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The ecological environmental quality (EEQ) of the Yongding-Luan River Basin
(YLRB) is pivotal to the ecological security of the Beijing-Tianjin-Hebei (JJJ)
region’s core area. Evaluating the EEQ and analyzing its changes are essential for
regional ecological management. However, long-term ecological changes in the
YLRB remain uncovered. In this study, we constructed a seamless Remote
Sensing Ecological Index (RSEI) for the YLRB from 1986 to 2022 using time-
series Landsat imagery on the Google Earth Engine (GEE) platform. The Sen +
Mann-Kendall method was employed to analyze the spatiotemporal trends of
EEQ, and the Geodetector was used to quantitatively assess the driving factors
and their interactions. The results show that: 1) The mean RSEI of the YLRB
increased from 0.486 in 1986 to 0.532 in 2022, marking a 9.5% rise and indicating
a fluctuating upward trend. 2) The EEQ of the YLRB experienced three distinct
phases: improvement, deterioration, and re-improvement. Improvements were
predominantly in the western YLRB, while deterioration was mainly in the
northern Xilinguole region and the southern urban expansion areas of Beijing,
Langfang, Tianjin, and Tangshan. 3) The driving factor detection indicates that
land use type and annual average precipitation are the primary driving factors of
RSEI change in the YLRB. Furthermore, their interaction results in a significant
effect on RSEI, with a maximum of 0.691. These findings align with the historical
urban expansion in the YLRB and the environmental policies implemented by the
Chinese government. The ecological evolution and driving factors identified in
this study offer a scientific basis for regional ecological decision-making and
management.
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1 Introduction

The ecological environment is defined as the aggregate of
ecological factors that influence human production and life, as well
as the evolution of ecosystems (Western, 2001). Environmental
quality indicates the ability of a region to harmonize the
relationship between social production and the living environment,
and it is a crucial material foundation for human survival and
development (WEI et al., 2024). However, as a result of economic
growth and social advancement, the impact of human activities on the
environment is intensifying. Irrational human activities have posed a
significant threat to the ecological equilibrium of the region, and the
contradiction between ecological conservation and economic
development is becoming increasingly pronounced (Hurrell, 1994;
Xie, 2020; Yurui et al., 2021; Yang L. et al., 2023).

The timely evaluation of ecological environmental quality (EEQ)
and the detection of problems in EEQhave become an important issue
for ecosystem protection. A substantial body of research has been
conducted on the connotation theory, index system, methodological
model, and other issues pertaining to EEQ. Additionally, a range of
sophisticated technologies and methodologies have been extensively
employed in the domain of EEQ research (Gan et al., 2017). For
instance, the U.S. Environmental Protection Agency introduced the
Environmental Quality Index (EQI), which covers air, water, land,
built environment and sociodemographic environment, to help
researchers better understand the relationship between health
outcomes and cumulative environmental exposures that are
frequently considered in isolation (Agency USEP, 2024). In China,
China’s Ministry of Environmental Protection (MEP) has released an
ecological index (EI) that combines several environmental factors,
including biological richness, vegetation cover, water network density,
land stress, pollution load, and an environmental limitation index.
The EI has been widely used to assess regional EEQ in China.
However, the aforementioned methods require significant
investigative work, are costly, and make it challenging to obtain
evaluation results in a timely manner. The emergence of remote
sensing technology has led to significant advancements in the field of
ecological environment monitoring. This technology offers a number
of advantages, including a wide monitoring range, rapid imaging
speed, a short revisit cycle, and low data costs. As a result, the remote
sensing-based indexes and methods of EEQ evaluation have been
proposed and continuously improved. Indices such as the Enhanced
Vegetation Index (EVI), Normalized Difference Vegetation Index
(NDVI), and Land Surface Temperature (LST) can assess the quality
of individual elements within terrestrial ecosystems. However, the
interactions between each environmental component within an
ecosystem can impact the entire system. Thus, evaluating the EEQ
requires a more comprehensive index that integrates these various
aspects (Xu, 2013). Xu et al. proposed the Remote Sensing Ecological
Index (RSEI), which is composed of four indices: greenness, moisture,
heat, and dryness. These indices can be obtained directly from remote
sensing imagery (Xu, 2013; Xu et al., 2019). In comparison to the EQI
and the EI, the RSEI is more concise, requires significantly less
computational volume, and allows for a more rapid assessment of
ecological status. Consequently, it is a widely used index (Zheng et al.,
2022). For instance, the EEQ of the Association of Southeast Asian
Nations (ASEAN) from 2000 to 2021 was assessed by Liao, (2022)
using the RSEI. Yuan et al. (2021) employed the RSEI to analyze the

