
YOLOGX: an improved forest fire
detection algorithm based on
YOLOv8

Caixiong Li, Yue Du, Xing Zhang* and Peng Wu

School of Computer and Information Science, Qinghai Institute of Technology, Xining, China

To tackle issues, including environmental sensitivity, inadequate fire source
recognition, and inefficient feature extraction in existing forest fire detection
algorithms, we developed a high-precision algorithm, YOLOGX. YOLOGX
integrates three pivotal technologies: First, the GD mechanism fuses and
extracts features from multi-scale information, significantly enhancing the
detection capability for fire targets of varying sizes. Second, the SE-ResNeXt
module is integrated into the detection head, optimizing feature extraction
capability, reducing the number of parameters, and improving detection
accuracy and efficiency. Finally, the proposed Focal-SIoU loss function
replaces the original loss function, effectively reducing directional errors by
combining angle, distance, shape, and IoU losses, thus optimizing the model
training process. YOLOGX was evaluated on the D-Fire dataset, achieving a
mAP@0.5 of 80.92% and a detection speed of 115 FPS, surpassing most
existing classical detection algorithms and specialized fire detection models.
These enhancements establish YOLOGX as a robust and efficient solution for
forest fire detection, providing significant improvements in accuracy and
reliability.
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1 Introduction

Forest fires, as highly destructive natural disasters, have profound impacts on
ecosystems and human activities. These fires devastate extensive forest ecosystems,
leading to biodiversity loss and soil degradation, while also disrupting ecological
balance (Bowman et al., 2011). Moreover, forest fires damage surrounding buildings,
crops, and infrastructure, causing substantial negative impacts on local economies (Robinne
and Secretariat, 2021). According to statistics, economic damages from forest fires amount
to billions of dollars annually (Thomas et al., 2017). Therefore, researching and developing
effective forest fire prevention and control technologies is a critical focus in the fields of
environmental science and economics.

Current forest fire detection methods encounter several critical challenges. Firstly, fires
often occur in remote areas with vast geographical ranges and scarce human resources,
resulting in inefficiencies in manual detection (Allison et al., 2016). Secondly, the rapid
propagation of fires means that if they are not detected promptly, they can quickly escalate,
causing greater destruction (Martell, 2007). Furthermore, fires usually occur in complex
natural environments such as mountains, jungles, and wilderness, where terrain, vegetation,
and weather conditions create substantial challenges for detection (Attri et al., 2020). Early
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detection is crucial for identifying and reducing fire response times,
which can prevent fires from getting out of control (Mcnamee et al.,
2023). Thus, developing efficient and reliable fire detection
technologies is essential for protecting the ecological environment
and mitigating economic damage (Carta et al., 2023).

Traditional forest fire detection methods rely on manually
selected features, such as frequency domain, color, shape, and
texture. Specific methods include Toreyin et al. employed
frequency domain features to detect smoke and flames (Toreyin
and Cetin, 2009; Töreyin et al., 2007; Toreyin et al., 2006). Besbes
et al. utilized color features to detect smoke (Besbes and Benazza-
Benyahia, 2016). Gomes et al. combined color, frequency domain,
and temporal features for smoke detection (Gomes et al., 2014).
Yuanbin proposed a smoke detection technique integrating
temporal, color, texture, and shape features (Yuanbin, 2016).
Hossain et al. utilized artificial neural networks (ANN) and local
binary patterns (LBP) to detect forest fires and smoke (Hossain et al.,
2020). Wang et al. integrated LBP, LBPV, and support vector
machines (SVM) for fire and smoke detection (Wang et al.,
2016). Although these techniques perform well in real-time
efficiency and detection accuracy, they heavily rely on manually
selected features, limiting their generalizability and practical
applicability.

