant’s status has evolved from being a beautiful
ornamental plant to an invasive alien species (Laranjeira and
Nadais, 2008; Wang and Yan, 2017). This is due to its rapid
reproduction through both seeds and vegetative propagation
(Barrett, 1980), formation of mats on the water’s surface (Zhang
and Guo, 2017), and alteration of aquatic habitats by outcompeting
native aquatic plants (Stiers et al., 2011), reducing biodiversity and
disrupting the natural balance of the ecosystem (Ayyad, 2003;
Williams and Hecky, 2005). Due to its high dispersal and growth
capacity, the species is ranked on the 100 worst invasive plant species
list, as reported by the International Union for Conservation of
Nature (IUCN) (Patel, 2012; Cordeiro et al., 2020). Water hyacinth
has become a danger to many aquatic habitats worldwide (Ayanda
et al., 2020). Infestation has several detrimental ecological and social
effects that endanger aquatic systems, prevent people from using
surface waters, and impair hydraulic structures such as canals and
pumping places (Gerardo and de Lima, 2022). It obstructs
navigation and fishing (Hill and Coetzee, 2008), harms
infrastructure, increases service costs, weakens riparian
populations, and changes ecology (Laranjeira and Nadais, 2008;
Julien, 2008). Water hyacinth, which displaces native aquatic plants
and animals groups, is regarded as the most notorious weed in
freshwater ecosystems throughout the world’s warm and tropical
regions (Rezene, 2005).

Ethiopia is home to 35 terrestrial and aquatic alien plant species
that have become invasive (Tasew and Wendimagegnehu, 2022).
Among the aquatic alien species such as duckweeds and papyrus,
water hyacinth is the most notorious and widely spreading in the
lakes and freshwater resources of Ethiopia. It negatively affects slow-
moving freshwater systems such as ponds, dams, lakes, rivers, and
wetlands found in the rift valley regions of Ethiopia and the Lake
Tana basin (Gedefaw and Gondar, 2018). The water quality is
affected in a number of ways, following water hyacinth invasion.
Dissolved oxygen levels are reduced beneath the floating mat by
decreasing the natural transfer of oxygen from the air at the water
surface (Gebremeskel, 2024). In addition, decomposing dead plant
material can further reduce the amount of dissolved oxygen and
increase sedimentation and silting in the water (Mironga et al.,
2012). All of these factors lead to a decrease in the water quality. The
decreased water oxygen levels result in a changed aquatic habitat,
reducing fish diversity and impacting other aquatic flora and fauna
communities (Abera, 2017).

Water hyacinth poses a significant threat to the livelihoods of
people living around Lake Tana in Ethiopia. This invasive plant has
harmful effects on the lake’s ecosystem, biodiversity, fisheries, and
agriculture (Kibret, 2017; Enyew et al., 2020; Damtie et al., 2022; Cai
et al., 2023). In Lake Tana, the coverage of water hyacinth has rapidly
grown (Cai et al., 2023). It covered between 80 and 100 hectares (ha)
when it first appeared in 2011 and was limited to one kebele located
around the mouth of the Megech River (north of Lake Tana). It first
appeared in some pocket grazing and wet farm areas, proliferating
and covering shoreline habitats in the Ribb and Dirma river mouths
(Wondie, 2012). Within a year, it had spread to approximately

20,000 ha (Tewabe, 2015). Despite significant efforts and
investments by stakeholders each year, its coverage continues to
increase over time (Enyew et al., 2020). Since 2014, the weed has
increased in space and time and infested about 9 woredas (Takusa,
West Dembia, East Dembia, Gondar Zuria, Libo Kemkem, Fogera,
Dera, and Bahir Dar Zuria) and about 30 kebeles. The weed expands
beyond its original area and moves toward the north, northeast, and
eastern parts of the lake much faster than other types of coverage due
to the wind direction and wind-induced wave direction that moves
the weed toward the east (Dersseh et al., 2019), posing a threat to the
lake’s sustainability and the riparian community, who rely on the
lake for their livelihoods (Asmare et al., 2020). Moreover, water
hyacinth has had a negative effect on fishing activities (Asmare,
2017) and biotic communities (Abera, 2017; Gezie et al., 2018). It has
also affected pasture and agricultural land use (Dechassa and Abate,
2020; Damtie and Mengistu, 2022) and livestock and crop
production (Enyew et al., 2020). The invasion has significant
implications for pasture and agricultural land use, primarily
affecting agricultural productivity and the accessibility of farming
areas. The presence of water hyacinth can lead to the loss of pasture
and agricultural land due to its invasive nature. As it spreads, it can
outcompete native vegetation, leading to a decrease in indigenous
grasses and other plants vital for both livestock grazing and crop
production (Churko et al., 2023). The destruction of these natural
habitats not only impacts the availability of forage for livestock but
also reduces the overall resilience of agricultural systems to
environmental changes (Ilo et al., 2020; Dersseh et al., 2019;
Endgaw, 2021; Begum et al., 2021). It also affects agricultural
land use by blocking irrigation channels and waterways essential
for supplying water to crops. The dense mats impede water flow and
reduce water availability for irrigation (Arp et al., 2017; Hammam
et al., 2022; Churko et al., 2023). This situation is particularly
detrimental in regions heavily dependent on irrigation for
agriculture, resulting in decreased crop yields and financial losses
for farmers (Enyew et al., 2020; Churko et al., 2023). Furthermore,
the high water consumption of water hyacinth exacerbates water
scarcity issues, further straining agricultural practices (Hammam
et al., 2022). Despite years of effort and resources dedicated to
reducing its rapid expansion and negative effects, water hyacinth
remains one of the most harmful aquatic invasive weeds in Lake
Tana and its surrounding areas (Enyew et al., 2020).