spatial and temporal changes of the EEQ of the Dongting Lake Basin
from 2001 to 2019 and identified its potential relevant driving factors.
Liu et al. (2023a) incorporated three-dimensional greenness into the
RSEI, thereby enhancing the accuracy of EEQ assessment in forests.
However, the backwardness of traditional tools in image storage and
batch processing capabilities has become an important factor
restricting the application of RSEI in the ecological evaluation and
ecological change monitoring with large scale and long time series
(Velastegui-Montoya et al., 2023; Tamiminia et al., 2020; Safanelli
et al., 2020). The Google Earth Engine (GEE) cloud platform, widely
adopted globally, serves as a premier cloud processing platform. It
excels in harmonizing temporal and spatial resolutions, providing
distinct advantages, particularly for long time series remote sensing
monitoring (WEI et al., 2024). Yang et al. (2021) calculated a long time
series of RSEI using GEE, analyzed its long-term trend, and
investigated the contributions of environmental, human, and
topography to RSEI changes. Liu et al. (Liu et al., 2023b) analyzed
the EEQ in Nepal from 2014 to 2018, focusing on the impact and
recovery of the 2015 earthquake, using GEE and RSEI, and identified
altitude and precipitation as key factors in post-disaster recovery,
providing insights for local ecological protection and disaster risk
management. Compared with the traditional tools, the GEE platform
is suitable for RSEI construction and EEQ assessment at a large scale
(Xiong et al., 2021).

The Yongding River originates from the Loess Plateau and flows
into the Bohai Sea in Tianjin. It passes through the provinces of
Shanxi, Inner Mongolia and Hebei, which is of great importance to
Beijing as a source of water and as an ecological corridor. However,
there are significant issues with the over-exploitation of water
resources and river desiccation (Ran et al., 2021). The Luan River
originates from Fengning County, enters the Bohai Sea in Leting
County, flows through Hebei, Liaoning and Inner Mongolia
provinces, and plays an important role in ecological support and
water conservation in the Beijing-Tianjin-Hebei (JJJ) region. Due to
the ecological importance of the Yongding-Luan River Basin
(YLRB), many studies on ecological monitoring and assessment
have been implemented. Wang et al. (2019) investigated the changes
in the water surface area of reservoirs in the Yongding River basin
and their driving factors from 1985 to 2016. Wang et al. (2016)
analyzed the effects of climate change and human activity on the
annual and seasonal flow patterns of the Luan River. Zhai et al.
(2022) used remote sensing to evaluate the effects of ecological
restoration projects in the Yongding River basin. However, previous
studies have focused on single issues in individual basins, which has
led to a lack of research on monitoring the EEQ over a long time
series. In addition, the EEQ of the Yongding River and Luan River
basins collectively influence the water security and ecological
balance of the core region of the JJJ, which is characterized by
frequent human activities. To help develop scientific ecological and
environmental policies in the core region of the JJJ, research on the
assessment and monitoring of EEQ in the Yongding River Basin and
the Luan River Basin as a whole would be important.