In recent years, research has shifted from traditional manual
feature selection to deep learning-based approaches. These methods
are generally classified into two categories: two-stage methods and
single-stage methods. Two-stage methods first generate candidate
regions, followed by classification and localization of these regions.
Prominent examples of two-stage methods include Fast R-CNN
(Girshick, 2015) and Faster R-CNN (Ren et al., 2015). Barmpoutis
et al. proposed a fire detection method combining Faster R-CNN
and multi-dimensional texture analysis, which enhances robustness
to false alarms in diverse environmental conditions (Barmpoutis
et al., 2019). Zhang et al. developed a wildfire smoke detection
system trained on synthetic smoke images (Zhang et al., 2018).
Vayadande et al. enhanced Faster R-CNN performance in early
wildfire smoke detection through preprocessing and augmenting the
training dataset (Vayadande et al., 2018). Cheknane et al. combined
deep learning and traditional image processing techniques to
propose a two-stage fire detection framework yielding notable
improvements in accuracy and speed (Cheknane et al., 2024).
Xiao and Wang enhanced Faster R-CNN with skip pooling and
context information fusion, performing well in complex
environments (Xiao et al., 2020). Chetoui et al. fine-tuned Faster
R-CNN and trained it on a large dataset of fire and smoke images,
achieving high precision (Chetoui and Akhloufi, 2024). Wang et al.
optimized the region proposal network and feature extraction
techniques, achieving real-time flame and smoke detection
(Wang et al., 2022). Khan et al. proposed the DeepSmoke model,
improving outdoor smoke detection accuracy through multi-scale
feature extraction (Khan et al., 2021). Ibraheam et al. compared
various R-CNN models and found that Faster R-CNN has
advantages in speed and accuracy, making it suitable for fire
detection applications (Ibraheam et al., 2021). While two-stage
methods have high detection accuracy, they are usually slower in
real-time performance and rely on significant computational
resources and complex network structures, limiting their
application in resource-constrained devices.

Single-stage algorithms directly predict the category and
location of targets through regression-based object detection
networks. Prominent examples of single-stage algorithms include
SSD (Liu et al., 2016) and the YOLO series (Redmon et al., 2016;
Redmon and Farhadi, 2017; 2018; Bochkovskiy et al., 2020; Li et al.,
2022; Wang et al., 2023). Zhao et al. proposed the Fire-YOLO
algorithm, achieving real-time detection of small fire targets in
complex scenarios (Zhao et al., 2022). Yun et al. developed the
FFYOLO model, enhancing classification accuracy and reducing
parameters through the CPDA module and MCDH detection head
(Yun et al., 2024). Xu et al. integrated ConvNeXtV2 and
ConvFormer networks with YOLOv7, significantly improving
forest fire detection accuracy (Xu et al., 2024). Talaat et al.
proposed the YOLO-SF model, combining instance segmentation
and YOLOv7-Tiny to enhance fire detection accuracy (Talaat and
ZainEldin, 2023). Cao et al. combined LBP-CNN and YOLOv5 for
fire and smoke detection in various environments (Cao et al., 2023).
Sun et al. proposed a YOLOv8-based method for fire and smoke
detection in IoT monitoring systems (Zhang, 2024). Li et al.
introduced an improved YOLOv5-IFFDM model, enhancing fire
and smoke detection accuracy by adding attention mechanisms and
optimizing loss functions (Li and Lian, 2023). Gonçalves et al.
discussed the use of YOLOv7x and YOLOv8s for smoke and
wildfire detection (Gonçalves et al., 2024). Choutri et al.
researched drone-based fire detection methods using enhanced
YOLO algorithms, integrating geolocation capabilities for real-
time monitoring (Choutri et al., 2023). Single-stage algorithms
excel in real-time performance and efficient computational
resource utilization, but they may slightly lack detection accuracy.

While current deep learning technologies demonstrate high
detection accuracy in forest fire detection, they encounter
challenges such as sensitivity to environmental conditions,
inadequate fire source recognition, and inefficient feature
extraction. We proposed a forest fire detection algorithm,
YOLOGX, based on an enhanced YOLOv8. By integrating the
Gather and Distribution (GD) mechanism, modifying the
detection head, and optimizing the loss function, the proposed
algorithm significantly improves feature extraction capabilities
and detection accuracy while reducing the false alarm rate. The
primary contributions of this paper are summarized as follows.

• By incorporating the Gather-Distribute (GD) mechanism
within the neck section, we establish low-level and high-
level GD branches to merge local and global information
effectively, significantly enhancing the detection of fire
targets of various sizes.

• By integrating the SE-ResNeXt module into the detection
head, we employ group convolutions to decrease the
number of parameters and utilize the SE module to
enhance feature extraction capabilities. This module
improves model performance while reducing
computational costs.

• By introducing the Focal-SIoU loss function, which integrates
angle, distance, shape, and IoU losses, we effectively address
the shortcomings of traditional loss functions in managing
angle errors, thereby substantially enhancing the model’s
capability to differentiate between anchor boxes of
varying quality.
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• The experimental results indicate that the enhanced
YOLOv8 model demonstrates a mean Average Precision
(mAP) of 80.92% on the D-Fire dataset, operating at a
detection speed of 115 frames per second (FPS). The
model’s complexity stands at 12.3 GFLOPs, with
parameters reduced to 6.2 M. This performance
outperforms those of most existing classical detection
algorithms and specialized fire detection algorithms.