The use of geospatial technology in identifying and mapping
water hyacinth is crucial. These technologies provide valuable data
on the geographic dispersal and extent of water hyacinth
infestations. Multispectral satellite imagery helps discriminate
reflectance values in different spectral bands, allowing for the
accurate mapping of water hyacinth distribution, understanding
of underlying factors, and development of effective management
strategies across lakes (Thamaga and Dube, 2018; Begam et al., 2021;
Chen et al., 2021). Effective and efficient monitoring largely depends
on the accurate detection of weed spatial distribution. Since water
hyacinth shows potential to impact biodiversity, ecosystem function,
and services, it is imperative to address it in aquatic habitats (Robles
et al., 2015; Pádua et al., 2022). Therefore, having up-to-date
spatially explicit data and information about its dispersion and
early identification is essential to comprehend its spatial
arrangement and propagation rate (Thamaga and Dube, 2019).
Asmare et al. (2020), Dersseh et al. (2020), and Bayable et al.
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(2023) investigated the spatiotemporal distribution of water
hyacinth in Lake Tana using geospatial techniques. In particular,
Bayable et al. (2023) utilized a machine learning-based classification
method that relied on variables derived from spectral indices and
bands. However, they used optical satellite imagery, which limited
the range of variables to optical bands. In addition, the wavelength
range and detection capability of the optical images for aquatic plant
species, such as duckweed, papyrus, and hippo grass, which are
prevalent in the coastal regions of Lake Tana, are limited. Therefore,
optical imagery alone cannot detect the narrow reflectance
differences between those plants. However, non-optical radar
remote sensing offers significant advantages in detecting and
monitoring aquatic vegetation, including both submerged and
floating plants, in diverse water bodies. The key advantage lies in
the ability of radar remote sensing to capture spectral reflectance
within a longer wavelength, unaffected by cloud cover or other
atmospheric conditions. The use of synthetic aperture radar (SAR)
data, such as those from Sentinel-1, for monitoring aquatic weeds
like water hyacinth, duckweed, and papyrus is advantageous due to
several unique characteristics of radar technology. Unlike optical
sensors, which can be hindered by cloud cover and limited visibility
conditions, SAR can capture data day or night and under various
weather conditions, making it particularly useful for the continuous
monitoring of aquatic environments (Datta et al., 2021; Duc and
Tong, 2021; Rowan and Kalacska, 2021). This capability is crucial for
detecting the spatial distribution of invasive species, which often
fluctuates with seasonal changes in water levels and vegetation
growth. Sentinel-1 SAR is effective in distinguishing between
different types of aquatic vegetation due to its sensitivity to the
structural characteristics of the plants. Water hyacinth, for example,
has a unique backscatter signature compared to other aquatic plants
like duckweed and papyrus. The differences in reflectance can be
attributed to the varying surface roughness and moisture content of
these plants, which affect how radar waves interact with them
(Simpson et al., 2022). Studies have shown that the dual-
polarization capabilities of Sentinel-1 (VV and VH) enhance the
detection accuracy of water hyacinth, yielding true positive detection
rates of approximately 95% (Simpson et al., 2022). This high
accuracy is essential for the effective management and control of
invasive species.

In terms of spectral characteristics, water hyacinth typically
exhibits higher reflectance in the infrared spectrum than
duckweed, papyrus, and other aquatic vegetation, which can be
attributed to its thicker leaves and denser structure. This difference
allows for effective discrimination between these species using radar
data (Simpson et al., 2022). The temporal detection capacity of
Sentinel-1 is also noteworthy; it can monitor both submerged and
floating water hyacinth across different seasons. For instance, during
the rainy season, when water levels rise, submerged portions of water
hyacinth may be detected, while in the dry season, floating mats
become more prominent (Worqlul et al., 2020). This temporal
flexibility is crucial for understanding the dynamics of aquatic
weed populations and their ecological impacts.