In view of the above problems, it is of great practical significance
to conduct a long-time series EEQ assessment and identification of
driving factors in the YLRB to construct harmonious development
of the natural environment economy and society. On this basis, the
objectives of this study are: 1) To efficiently construct a long-time
series RSEI dataset based on the GEE platform by integrating
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multiple sensors including Landsat TM, ETM+, OLI, and OLI2. 2)
To monitor the spatiotemporal changes of EEQ in the YLRB during
1986-2022.3) To explore the driving factors of EEQ in the YLRB.
This study will provide a scientific basis for the effective formulation
of ecological protection policies and the development of ecological
assessment methods in the region.

2 Study area

The study area is the YLRB (111°57′4.5″-119°50′21.6″E,
38°52′25.10″-42°43′30″N), which is located in the northern part of
the Hai River System and comprises several key water systems
including the Yongding River, North Canal, Chaobai River, Jijiang
Canal and Luan River. These span across six administrative regions:
Beijing, Tianjin, Hebei, Shanxi, Liaoning, and the Inner Mongolia
Autonomous Region, covering a total area of 137,900 km2 (Figure 1).
The study area is characterized by a warm temperate semi-humid and
semi-arid continental monsoon climate, with an annual average
temperature of 3.6°C–14°C and an annual average precipitation of
200–900mm. The study area is bounded by the TaihangMountains in
the southwest. The terrain is generally elevated in the northwest and
low in the southeast, exhibiting a rich variety of landforms (including
plateaus, mountains, plains, and hills) in the region. The northwestern
part of the area is the Damshang Plateau in Inner Mongolia, which is
the source of the Yang River (a tributary of the Yongding River), the
Chaobai River, and the Luan River. The western and northern parts of
the area are the Hengshan Mountains and the Yanshan Mountains,

which encompass mountainous areas with long gorges, ravines and
many valleys and basins, these areas are sparsely populated. The
northeastern part of the area is the Yanshan Low Mountain Range,
and the southern and southeastern parts of the area are the North
China Plain, which was formed by river flooding.

The YLRB serves as a vital water source for the JJJ region. The
study area is characterized by high population density and rapid
economic development, as evidenced by statistical data from 1985 to
2022. This data reveals a 161.8-fold surge in GDP, growing from
25.71 billion yuan to 416.11 billion yuan. Concurrently, the
population expanded by a factor of 2.2, rising from 9.81 million
to 21.84 million (Beijing Statistical Yearbook of 2023, 2023). The
rapid social and economic development inevitably puts pressure on
natural resources and the environment in this region (Zhang et al.,
2023). It is therefore evident that an investigation into the spatial and
temporal alterations in the EEQ of the aforementioned area, coupled
with an exploration of the underlying driving forces, will prove to be
a highly meaningful and topical endeavor.

3 Data and method

3.1 Data collection

Huang et al. manipulated RSEI to monitor seasonal variations in
EEQ in the JJJ region from 2001 to 2020 and found that summer is the
best season to construct RSEI (Huang et al., 2024). A total of
5,312 Landsat surface reflectance images, including 3537 Landsat-5,

FIGURE 1
Location of the study area.
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446 Landsat-7, 972 Landsat-8 and 357 Landsat-9 images, captured
between May and September over the period spanning 1985 to 2023,
were selected for the construction of RSEI in this study. The QA band
of Landsat imagery was used to remove clouds from each image. The
JRC Global Surface Water dataset was used to mask water from each
image to prevent the RSEI from being influenced by the water body.
Besides, to avoid the effects of clouds, shadows and other anomalies
that result in missing summers, this study used 3 years as the time
period and performed median image composites. The acquisition,
cloud removal, water masking, and median compositing of these
remote sensing images were performed on the GEE platform. In
addition, to explore the natural and anthropogenic driving factors on
EEQ change in the YLRB, we collected annual average precipitation

(Shouzhang, 2024a), annual average temperature (Shouzhang, 2024b),
DEM (NASA. ASTER GDEM 30M, 2024), GDP (Wang and National
Tibetan Plateau Data, 2022a; Zhao et al., 2017), population density
(Sims et al., 2023; Wang and National Tibetan Plateau Data, 2022b)
and land use cover (Zhang et al., 2021) of the study area from the
publicly available dataset. The data source and spatiotemporal
information are presented in Table 1.