2 Materials and methods

2.1 Dataset

We evaluated our forest fire detection algorithm on the
D-Fire dataset (Gaia, 2022). The dataset comprises
21,527 images categorized into four classes: fire
(1,164 images), smoke (5,867 images), fire and smoke
(4,658 images), and neither fire nor smoke (9,838 images).
The dataset presents various shapes, textures, intensities, sizes,
and colors of smoke and fire. It encompasses complex
environmental factors, including insect occlusion, raindrops,
variations in lighting conditions, haze, clouds, and sunlight

reflection, which enhance its challenge and representativeness
for real-world applications.

All labeled images were divided into train and test sets in an 8:
2 ratio. To augment the train set, we applied data augmentation
techniques such as flipping and cropping, resulting in
18,686 training samples, while the test set remained at
2,338 samples. Detailed information about the dataset is provided
in Table 1, and examples from the forest fire dataset are shown
in Figure 1.

2.2 Standard YOLOv8 model

The YOLOmodel has achieved significant success in the domain
of computer vision. YOLOv8 (Ultralytics, 2023), released by
Ultralytics in January 2023, significantly enhances detection
accuracy and speed compared with its predecessors, YOLOv5
(Ultralytics, 2020) and YOLOv7 (Wang et al., 2023). The
YOLOv8 architecture comprises a backbone network, a neck
network, and a detection head. The backbone network extracts
multi-scale features from RGB images through convolution
operations, which provides essential information for subsequent
processing. The neck network fuses features extracted by the

TABLE 1 The completed dataset.

Dataset Number of images Number of targets Number of smokes Number of fires

Train 18,686 42,275 18,968 23,307

Test 2,338 5,257 2,342 2,915

FIGURE 1
Forest fire dataset examples.
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backbone network, typically utilizing a Feature Pyramid Network
(FPN) to aggregate low-level features into higher-level
representations, thereby enhancing the model’s ability to detect
objects at different scales. Finally, the detection head predicts
object classes, employing three sets of detection heads to select
and detect images of different sizes, thereby improving detection
precision. Figure 2 illustrates the architecture of the standard
YOLOv8 network.

2.3 Improved YOLOv8 model

YOLOGX, an enhanced YOLOv8 model, is utilized for forest
fire detection. First, the Gather and Distribution (GD)
mechanism is integrated into the neck section, enhancing the
detection capability for multi-scale fire targets through low-level
and high-level GD branches, along with feature alignment,
information fusion, and information injection modules.
Second, the detection head incorporates the SE-ResNeXt
module (Xie et al., 2017; Hu et al., 2018), which reduces the
number of parameters and enhances feature extraction efficiency
through group convolution and SE modules. Finally, the Focal-
SIoU loss function (Gevorgyan, 2022; Lin et al., 2017) is
introduced, addressing angle, distance, shape, and IoU losses,
thereby improving the model’s ability to differentiate between
anchor boxes of varying quality. These improvements are
illustrated within the red dashed boxes in Figure 3.

2.3.1 Gather-Distribute mechanism
The size of fire targets in forest fire detection varies due to

differences in distance and range of fire areas. To enhance
detection capabilities for fire targets of varying sizes, we
introduced the Gather-Distribute (GD) mechanism (Wang
et al., 2024), which replaces the neck of YOLOv8. The GD
mechanism comprises the Feature Alignment Module (FAM),
Information Fusion Module (IFM), and Information Injection
Module (IIM), as shown in Figure 4. This mechanism facilitates
efficient interaction and fusion of information from different
levels to acquire global information, which is then injected into
various feature levels. Without significantly increasing latency,
the GD mechanism enhances the information fusion capability of
the neck part and improves the model’s ability to detect targets
across varying sizes.

The GD mechanism consists of two branches: Low-GD and
High-GD. The Low-GD branch processes larger-sized fire images by
adjusting feature map sizes and adopting fusion strategies to
enhance local details of the features, as shown in Figure 5.

In the Low-GD branch, feature maps B2, B3, B4, and B5 first
enter the low FAM, where they are adjusted to the same spatial
resolution through average pooling operations and then connected
in the channel dimension. The formula is expressed in Equation 1:

FLow_FAM_align � alignFAM B2, B3, B4, B5[ ]( ) (1)

The output of FAM is processed by multi-layer RepBlock
information extraction and then divided into two parts by

FIGURE 2
The architecture of YOLOv8.
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channel, resulting in Inject_P3 and Inject_P4. The formula is
expressed in Equation 2:

Inject_P3, Inject_P4[ ] � Split RepBlock Falign( )( ) (2)
High-GD targets smaller-sized fire images by employing multi-

head attention mechanisms and feed-forward networks for feature

fusion to improve the model’s accuracy in recognizing small-scale
fires, as shown in Figure 6. In the High-GD architecture, a
Transformer extracts and fuses features, utilizing its global
modeling capability. The feature maps P3, P4, and P5, output by
the information injection module, further undergo semantic
information fusion. High FAM concatenates feature maps of

FIGURE 3
The architecture of the forest fire detection network based on YOLOGX.