Furthermore, the integration of SAR data with optical data from
sensors like Sentinel-2 can enhance the overall monitoring
capabilities. Although Sentinel-2A provides high-resolution
optical imagery that can capture detailed vegetation indices, SAR
complements this by providing consistent data, regardless of

weather conditions, thus allowing for a more comprehensive
analysis of aquatic vegetation dynamics (Elkhrachy et al., 2021;
Singh et al., 2020). The combination of these data sources can
improve the accuracy of mapping and monitoring efforts, ultimately
aiding in the management of invasive aquatic species.

In addition, Bayable et al. (2023) did not consider topographic
variables such as elevation and slope in their variable list. Valta-
Hulkkonen et al. (2004) reported that the inclusion of topographic
variables enables the identification of land use/land cover and helps
improve classification accuracy for aquatic vegetation. As a result,
this study examines the spatial coverage and temporal distribution
of water hyacinth from 2016 to 2022 using a random forest (RF)
machine learning model by considering optical, radar, and
topographic variables. This study will provide a valuable
contribution to the geographic extent of water hyacinth, assisting
stakeholders in their management efforts. By accurately mapping
and assessing the spatial coverage of the weed, this research will
support informed decision-making and enable the development of
effective strategies for controlling and mitigating this invasive
species. The findings will empower stakeholders to prioritize
areas for intervention, allocate resources efficiently, and
implement targeted management actions to address the
challenges posed by water hyacinth infestation.

2 Materials and methods

2.1 Study area

The Lake Tana basin, which is the source of the Abay River, is
situated in Ethiopia’s northwest highland at an elevation ranging
from 1,674 to 4,104 meters (m) (Figure 1). In terms of geographical
coordinates, it spans from 11° 00’ 00’’ to 12° 40’ 00’’ N and from 36°

40’ 00’’ to 38° 20’ 00’’ E. It is located in the Abay River basin
(Figure 1). The total catchment area of the basin is approximately
15,000 km2 of which Lake Tana covers approximately 3,060 km2

(Kumlachew et al., 2023). The maximum depth of Lake Tana is
14 m, and the average depth is 8 m (Tibebe et al., 2019). The lake is
drained by over 40 rivers, with Gilgel Abay being the largest from the
south, followed by the Ribb and Gumara from the east and the
Megech River from the north (Enyew et al., 2020). There are
347 kebeles and 21 woredas that make up the Lake Tana watershed.

The basin experiences a tropical highland monsoon climate. The
primary period of rainfall is from June to September, which
contributes to around 70%–90% of the overall annual
precipitation. The basin experiences a mean annual rainfall of
approximately 816–1,200 mm (Mequanent et al., 2021). The
average air temperature throughout the year is approximately
19°C–23°C (Worqlul et al., 2020). Lake Tana serves as a
multipurpose water resource that supports the livelihoods of
millions of individuals in the region. The area surrounding the
lake is known for its fertile soil, which has facilitated productive
agricultural practices and vibrant fishing activities. Approximately
80% of the population relies on agriculture and engages in
subsistence smallholder farming that encompasses a diverse
variety of crops, such as sorghum, millet, rice, and maize (Abebe
andMinale, 2017). Aside from agriculture, the Lake Tana region also
benefits from other sectors, such as tourism, fishing, livestock
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breeding, and small-scale manufacturing and marketing enterprises
(Birara et al., 2018).

2.2 Data sources, types, and acquisition

This study used Sentinel-2A imageries, which were acquired free of
charge from Sentinel Hub (https://scihub.copernicus.eu/) with a cloud
cover less than 10%. The image was downloaded for the 2016–2022 wet
(June, July, August, and September) and dry seasons (January, February,
March, April, and May). This is due to the variation in geographic
infestation coverage across seasons. The water hyacinth coverage in
Lake Tana is larger during the wet season than that in the dry season
(Thamaga and Dube, 2019; Bayable et al., 2023). From the Sentinel-2A
satellite, seven indices were derived as covariates formodeling (Table 1).
In addition, a total of five bands (B4, B5, B8, B11, and B12) were used to
model the spatiotemporal spread of water hyacinth (Table 2).

The study also used Sentinel-1 SAR image data. SAR data are
excellent in areas with a regular cloud cover as it can pass through
clouds and function under all weather conditions. Consequently,
two bands (VV and VH) were used as predictive variables (Table 2).
Furthermore, the slope and elevation data were downloaded from
SRTM (https://www.earthdata.nasa.gov) with a 30-m spatial
resolution and were used as a topographic variable. Topographic
variables are valuable in land use/land cover mapping. They provide
insights into the physical characteristics of the land that influence
the distribution and patterns of land cover.