3.2 Methods

The method used in this study consisted of three main steps as
shown in Figure 2. 1) The time series RSEI from 1985 to 2023 was

TABLE 1 The dataset for the detection of drivers of EEQ change in the YLRB.

Name Data source Time Resolution Pre-processing

Annual average
precipitation

http://data.tpdc.ac.cn/ 1901–2022 1 km Image cropping

Annual average
temperature

http://data.tpdc.ac.cn/ 1901–2022 1 km Image cropping

DEM https://www.gscloud.
cn/

— 30 m Calculating slope and aspect in ArcGIS

GDP http://data.tpdc.ac.cn/ 1990–2015 1 km Image cropping

www.gis5g.com 2015–2020 1 km Image cropping

Population density http://data.tpdc.ac.cn/ 1990–2015 1 km Image cropping

GEE catalog 2015–2022 1 km Image cropping

Land use type https://zenodo.org/ 1985–2022 30 m Reclassify into cultivated land, forest land, grassland, water body, construction land and
bare land

FIGURE 2
The Workflow of this study.
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calculated from Landsat images on the GEE platform. 2) The
spatiotemporal changes of RSEI in the study area were analyzed
using the Sen + Mann-Kendall trend analysis approach. 3) The
driving factors leading to the spatial changes of RSEI in the study
area were detected by Geodetector and their interactions were
also explored.

3.2.1 Construction of the RSEI
RSEI can well integrate the information of greenness, moisture,

heat and dryness, and comprehensively and quantitatively reflect the
EEQ and its changes. In this study, the RSEI was used to monitor the
spatial and temporal changes of the EEQ of the YLRB from 1986 to
2022. The greenness index was represented by the normalized
vegetation index (NDVI), which can characterize the vegetation
growth. The moisture index was represented by the modified
tasseled hat transformed moisture component (WET), which can
characterize the vegetation and soil moisture content. The heat
index was represented by the surface temperature (LST). The
dryness index (NDBSI) was obtained by averaging the bare soil
index (SI) and the building index (IBI), which can characterize
urban expansion and land drying. The calculation method of each
indicator is shown in Table 2.

It is important to note that due to the non-uniformity of the
scale of the four indicators, in order to reduce the impact of the
different extremes and scales of the indicators, it is necessary to
normalize them, and the normalization formula for each indicator is
shown in the equation below.

NIi � Ii − Imin

Imax − Imin

Where NIi represents the normalized value, Ii represents the
value of the indicator I, Imax represents the maximum value of the
indicator I, Imin represents the minimum value of the indicator I.

To obtain a single indicator that represents the four indicators
above, the four indicators after normalization can be used for
principal component analysis (PCA) to obtain the first

component of PCA (PC1). Large values of PC1 represent good
ecological conditions. The RSEI0 (initial RSEI) can be expressed in
the equation below.

RSEI0 � PC1 f NDVI,Wet, LST,NDBSI( )[ ]
To facilitate the measurement and comparison of indicators,

RSEI0 also was normalized, whose value is between [0,1]. The closer
RSEI0 is to 1, the better the EEQ. Thus, the final RSEI0 value
represents the EEQ of the study area. In addition, RSEI was divided
into five levels with increments of 0.2: Level 1 (Bad): 0-0.2, Level 2
(Poor): 0.2–0.4, Level 3 (Medium): 0.4–0.6, Level 4 (Good): 0.6–0.8,
and level 5 (Excellent): 0.8–1 (An et al., 2022).