FIGURE 4
The GD mechanism.
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different scales, achieving multi-scale information alignment. The
formula is expressed in Equation 3:

FHigh_FAM_align � alignFAM P3, P4, P5[ ]( ) (3)

High IFM employs the Transformer module for global modeling
and fusion of global feature information. First, the Multi-Head Self-
Attention (MHSA) module calculates global attention; then, the
feed-forward network (FFN) is introduced to acquire advanced
features, ultimately producing Inject_N4 and Inject_N5. The
formula is expressed in Equation 4:

Inject_N4, Inject_N5[ ] � Split FFN MHSA Falign( )( )( ) (4)

The information injection module injects global information
into various feature levels to enhance themodel’s ability to detect fire
targets. This module applies attention mechanisms to weight global
information, highlighting key features and suppressing unimportant

information, then injects the weighted global information into local
features. Through addition or concatenation operations, the global
information is effectively merged with local features, enhancing the
model’s comprehension and recognition of fire targets, as shown
in Figure 7.

2.3.2 SE-ResNeXt detection head
In forest fire detection, network structure design is critical for

both model performance and computational efficiency. Traditional
convolutional layers are parameter-heavy and computationally
intensive, limiting their applicability in resource-constrained
environments. Introducing the SE-ResNeXt module into the
YOLOv8 detection head can enhance feature extraction efficiency
and fire detection performance while maintaining low
computational costs and parameters, thus achieving efficient and
stable forest fire detection.

The ResNeXt network (Xie et al., 2017), a variant of ResNet,
reduces model parameters and improves training speed through the
use of group convolution, as illustrated in Figure 8. Let k denote the
size of the convolution kernel, C the number of input feature matrix
channels, and n the number of output feature matrix channels. The
number of parameters in a traditional convolution is k × k × C × n,
whereas for group convolution it is k × k × C × n × (1/g), where g
denotes the number of groups, typically set to 32. Group convolution
significantly reduces the number of model parameters.

The SE-ResNeXt network extends the ResNeXt network by
incorporating the SE module, as shown in Figure 9. The SE
module (Hu et al., 2018) reduces the feature matrix dimensions
from H × W to 1 through global average pooling (GAP). It then
extracts inter-channel dependencies using a bottleneck structure
composed of two fully connected layers, which output the same
number of weights as the input features. The first fully connected
layer reduces the feature dimension to 1/16 of the input, followed by
a ReLU activation function, after which another fully connected
layer restores the dimension. The Sigmoid function produces
normalized weights, which are then applied to each channel’s
features through scaling. The SE module is connected after the
ResNeXt bottleneck, thereby forming the SE-ResNeXt module.

Integrating the SE-ResNeXt module into the YOLOv8 detection
head leverages its capability to enhance the modeling of inter-
channel relationships, thereby improving fire detection
performance. Figure 10 illustrates the architecture of the SE-
ResNeXt detection head. Initially, the input feature map X
undergoes 1 × 1 convolution to adjust the channel dimensions,
followed by batch normalization and ReLU activation.

FIGURE 5
The Low-GD branch.

FIGURE 6
The High-GD branch.

FIGURE 7
The information injection module.
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Subsequently, the feature map undergoes 3 × 3 group convolution
(with 32 groups) and 1 × 1 convolution for feature extraction,
followed by feature fusion. The group convolution expands the
network while reducing the number of parameters. Here,
BatchNorm prevents ReLU activation saturation, accelerates
network convergence, and mitigates overfitting. The SE module is
integrated after the ResNeXt bottleneck, utilizing global average
pooling (GAP) for the Squeeze operation. Two fully connected
layers then extract inter-channel dependencies. Finally, the
Excitation operation, i.e., the Sigmoid function, is applied to
obtain normalized weights, which are then used for each channel
feature through scaling. The processed features are then combined
with the network inputX to serve as input for the next module. This
architecture, by integrating residual connections with the SE
module, significantly enhances feature extraction capabilities and
improves model training efficiency.

In summary, the SE-ResNeXt-enhanced YOLOv8 detection
head not only effectively extracts multi-dimensional features and
improves detection accuracy but also maintains low computational
costs and parameters, thereby achieving efficient and stable forest
fire detection.