2.2.1 Land use/land cover
The main target of this study was to detect the spatial and

temporal dynamics of water hyacinth in Lake Tana. Therefore, the
study classified the land use/land cover of Lake Tana and the

surrounding area into three groups, namely, water hyacinth,
water body, and mixed (Table 3). The mixed class is used to
train the model and accurately distinguish water hyacinth from
riparian green vegetations that have similar spectral reflectance.

2.3 Image preprocessing

Distortions in remotely sensed images are caused by changes in
illumination, weather, and sensor noise (Mukarugwiro et al., 2019). As a
result, preprocessing assists in enhancing image quality and data.
Hence, all variables were projected to WGS 1984 UTM Zone 37. In
addition, digital numbers were converted into reflectance (top of the
atmosphere). On the other hand, the Sentinel-2A image bands with
different spatial resolutions of 10, 20, and 60 m were resampled to 10 m
using the nearest neighbor resampling method. The remote sensing
image was clipped to the extent of the study area. After clipping, the
image was mosaicked to create multilayer raster images.

2.4 Image classification

The land use/land cover classification was based on the pixel-
based image classification method. The study applied a supervised
classification method. Due to its robustness and accuracy among
classification algorithms (Mukarugwiro et al., 2019; Bayable et al.,
2023), an RF machine learning-based classification was applied. RF
is an algorithm for machine learning commonly applied for land use
and land cover classification. It provides accurate classification
results with high overall accuracy and robustness in training
(Gislason et al., 2006; Kulkarni and Lowe, 2016; Nguyen et al.,
2018). RF is an ensemble method that makes predictions by

FIGURE 1
Map of the Lake Tana sub-watershed, Lake Tana, Amhara Region, Ethiopia.
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combining several decision trees. Every decision tree within the RF is
trained using randomly selected features and a random subset of
data. At the end, all the individual predictions were summed up to
form a final prediction (Rodriguez-Galiano et al., 2012; Adam et al.,
2014; Svoboda et al., 2022). To train the RF model, the training data
were labeled with ground control points (GCPs) and their
corresponding land use/land cover classes. The model can then
classify new data points based on their input features.

2.5 Accuracy assessment

To determine the accuracy of the classified map using machine
learning RF classifiers, a separate test dataset was used, and its results
were presented using a confusion matrix. The RF machine learning
model was trained with 70% of the GCP, and the remaining 30% was
used to test the accuracy level. Modeling was executed using the
Google Earth Engine platform. The classification accuracy was

FIGURE 2
Methodology flowchart.

TABLE 1 Remote sensing indices and predictor variables derived from Sentinel-2A satellite imagery for modeling water hyacinth using the random forest
algorithm.

Indices Formula Source

Normalized difference vegetation index (NDVI) NIR−RED
NIR+RED Rouse et al. (1974)

Normalized difference water index (NDWI) GREEN−NIR
GREEN+NIR Gao (1995)

Enhanced vegetation index (EVI) 2.5 × NIR−RED
NIR+6 × RED−7.5 × BLUE+1 Huete et al. (2002)

Soil adjusted vegetation index (SAVI) (1 + L) × NIR−RED
NIR+RED+L where L = 0.5 Huete (1988)

Normalized difference aquatic vegetation index (NDAVI) NIR−BLUE
NIR+BLUE Villa et al. (2013)

Normalized difference built-up index (NDBI) SWIR−NIR
SWIR+NIR Karanam and Neela (2017)

Bare soil index (BSI) (RED+SWIR)−(NIR+BLUE)
(RED+SWIR)+(NIR+BLUE) HemaLatha and Varadarajan (2019)
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assessed by evaluating both the overall accuracy and the kappa
coefficient. Asmare et al. (2020) reported that for supervised
classification, a minimum of 30 points are needed. Therefore,
more than 150 GCPs were used in the post-classification
accuracy assessment. According to Bharatkar and Patel (2013),
the classification accuracy of an image is calculated through the
following formula:

Overall accuracy %( ) � Correctly classified pixels
Total number of GCPs

,

Kappa coefficient K( ) � Po − Pc
1 − Pc

,

where Po represents the proportion of units that exhibit agreement,
while Pc represents the proportion of units expected to have chance
agreement. If the kappa value is <0.4, the classification is poor; if it is
between 0.4 and 0.75, it is a good kappa value; and if K > 0.75, it is an
excellent kappa value.

3 Results and discussion

3.1 Feature importance

The study utilized a total of 16 variables, including Sentinel-2A
bands, indices, Sentinel-1 SAR bands, and topography (Table 2 and
Figure 2). These variables demonstrated varying levels of
performance in different years and seasons. The importance of
each variable is influenced by the response variable (GCPs) used
to train the model.