3.2.2 Trend analysis
The Sen + Mann-Kendall method is a widely used non-

parametric test for testing the trend of time series data. It does
not require the samples to follow a normal distribution and is not
disturbed by outliers. Furthermore, it has good noise immunity and
is undemanding in terms of the distribution of data (Shahid et al.,
2017; Alashan, 2020). Therefore, this method is applied in this paper
to investigate the temporal trend of EEQ in the study area. The Sen’s
slope is calculated as the equation below.

β � Median
xj − xi
j − i

( ),∀j> i
Where β represents the trend change of the time series, xi and xj

represent the mean value of RSEI in time periods i and j respectively
(1 < i < j < n). The trend is up when β >0.0005, Stable when
| β | ≤0.0005, and down when β <-0.0005.

The formula for the test statistic is shown as the equations below.

S � ∑n−1
i�1

∑n
j�i+1

sgn xj − xi( )

sign xj − xi( ) � +1 xj − xi > 0
0 xj − xi � 0
−1 xj − xi < 0

⎧⎪⎨⎪⎩

TABLE 2 Indicators calculation methods.

Indicators Calculation methods Explanation

NDVI NDVI � ρNIR−ρred
ρNIR +ρred ρR represents the band of Red, ρNIR represents the band of NIR.

WET WETTM � 0.0315ρB + 0.2021ρG + 0.3102ρR+
0.1594ρNIR − 0.6806ρSWIR 1 − 0.6109ρSWIR 2

WETETM+ � 0.2626ρB + 0.2141ρG + 0.0926ρR+
0.0656ρNIR − 0.7629ρSWIR 1 − 0.5388ρSWIR 2
WETOLI � 0.1511ρB + 0.1973ρG + 0.3283ρR+
0.3407ρNIR − 0.7117ρSWIR 1 − 0.4559ρSWIR 2

ρB, ρG, ρR, ρ”NIR, ρ“SWIR 1, ρ“SWIR 2 represent the bands of remote sensing image (Baig et al., 2014;
Crist and Cicone, 1984; Huang et al., 2002; Yang et al., 2023b)

NDBSI

IBI �
2ρSWIR 1

ρSWIR 1 + ρNIR
− ρNIR

ρNIR + ρR
+ ρG
ρG + ρSWIR 1

[ ]{ }
2ρSWIR1

ρSWIR 1 + ρNIR
+ ρNIR

ρNIR + ρR
+ ρG
ρG + ρSWIR 1

[ ]{ }
SI � ρSWIR 1 + ρR( ) − ρB + ρNIR( )[ ]

ρSWIR 1 + ρR( ) + ρB + ρNIR( )[ ]
NDBSI � IBI + SI

2

SI represents soil index and IBI represents building index. ρB, ρG, ρR, ρNIR, ρSWIR 1 represent the
bands of remote sensing image

LST LST � ρsurface temperature − 273.15 ρsurface temperature represents the surface temperature band of the Landsat 5/7 (ST_B6) and Landsat 8/

9 (ST_B10) (Derdouri et al., 2023)
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The selection of the significance test statistic is contingent upon
the magnitude of the n value pertaining to the time series length.
When the sample size n is equal to or greater than 10, the test
statistic S approximates a normal distribution. Consequently, the
Mann-Kendall trend test may be inapplicable when n is less than 10.
In this study, the Mann-Kendall trend test is performed using the
statistic Z. When the absolute value of Z is greater than 1.65, 1.96,
and 2.58, it means that the trend has passed the significance test with
90%, 95%, and 99% confidence, respectively. The formula is
illustrated in the equation below.

Z �

S − 1��������
VAR S( )√ S> 0

0 Si � 0

S + 1��������
VAR S( )√ S< 0

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
Where VAR denotes the variance. Using significance level α =

0.05 for the significance test, the series changes significantly when
|Z| ≥1.96 and insignificantly when |Z| <1.96.