2.3.3 Focal-SIoU loss
In forest fire detection, loss function design is critical, as it

significantly influences detection efficiency and model performance.

Traditional loss functions typically emphasize core metrics in
bounding box regression, such as distance between bounding
boxes, overlap area, and aspect ratio. However, these loss
functions often overlook angular inconsistency between the
predicted and ground truth boxes. This omission of directional
error can cause the predicted box to fail to accurately enclose the
ground truth box during training, thereby reducing training speed
and convergence, ultimately affecting overall detection performance.
To address this challenge, we introduced the Focal-SIoU loss
function, specifically optimized for forest fire detection in the
improved YOLOv8 model. This function corrects angular error
while optimizing the training process.

The Focal-SIoU loss function comprises four components:
angular loss, distance loss, shape loss, and IoU loss. The
calculation of angular cost is represented by Equations 5–8. The
left subfigure of Figure 11 illustrates that Λ depends on α, where α
denotes the relative angle between two boxes.

Λ � 1 − 2sin2 arcsin x( ) − π

4
( ) (5)

x � ch
σ
� sinα (6)

σ �
���������������������
bgtcx − bcx( )2 + bgtcy − bcy( )2

√
(7)

ch � max bgtcy , bcy( ) −min bgtcy , bcy( ) (8)

The calculation process of distance cost is described by
Equations 9, 10. The right subfigure of Figure 11 shows that the
distance cost Δ depends on ρx and ρy, which quantify the distance
differences between the predicted and ground truth boxes. The
weight of the distance cost is controlled by Δ, using γ1 to balance the
losses of ρx and ρy.

Δ � ∑
t�x,y

1 − e−γ1ρt( ) (9)

FIGURE 8
The basic unit of ResNet and ResNext.

FIGURE 9
The SE module.
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FIGURE 10
The SE-ResNeXt detection head.

FIGURE 11
The angle cost and distance cost.
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ρx �
bgtcx − bcx

cw
, ρy � bgtcy − bcy

ch
, γ1 � 2 − Λ (10)

The shape cost calculation process is represented by Equations
11, 12. ωw and ωh denote the relative changes in width and height.
The parameter θ is a hyperparameter used to control the sensitivity
of the shape loss to relative changes in the bounding box width and
height. We set θ � 4.

Ω � ∑
t�w,h

1 − e−ωt( )θ (11)

ωw � ω − ωgt| |
max ω,ωgt( ),ωh � h − hgt| |

max h, hgt( ) (12)

The calculation process of IoU cost is described by Equation 13.

LIoUCost � 1 − IoU (13)

Finally, by combining these losses, the expression of the SIoU
loss (Gevorgyan, 2022) is given by Equation 14:

LSIoU � 1 − IoU + Λ +Ω( )/2 (14)

To address the issue of imbalanced training samples, this study
introduces the Focal loss (Lin et al., 2017) is described by Equation
15. By combining SIoU loss with Focal loss, we developed the Focal-
SIoU loss function, which differentiates between high-quality and
low-quality anchor boxes, thereby improving model stability and
detection performance. The parameter γ2 is the focusing parameter
in the Focal-SIoU loss function, designed to balance the contribution
of easy and hard samples to the loss. We set γ2 � 2.

LFocal−SIoU � IoUγ2LSIoU (15)
In this way, the Focal-SIoU loss function not only addresses

directional mismatch but also balances the impact of high-quality
and low-quality anchor boxes, thereby enhancing the model’s
overall adaptability and effectiveness in fire recognition tasks.

2.4 Experimental setup

2.4.1 Experimental environment and
parameter settings

The experiments were conducted using PyTorch 2.0.0 and
Python 3.8, with all models trained on Ubuntu 20.04. A detailed
description of the experimental environment is provided in Table 2.

During training, stochastic gradient descent (SGD) optimization
was employed during training, with an initial learning rate of 0.01, a
patience value of 5,000, and a momentum factor of 0.937. The input
image size was set to 640 × 640, with a batch size of 16, and training
spanned 300 epochs.

2.4.2 Evaluation metrics
To evaluate the model’s performance, we utilized various

metrics, including precision, recall, mean Average Precision at
50% (mAP50), mean Average Precision from 50% to 95%
(mAP50-95), frames per second (FPS), the number of parameters
(Params), and giga floating-point operations per second (GFLOPs).
The calculation methods for these metrics are provided in
Equations 16–19.