The most crucial variables during the dry season of the study
period were the normalized difference aquatic vegetation index
(NDAVI), soil adjusted vegetation index (SAVI), B5, B8, B4, and
normalized difference vegetation index (NDVI) (Figure 3).
However, topographic variables like slope and elevation, as well
as SAR bands, also made significant contributions to the
classification. For the years 2022 and 2020, NDAVI, SAVI, and
B5 were the most relevant variables (Figures 3A, B, respectively). In
2018, B8, elevation, and B4 were highly important, while NDVI and

B5 played a crucial role in 2016 (Figures 3C, D, respectively). This
indicates that the bands and indices of Sentinel-2A imagery in near-
infrared (NIR) and shortwave infrared (SWIR) wavelength regions
were useful for the detection of water hyacinth and its surrounding
land use/land cover. Pádua et al. (2022) identified that water
hyacinth contains chlorophyll, which has a high degree of
absorption of light in the red, shortwave infrared, and near-
infrared regions.

B5, B11, B12, VH, NDAVI, and normalized difference water
index (NDWI) were among the most important covariates for
classifying the wet season (Figure 3). Additionally, slope, SAVI,
and VV variables also contributed significantly. In the classification
of the RF model, B11 and B5 (2022), VH, SAVI, and NDWI (2020),
B5 and B12 (2018), and VH and slope (2016) were highly important
variables (Figures 3E–H, respectively). The results suggest that water
hyacinth can be distinguished from other vegetation types or land use/
land cover by analyzing its spectral reflectance patterns in these bands
and indices. The most important variable, NDAVI, combines the
reflectance values in the red and NIR bands to identify the presence
and distribution of water hyacinth. Datta et al. (2021) discovered that
the NIR region’s absolute reflectance allows for the clear
differentiation of submerged macrophytes. Bayable et al. (2023)
found that the classification, which utilized an RF classifier,
identified the spectral indices and bands of Sentinel-2 as the most
crucial variables. Specifically, band 12 played a significant role in
classifying autumn and spring images. During autumn, winter, and
spring, the weed displayed the highest reflectance values in the bands
of red edge 2 (B6), red edge 3 (B7), near-infrared (B8), and red edge 4
(B8A). However, water hyacinth displayed a comparatively low
spectral reflectance during the wet season. The primary reason for
this phenomenon is the increased biomass and leaf area index (LAI) of
the plant during the wet season, which leads to greater absorption of
light rather than reflection. As water hyacinth grows rapidly in
response to the abundant water and nutrients available during this
period, its leaf structure becomes denser, effectively trappingmore light
for photosynthesis and reducing the amount of light that is reflected
back into the environment (Gichuki et al., 2012; Mucheye et al., 2022).
Moreover, the wet season often coincides with higher levels of
chlorophyll production within the plant, which enhances its ability
to absorb light, particularly in the blue and red wavelengths. This
increase in chlorophyll concentration contributes to lower reflectance
values as chlorophyll is known for its strong absorption characteristics
in these regions of the spectrum (Dersseh et al., 2020). Additionally,
VH polarization proves particularly useful in distinguishing water
hyacinth from other land use/land cover types due to its specific
backscatter response at a central frequency of 5.404 GHz. The
excellent discrimination ability of VH is linked to water hyacinth’s
sensitivity to the scattering characteristics and structural
information on this aquatic macrophyte (Simpson et al., 2020).

TABLE 2 List of variables for spatiotemporal change detection from
Sentinel-2A, Sentinel-1 SAR, and SRTM imagery.

Data source Variable

Sentinel-2A bands B4, B5, B8, B11, and B12

Sentinel-2A indices SAVI, EVI, NDWI, NDAVI, NDBI, NDVI, and BSI

Sentinel-1 SAR bands VV and VH

SRTM Elevation and slope

TABLE 3 Land use/land cover (LU/LC) category and description.

LU/LC type Description

Water body Areas covered by perennial rivers, lakes, ponds, and reservoirs

Mixed Areas covered by bushes and small trees, forests, grasses, shrubs, croplands, and build-up

Water hyacinth Area covered by water hyacinth invasive species
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Simpson et al. (2022) indicated that the Sentinel-1 SAR image of VV
and VH bands can effectively distinguish between clean water and
water hyacinth-infested water. The value range for water hyacinth-
infested areas is between −16 dB and −6 dB, with a peak
value of −12 dB.

3.2 Accuracy assessment result

The overall accuracy for the wet season ranges from 0.91 to 0.94
(Table 4). These values indicate a high level of accuracy for the

classification model. The kappa coefficients range from 0.88 to 0.92,
with values closer to 1 suggesting a higher level of accuracy.
Therefore, the kappa coefficients given in the table suggest a
strong agreement between the observed land use/land cover class
and the expected class.