3.2.3 Driving factors detection
Geodetector is a set of statistical methods for the detection of

spatial dissimilarity and the revelation of the driving forces behind it.
The fundamental premise idea is predicated on the assumption that
if an independent variable exerts a substantial influence on a
dependent variable, then the spatial distributions of the
independent and dependent variables should exhibit a high
degree of similarity (Jinfeng, 2017). The Geodetector is
comprised of four main components: the factor detector, the
interaction detector, the risk zone detector, and the ecological
detector. In this study, the factor detector and the interaction
detector were used.

The factor detector was used to detect the ability of the
independent variable X to explain the dependent variable Y,
measured by the q-value. The formula is shown in the
equation below.

q � 1 −
∑L
h�1

Nhσ2
h

Nσ2
� 1 − SSW

SST

The value range of q is [0, 1], the closer the value of q is to 1, the
greater the explanatory power of the independent variable X on the
dependent variable Y, and vice versa. Where: h = 1., L is the
stratification of the variable Y or the factor X, Nh and N are the
number of cells in stratum h and in the whole region, respectively, σ2h
and σ2 are the variance of the Y values in stratum h and in the whole
region, respectively. SSW and SST are the sum of the variances
within the stratum and the total variance in the whole region,
respectively.

The interaction detector was used to detect whether different
factors X interact with each other or whether the factors are
independent of each other. The types of interactions are classified
into the following five types, as shown in Table 3.

The analysis of driving factor detections is limited to years with
complete data, due to the presence of varying degrees of missing
economic, demographic, and land use data in some years and a lack
of reliable data sources. The RSEI for the period 1989 to 2019 was

selected as the dependent variable. The independent variables
selected for subsequent analysis were annual average precipitation
(X1), annual average temperature (X2), GDP (X3), population
density (X4), elevation (X5), slope (X6), aspect (X7) and land use
type (X8). The natural environmental factors of precipitation,
temperature, elevation, slope and aspect have been identified as
influencing the growth of vegetation. In contrast, the impact of
human activities on the natural environment is represented by GDP,
population density and land use type. All layers were resampled to a
spatial resolution of 1 km. Moreover, this study employed the
natural breakpoint method to categorize dependent variables in
ArcGIS, constructed a 1 km × 1 km grid within the study area, and
obtained the grid center points as sample points, resulting in a total
of 136,271.

4 Results and discussion

4.1 Overview change of EEQ

The average contribution of PC1 from 1986 to 2022 was 83.22%,
indicating that PC1 integrated the majority of the characteristic
information of the four indicators (as shown in Table 4). The NDVI,
representing greenness, and WET, representing moisture, had
positive values, indicating that they contribute positively to the
EEQ. In contrast, the negative values of LST and NDBSI,
representing heat and dryness, indicate that they have a negative
impact on the EEQ. This aligns with the observed reality.

Figure 3 illustrates the changes in the mean RSEI value in the
YLRB from 1986 to 2022. There had been a significant enhancement
in the EEQ (R2 = 0.62). The mean RSEI value showed an
“improvement-deterioration-improvement” trend across different
time periods. From 1986 to 1998, the mean RSEI value increased
from 0.486 to 0.527, with an increase of 8.4%. From 1998 to 2007, the
mean RSEI value decreased to 0.498, with a decrease of 5.5%. From
2007 to 2022, the mean RSEI value exhibited fluctuations but
ultimately increased to 0.532. The mean RSEI value reached its
highest point in 2019 (0.548) and its lowest point in 1986 (0.486).