Precision � TP

TP + FP
(16)

Recall � TP

TP + FN
(17)

AP � ∫1

0
Precision r( ) dr (18)

Here, r represents recall, and Precision(r) denotes the precision
corresponding to the recall value r.

mAP � 1
N

∑N
i�1

APi (19)

3 Results

3.1 Comparative experiment of loss function
improvement

Table 3 presents the experimental results for different loss
functions. The parameters (6.2 M) and computational complexity
(12.3 GFLOPs) remained constant across all methods, indicating
that the performance improvements were primarily due to
enhancements in the loss functions rather than changes in model
complexity. The Focal-SIoU achieved the highest mAP@0.5 of
80.92%, while the MPDIoU excelled in mAP@0.5–0.95. If the
primary focus is on detection performance at high IoU
thresholds, MPDIoU would be the better choice. However, for
overall detection accuracy, Focal-SIoU is more suitable. For forest

TABLE 2 The experimental environment settings.

Experimental environment Details

Operating System Ubuntu 20.04

Deep Learning Framework PyTorch 2.0.0

Programming Language Python 3.8

CUDA Version CUDA 11.8

CPU Intel(R) Xeon(R) Platinum 8352 V CPU @ 2.10 GHz

GPU RTX 4090 (24 GB)

Host memory 120 GB
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fire detection, where overall detection accuracy is paramount, we
ultimately selected Focal-SIoU.

3.2 Ablation experiment

Table 4 presents the ablation experiment results of various
components, including the GD mechanism, SE-ResNeXt
detection head, and Focal-SIoU, when integrated with the
YOLOv8 model. The baseline YOLOv8 model demonstrates
balanced performance with a precision of 78.80%, a recall of
72.50%, and a high frame rate of 197 FPS. After incorporating
the GD module, precision increased to 80.30% and recall improved
to 73.00%; however, the parameters increased clearly. Introducing
the SE-ResNeXt detection head slightly decreased precision to
78.20% and slightly increased recall to 72.70%. After adding
Focal-SIoU, precision and recall were adjusted to 79.10% and
71.90%, respectively. Combining the GD mechanism and SE-
ResNeXt detection head obviously improved precision to 80.20%
and recall to 73.00%; however, parameters increased to 6.2 M, and
frames per second reduced to 115. Finally, combining all
components resulted in the best performance in terms of recall
(75.70%) and mAP@0.5 (80.92%), although precision slightly
decreased to 77.20%, with the frame rate remaining at 115 FPS.

The mAP@0.5 improved from 79.46% to 80.92%, representing a
1.46% increase. Precision is critical in forest fire detection, and
even a 1% improvement in mAP@0.5 is significant. This
enhancement means that the model can detect fires more rapidly

and accurately, enabling timely interventions that can mitigate fire-
related damages.

Although the improvements in mAP@0.5 and recall led to a
slight decrease in mAP@0.5–0.95 (from 46.61% to 46.44%) and a
reduction in FPS (from 197 FPS to 115 FPS), we deem this tradeoff
to be reasonable. First, in the accuracy-driven application of forest
fire detection, accurately identifying fire threats takes precedence
over achieving higher FPS, and 115 FPS is adequate for real-time
detection. Second, the decrease in mAP@0.5–0.95 is merely 0.17%,
which has minimal impact on practical detection. Additionally,
while the GFLOPs increased from 8.2 to 12.3 and parameters
grew from 3.0 M to 6.2 M, these increases were implemented to
enhance the model’s ability to detect small targets and handle
complex scenarios. These changes remain within acceptable
limits, and contemporary hardware, such as GPUs and embedded
systems, can efficiently handle this level of computational
complexity. In brief, the improvement in mAP@0.5 is pivotal for
the early detection and prevention of forest fires. While the model’s
complexity has increased, the improvement in detection accuracy
distinctly outweighs the computational costs.

Figure 12 illustrates the training curves of YOLOv8 and
improved YOLOv8. The results indicate that the improved
YOLOv8 surpasses the baseline model in both precision and
recall, with more pronounced improvements observed during the
early training stages. Furthermore, the enhanced model shows
improvements in mAP@0.5 and mAP@0.5–0.95, suggesting that
the optimization modules contribute to enhancements in both the
model’s feature extraction capabilities and convergence.

TABLE 3 The experimental results of loss function improvement.

Method mAP@0.5 mAP@0.5–0.95 Params GFLOPs

CIoU 80.03 46.42 6.2 M 12.3

SIoU (Gevorgyan, 2022) 79.81 47.04 6.2 M 12.3

EIoU (Zhang et al., 2022) 80.04 46.93 6.2 M 12.3

WIoU (Tong et al., 2023) 80.22 46.86 6.2 M 12.3

MPDIoU (Siliang and Yong, 2023) 80.17 47.13 6.2 M 12.3

Focal-EIoU (Zhang et al., 2022) 80.71 46.91 6.2 M 12.3

Focal-SIoU 80.92 46.44 6.2 M 12.3

The highest scores are presented in bold.