Both the overall accuracy and kappa coefficient were high for the
dry season (Table 4). The highest values were recorded in 2020, with
an overall accuracy of 0.95 and a kappa coefficient of 0.93 (Table 4).
This means that 95% of the pixels were correctly classified. The
lowest values were recorded in 2016, with an overall accuracy of
0.93 and a kappa coefficient of 0.9. Overall, the accuracy assessment

FIGURE 3
Feature importance of Sentinel-2A bands, indices, Sentinel-1 SAR bands, and topography variables using the random forest algorithm during the dry
seasons of (A) 2022, (B) 2020, (C) 2018, and (D) 2016 in Lake Tana, Ethiopia. Feature importance of Sentinel-2A bands, indices, Sentinel-1 SAR bands, and
topography variables using the random forest algorithm during the wet seasons of (E) 2022, (F) 2020, (G) 2018, and (H) 2016 in Lake Tana, Ethiopia.
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results indicated that the classification method is reliable and
accurate in identifying water hyacinth and water bodies
in Lake Tana.

3.3 Spatial distribution of water hyacinth for
the wet season

In 2016, water hyacinth covered 686.5 ha, which accounted for
2.2% of the entire lake area (Table 5). By 2018, the coverage had
significantly increased to 1,851 ha, representing 6% of the lake area.
In 2020, the areal coverage slightly decreased to 1,396.7 ha,
accounting for 4.6% of the total lake area. Finally, in 2022, the
coverage increased once again to 1,436.5 ha, representing 4.8% of the
lake area (Table 5). The coverage of water hyacinth in Lake Tana has
exhibited notable fluctuations from 2016 to 2022, with significant
decreases observed in 2020 and 2022 compared to 2018. From
2016 to 2018, water hyacinth coverage in Lake Tana increased,
with estimates indicating an increase from approximately 5 km2 in
2015 to 25 km2 by 2019 (Dersseh et al., 2020). This period of
expansion can be attributed to favorable conditions for growth, such
as nutrient influx from agricultural runoff and the lake’s shallow,
oligotrophic–mesotrophic nature, which supports the proliferation
of aquatic weeds (Dejen et al., 2017; Moges et al., 2017). The increase
in coverage during this time was also linked to the lack of effective
management strategies to control the invasive species (Damtie
et al., 2022).

However, in 2020, a marked decrease in water hyacinth coverage
was reported, with estimates suggesting a reduction to
approximately 2,279.4 ha (Dersseh et al., 2020). This decrease
can be attributed to several factors, including the implementation
of control measures such as manual and mechanical removal.

Additionally, environmental conditions, such as changes in water
levels and seasonal variations, may have influenced the spatial
distribution of water hyacinth, leading to a temporary reduction
in coverage (Worqlul et al., 2020). By 2022, the coverage of water
hyacinth continued to show a downward trend, with studies
indicating that the area affected by the plant was significantly less
than in previous years (Mucheye et al., 2022). This sustained
decrease can be linked to ongoing management efforts and,
possibly, the natural ecological dynamics of the lake, where
periods of decrease in invasive species populations are common
due to factors such as competition with native species, changes in
water quality, and climatic influences.

3.4 Spatial distribution of water hyacinth for
the dry season

The coverage increased from 2.1% (650 ha) in 2016 to 4.3%
(1,305.7 ha) in 2020, which indicates a significant change over a
short period of time (Table 6). However, there was a slight decrease
in the infested area from 2020 to 2022, with a value of 4%. A total of
89.2 ha of land was cleared of water hyacinth between 2020 and 2022
(Table 6). In both wet and dry seasons, the RF model incorrectly
classified the encircled portion of the lake (5a, 5b, 6a, and 6b) as
infested with water hyacinth. It means that water hyacinth and the
land surrounding it have similar spectral reflectance. The wrong
classification is associated with environmental factors such as
seasonal changes that influence the spectral characteristics of
water hyacinth and surrounding vegetation. For example,
variations in water quality, turbidity, and nutrient levels can alter
the reflectance properties of aquatic plants, complicating the
classification process. The performance of random forest
classifiers can vary with changes in environmental conditions,
which may lead to inconsistent classification results across
different times of the year (Chabot et al., 2018). The dense mat
of water hyacinth is predominantly observed in the northern and
northeastern regions of the lake (Figures 4, 5). This area exhibits a
higher concentration of the weed, necessitating focused attention
and management strategies to address the significant infestation in
these specific zones.

The water hyacinth infestation increased from 2016 to 2018 but
slightly decreased from 2020 to 2022 in both seasons (Tables 5, 6).
Furthermore, compared to the dry season, the wet season had a
much higher coverage. For instance, in 2018, it covered 1,259 ha
(4.2%) of the lake in the dry season but 1,851 ha (6.0%) in the wet
season. This indicates a difference of 592 ha (1.8%) between the two

TABLE 4 Accuracy assessment of Sentinel-2A, Sentinel-1 SAR, and SRTM
image classification of water hyacinth invasion using the random forest
algorithm during the dry and wet seasons in Lake Tana, Ethiopia.