TABLE 4 Ablation experiment results.

YOLOv8 GD SE-ResNeXt
detection head

Focal-
SIoU

Precision Recall mAP@
0.5

mAP@
0.5–0.95

FPS GFLOPs Params

✓ 78.80 72.50 79.46 46.61 197 8.2 3.0 M

✓ ✓ 80.30 73.00 79.82 46.92 139 12.0 6.0 M

✓ ✓ 78.20 72.70 79.55 46.59 127 8.6 3.2 M

✓ ✓ 79.10 71.90 79.36 46.37 123 8.2 3.0 M

✓ ✓ ✓ 80.20 73.00 80.03 46.42 115 12.3 6.2 M

✓ ✓ ✓ ✓ 77.20 75.70 80.92 46.44 115 12.3 6.2 M

The highest scores are presented in bold.
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3.3 Comparative experiment with
other methods

Table 5 provides a comparison of YOLOGX with other deep
learning methods on the D-Fire dataset. YOLOGX achieves the best

performance in terms of mAP@0.5, reaching 80.92%, while
maintaining high real-time performance (115 FPS), thus striking
a favorable balance between accuracy and efficiency. Although its
parameters and computational complexity (6.2 M parameters,
12.3 GFLOPs) are slightly higher than some methods, the

FIGURE 12
Comparison of Precision, Recall, mAP@0.5 and mAP@0.5–0.95 between YOLOv8 and lmproved YOLOv8.

TABLE 5 The comparison of performance with other DL methods.

Method mAP@0.5 Params GFLOPs FPS

Faster-RCNN (Ren et al., 2015) 64.78 28.5 M 471.58 47

EfficientDet (Tan et al., 2020) 71.00 3.79 M 4.7 90

YOLOv4-tiny (Bochkovskiy et al., 2020) 62.00 5.9 M 16 197

YOLOv4 (Bochkovskiy et al., 2020) 73.00 65 M 142 40

YOLOv5 (Ultralytics, 2020) 67.10 7.2 M 16.2 120

YOLOv7 (Meituan, 2022) 80.20 37.2 M 105.1 159

YOLOv8 (Ultralytics, 2023) 79.46 3.0 M 8.2 197

RT-DETR-L (Zhao et al., 2024) 72.18 32.8 M 108.0 108

RT-DETRv2-S (Lv et al., 2024) 80.60 20.1 M \ 207

YOLOGX (ours) 80.92 6.2 M 12.3 115

The highest scores are presented in bold.
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decrease in frame rate is minimal compared to its accuracy, making
it well-suited for real-time detection.

In contrast, Faster-RCNN, YOLOv4, YOLOv7, RT-DETR-L,
and RT-DETRv2-S have more parameters than YOLOGX.
EfficientDet has lower mAP@0.5 and FPS. YOLOv4-tiny and
YOLOv5 exhibit high FPS, but lower mAP@0.5. YOLOGX
outperforms other methods in both accuracy and real-time
capability, making it particularly suitable for forest fire detection,
which requires relatively high accuracy and high real-time
performance.

To comprehensively evaluate our method, we compared
YOLOGX with the latest research methods including Pruned-
KD, PicoDet, Fire-YOLO, LFNet, and ELDNet on the D-Fire
dataset, as shown in Table 6. Under the same experimental
settings, YOLOGX achieved a mAP@0.5 of 80.92%, significantly
higher than those of other methods (Pruned-KD 62.71%, PicoDet
68.95%, Fire-YOLO 68.88%, LFNet 71.15%, ELDNet 74.00%).
Additionally, YOLOGX demonstrated superior precision and
recall, with values of 77.20% and 75.70%, respectively.
YOLOGX also excelled in detection speed, with 6.2 M
parameters. Overall, YOLOGX strikes a good balance between
accuracy and efficiency, making it particularly suitable for forest
fire detection applications requiring high precision.

3.4 Visualization analysis

Figure 13 compares the performance of the YOLOv8 and
YOLOGX algorithms in fire and smoke detection. The visual
results indicate that the YOLOGX algorithm demonstrates
significant advantages in detecting fire and smoke. Firstly,
YOLOGX successfully detects more fire targets that YOLOv8 fails
to recognize, demonstrating its higher sensitivity to fire targets in
complex and concealed environments. Secondly, YOLOGX excels in
detecting small fire targets, outperforming YOLOv8 in capturing
and marking small fire points. Additionally, in the same flame
detection tasks, YOLOGX shows higher detection confidence,
indicating greater reliability and accuracy. These improvements
are attributed to the integration of the GD mechanism, SE-
ResNeXt detection head, and Focal-SIoU loss function in
YOLOGX, which enhance its effectiveness in fire detection.