Year Overall accuracy Kappa coefficient

Wet Dry Wet Dry

2016 0.91 0.93 0.88 0.90

2018 0.94 0.94 0.92 0.91

2020 0.93 0.95 0.92 0.93

2022 0.94 0.94 0.91 0.92

TABLE 5 Spatial coverage of water hyacinth (2016–2022) derived from
Sentinel-2A, Sentinel-1 SAR, and SRTM imagery classification using the
random forest algorithm during the wet seasons in Lake Tana, Ethiopia.

Year Area/ha %

2016 686.5 2.2

2018 1,851 6.0

2020 1,396.7 4.6

2022 1,436.5 4.8

TABLE 6 Spatial coverage of water hyacinth (2016–2022) derived from
Sentinel-2A, Sentinel-1 SAR, and SRTM imagery classification using the
random forest algorithm during the dry seasons in Lake Tana, Ethiopia.

Year Area/ha %

2016 650.4 2.1

2018 1,259 4.2

2020 1,305.7 4.3

2022 1,216.5 4.0
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seasons. Bayable et al. (2023) confirmed that from 2021 to 2022,
geographic infestation significantly reduced by 62.5% fromwinter to
spring and increased by 81.7% from wet to autumn. The tables
clearly show that water hyacinth coverage reached its peak in the
2018 wet season and then decreased considerably in 2020 and 2022.
These findings align with those obtained by Dersseh et al. (2020),
who used Sentinel-2 images and found that the maximum water
hyacinth coverage in 2015, 2016, 2017, 2018, and 2019 was 278.3,
613.6, 1,108.7, 2,036.5, and 2,504.5 ha, respectively.

Study results revealed that water hyacinth spatiotemporal
dynamics are influenced by seasonal climate variability. Dersseh
et al. (2020) reported that fluctuations in lake levels and seasonal
climate variability, including rainfall patterns, affect the extent of
water hyacinth coverage. An increase in water levels enables the
weed to spread, expanding its range of habitats from the shallows to
the flooded region. Conversely, low water levels reduce the available
area for the weed, subjecting it to higher temperatures and solar
radiation, potentially impacting its survival and reproduction.

Worqlul et al. (2020) and Abebe et al. (2023) reported that
seasonal climate variations, particularly those related to the lake level
and water temperature, have an impact on water hyacinth
infestation. This study found that the infestation of Lake Tana by
water hyacinth in the wet season is higher than that in the dry
season. The rapid spread in the rainy season is associated with the
rise in the lake level and nutrient concentration. Dersseh et al. (2019)

reported that the most triggering factors and sources of water
hyacinth prevalence in Lake Tana are sedimentation, extensive
fertilizer application and runoff from agricultural fields, and
pollutants (nutrients) from the surrounding industrial zones and
residential areas of cities, mainly Bahir Dar and Gondar. Among
these factors, the application of fertilizer, particularly those with
high levels of nitrogen and phosphorus, into farmlands surrounding
Lake Tana and runoff from agricultural fields are most prevalent.
These nutrients act as fertilizers for water hyacinth, promoting their
growth and reproduction. In addition, during the dry season, as the
water hyacinth coverage decreases, farmers plow and produce crops
such as rice and maize on the residue area with the application of
fertilizer. As a result of this practice, the fertilizer is heavily drained
into the lake during the wet season, leading to the high prevalence of
water hyacinth.

Conversely, when the lake level decreases and the water
temperature increases, water hyacinth coverage decreases. In the
dry season, water levels in Lake Tana typically decrease due to
reduced rainfall and increased evaporation. Lower water levels
expose the roots and base of water hyacinths, making them more
vulnerable to desiccation and limiting their ability to access nutrients
and water (Cai et al., 2023). The results show that the decrease in
water hyacinth coverage is linked to human interventions, such as
mechanical removal using harvesting machinery and physical
removal of the weed by humans. The local communities, along

FIGURE 4
Distribution map of water hyacinth in Lake Tana, Ethiopia, using Sentinel-2A, Sentinel-1 SAR, and SRTM imagery in the wet season of (A) 2016, (B)
2018, (C) 2020, and (D) 2022.
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with the government, have been attempting to manage the rapid
infestation by using mechanical removal methods, which involve the
use of machinery and equipment to physically remove the weed
from water bodies. The harvesting machine has been operating in
places where dense mats of water hyacinth are commonly found,
such as the Fogera area. Manual removal, on the other hand,
involves the manual pulling of the plants out from the water to
reduce their spatial coverage. Physical control or manual removal is
the most important and highly practiced water hyacinth
management practice in Lake Tana. Since 2012, a significant
number of individuals have been actively participating in the
campaign to remove weeds. This finding is consistent with that
of the study conducted by Dersseh et al. (2020). In their study, they
utilized satellite images to estimate the coverage in Lake Tana from
2011 to 2019. They discovered that the areal coverage increased from
20 km2 in 2011 to 40 km2 in 2019, reaching a peak of 50 km2 in 2018.
They also observed that water hyacinth was primarily distributed
along the northeastern shore of the lake. Worqlul et al. (2020)
utilized high-resolution PlanetScope satellite images to analyze the
dynamics of spatial coverage from August 2017 to July 2018. They
found that the geographic coverage increased from 4.3 km2 in
August 2017 to 23.4 km2 in April 2018 and then decreased to
14.5 km2 in July 2018. Abebe et al. (2023) discovered that the annual
water hyacinth area significantly expanded between 2011 and 2019.
For example, from 2011 to 2019, the lake’s surface area increased by

approximately 1,603 ha due to the quick spread of water hyacinth.
Bayable et al. (2023) reported that the seasonal coverage of water
hyacinth, derived from Sentinel-2 images, was as follows: 2,240 ha in
autumn (2021), 1,120 ha in winter (2022), 420 ha in spring (2022),
and 220 ha in summer (2022).

Regarding the comparison of optical and non-optical satellite
imagery, Mucheye et al. (2022) used Sentinel-2A/B imagery to
monitor the seasonal variation in water hyacinth in Lake Tana.
Their study reported an overall accuracy of 90% and a kappa
coefficient of 0.85, indicating a strong agreement between the
classified data and ground-truth observations. Damtie et al.
(2021) used a maximum likelihood classifier on Sentinel-2
imagery to assess the spatial coverage of water hyacinth. They
reported an overall accuracy of 92% with a kappa coefficient of
0.88, demonstrating the effectiveness of the classification method in
detecting water hyacinth infestations. Janssens et al. (2022), who
introduced a more advanced classification approach that utilized all
spectral characteristics of Sentinel-2 bands, rather than relying solely
on NDVI masks, showed an overall accuracy of 93% and a kappa
coefficient of 0.90, reflecting the enhanced capability of their method
to detect water hyacinth infestation across varying conditions. This
approach underscores the significance of utilizing the full spectral
range of satellite data for improved classification outcomes. Ade
et al. (2022) contributed to the body of research by using random
forest models on Sentinel-2 data, achieving an average overall

FIGURE 5
Distribution map of water hyacinth in Lake Tana, Ethiopia, using Sentinel-2A, Sentinel-1 SAR, and SRTM imagery in the dry season of (A) 2016, (B)
2018, (C) 2020, and (D) 2022.
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accuracy of 90% for water hyacinth classification. The class
accuracies ranged from 79% to 91%, indicating a robust
performance in distinguishing water hyacinth from other aquatic
vegetation. Overall, the studies indicate that Sentinel-2 imagery is
highly effective in classifying water hyacinth in Lake Tana, with
reported overall accuracies ranging from 90% to 93% and kappa
coefficients between 0.85 and 0.90. However, studies have
demonstrated that Sentinel-1 SAR can achieve high detection
rates for water hyacinth, with true positive detection rates around
95% (Simpson et al., 2022). More importantly, the integration of
Sentinel-1 and Sentinel-2 data significantly enhances the
classification accuracy beyond what either sensor can achieve
alone. The synergistic use of both datasets allows for the
exploitation of the strengths of each modality, leading to
improved feature extraction and classification outcomes. For
example, the combination of SAR and optical data yields overall
accuracies of up to 95.10% in agricultural contexts, highlighting the
effectiveness of this approach (Yang et al., 2022; Chakhar et al.,
2021). The fusion of these datasets leverages the temporal resolution
of SAR with the spectral richness of optical data, thereby improving
the classification of complex land cover types, including water
hyacinth (Ibrahim et al., 2022).

4 Conclusion

The study used 16 variables obtained from Sentinel-2A,
Sentinel-1 SAR, and ASTER DEM. A supervised random forest
classification model was applied. Seven spectral indices, five spectral
bands, two Sentinel-1 SAR bands, and two topographic variables
were used in combination to model the spatial extent and coverage
of water hyacinth. The results from the land use/land cover
classification showed that the overall accuracy for
2016–2022 ranged from 0.91 to 0.94 in the dry season and
0.93 to 0.95 in the wet season. B3, B5, B11, B12, VH, elevation,
NDAVI, and NDWI were the most relevant features in the land use/
land cover classification of the study area. The findings
demonstrated that the spatial coverage increased from 2016 to
2018 and decreased from 2020 to 2022. The highest infestation
was recorded during 2018, with 6% (1,851 ha) and 4.2% (1,259 ha),
and the lowest infestation was recorded in 2016, with 2.2%
(686.5 ha) and 2.1% (650.4 ha) of the lake in the wet and dry
seasons, respectively. The decrease in spatial coverage was associated

with the manual and mechanical harvesting of the weed from the
infested areas. Additionally, the highest biomass and distribution of
weeds were detected around the northern, eastern, and northeastern
lake shores.
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