4 Discussion

We introduced YOLOGX, an enhanced YOLOv8 model
designed for real-time forest fire detection. The model
incorporated the Gather and Distribute (GD) feature aggregation

TABLE 6 The comparison of performance with state-of-the-art studies on the D-Fire dataset.

Method Year Accuracy Precision Recall mAP@0.5 Params

Pruned-KD (Wang et al., 2021) 2021 82.40 79.85 46.02 62.71 \

PicoDet (Yu et al., 2021) 2021 88.26 84.32 51.27 68.95 \

Fire-YOLO (Zhao et al., 2022) 2022 88.21 84.12 51.58 68.88 \

LFNet (Xiaoxue et al., 2023) 2023 97.92 87.68 53.35 71.15 \

ELDNet (Guo et al., 2024) 2024 \ 70.60 \ 74.00 7.77 M

YOLOGX (ours) 2024 \ 77.20 75.70 80.92 6.2 M

The highest scores are presented in bold.

FIGURE 13
Comparison of forest fire detection results before (up) and after (down) improvement.
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module, SE-ResNeXt detection head, and Focal-SIoU loss function,
significantly enhancing detection capabilities. Experimental results
demonstrate that the improved model surpasses the original in recall
and mean Average Precision (mAP), particularly excelling in
detecting small targets. These results underscore the effectiveness
and robustness of the enhanced model in forest fire detection,
highlighting its potential for practical applications.

Despite the superior performance of YOLOGX, some
limitations remain. First, acquiring high-quality fire image
datasets is challenging due to the complex and time-consuming
annotation processes, which limits training data sources and affects
detection performance. Second, diverse forest backgrounds and
varying weather conditions can easily result in false positives and
missed detections. The complex characteristics of smoke and fire,
particularly in low-light conditions, exacerbate detection difficulty.
Additionally, high real-time requirements and limited
computational resources necessitate model optimization to
balance performance and efficiency.

Future research should focus on several aspects to further
enhance model performance. Data augmentation techniques,
particularly Generative Adversarial Networks (GANs) and other
large image generation models (Feng et al., 2024; Liang et al., 2024;
Xin et al., 2024), hold substantial promise. These technologies enable
the synthesis of diverse training data, thereby enhancing model
generalization, especially in scenarios where data acquisition is
constrained. To address environmental complexity, constructing
forest background models and integrating multi-scale feature
extraction with meteorological data fusion techniques can
enhance fire and smoke detection accuracy. To address the
complexity of fire characteristics, employing temporal analysis
methods (e.g., LSTM) and multimodal data (e.g., infrared images,
thermal imaging) can further improve detection performance. To
optimize computational efficiency, model compression techniques
and lightweight models (e.g., MobileNet, EfficientNet) can reduce
computational load and improve inference speed.

5 Conclusion

This study introduced YOLOGX, an enhanced YOLOv8 forest
fire detection algorithm designed to improve feature extraction and
detection accuracy in complex natural environments. The model
incorporated the Gather and Distribution (GD) mechanism,
including low-GD and high-GD branches, which integrate feature
alignment, information fusion, and information injection modules
to enhance the fusion capabilities of multi-scale features. The
detection head integrated the SE-ResNeXt module, which reduces
parameters through group convolution and SE modules, enhancing
the modeling of feature channel relationships and reducing
computational cost. Additionally, we proposed the Focal-SIoU
loss function, which combines angle, distance, shape, and IoU
losses, and employs Focal loss to address training sample
imbalance, thereby improving the model’s anchor box
discrimination ability. Experimental results demonstrate that the
YOLOGX model achieves a mAP of 80.92% on the D-Fire dataset,

with a detection speed of 115 FPS, a computational complexity of
12.3 GFLOPs, and parameters reduced to 6.2 M, outperforming
most existing detection algorithms.

Future research will concentrate on several key areas: developing
and applying data augmentation techniques to increase data
diversity; integrating multimodal detection methods, including
infrared images and thermal imaging, to improve detection
performance; and exploring model compression techniques to
reduce computational demands and enhance inference speed. We
anticipate that with ongoing optimization and experimental
validation, YOLOGX will assume a broader role in fire
prevention and disaster management, providing robust technical
support for societal safety and protection.
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