The trend of RSEI mean value in the study area is in line with the
historical stage of China’s economic development in the past
40 years. For purposes of clarity, we constructed a timeline of
influential events, which is presented in Figure 3. With the
economic development and industrialization of China in the
1980s, the environmental problems became more and more
serious, which attracted the attention of the national authorities.
To solve these problems, the Standing Committee of the National
People’s Congress accelerated the legislative process of ecological
environmental protection (Xie, 2020). In December 1989, the
revision of the environmental protection law was officially
promulgated, and the “33,211″pollution control program was
subsequently launched (Xu et al., 2022). This was the first large-
scale pollution control effort in China’s history. The EEQ improved
dramatically during this period, as reflected in the rapid increase in
the mean RSEI in the study area between 1986 and 1998. With
China’s accession to the WTO in 2001, China’s socio-economic
development has been rapid. The share of heavy industry and
chemicals in the energy, iron and steel, chemical and other
industrial sectors continued to increase, as of 2010, Shanxi
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Province had developed from the early to the middle stage of
industrialization, and Hebei Province had developed from the
middle to the late stage of industrialization (Huang, 2018). While
at the same time, this period saw consecutive years of drought in
northern China (MWR, 2006; MWR, 2007; MWR, 2008), as shown
in Table 5. This corresponds to a rapid downward trend in the RSEI
mean value from 1998 to 2007. Since the 18th National Congress of
China, a cumulative total of more than 100 billion yuan of
investment within the central budget has been arranged to
support the construction of environmental infrastructure, and a
cumulative total of 877.9 billion yuan of transfer funds related to
ecological protection and restoration has been arranged between
2016 and 2020 (Online, 2020). Accompanied by a large amount of
investment, the EEQ has rapidly improved during this period, which
is consistent with the trend of the RSEI mean value in Figure 3.

4.1.1 Spatial characteristics of EEQ
Figure 4 reflects the spatiotemporal distribution of RSEI in the

YLRB from 1986 to 2022. From the spatial distribution, it can be
seen that the overall EEQ of the YLRB, the southeast part is better
than the northwest part. The areas with good and excellent EEQ are
mainly distributed in the eastern part of Zhangjiakou, Chengde, and

the northwest part of Beijing, especially in the mountainous areas of
Zhangjiakou and Chengde, where the terrain is relatively elevated,
the vegetation types are mainly forest and pasture, and there is less
human activity. The areas with poor and bad EEQ are mainly
distributed in the western part of Datong, Shuozhou, Xinzhou,
Wulanchabu and the northern part of Xilinguole, which is
mainly located on the Loess Plateau and the Inner Mongolia
Damshang Plateau, with sparse vegetation, especially in Datong,
Shuozhou and Xinzhou, where the mining industry is well
developed (Tang et al., 2022), causing considerable pressure on
the EEQ.Moreover, there are some areas with poor EEQ in the south
of the study area in southeast Beijing, Tianjin, Langfang, Tangshan
and Qinhuangdao, where the land-use types are mainly construction
land and cropland, and where the regional economy is well
developed, human activities are intensive, and the EEQ is
vulnerable to human activities.

4.1.2 Temporal characteristics of EEQ
These areas of EEQ changes in the YLRB from 1986 to 2022 were

counted (as shown in Figures 4, 5). From 1986 to 1998, in terms of
area change, the percentage of area with good and excellent EEQ
increased from 30.26% to 38.13%, the percentage of area with poor

TABLE 3 Detection of interaction.

Basis for judgment Types of interaction

q(X1 ∩ X2)<Min (q(X1), q(X2)) Nonlinear weakening

Min(q(X1), q(X2)) < q(X1 ∩ X2)<Max (q(X1)), q(X2)) Single-factor nonlinearity weakening

q(X1 ∩ X2)>Max (q(X1), q(X2)) Two-factor enhancement

q(X1 ∩ X2) � q(X1) + q(X2) Independent

q(X1 ∩ X2)> q(X1) + q(X2) Nonlinear enhancement

TABLE 4 Four indicator loadings and contribution rate of PC1 from 1986 to 2022.

Year Loading of NDVI Loading of NDBSI Loading of WET Loading of LST Contribution rate of PC1(%)

1986 0.58 −0.58 0.43 −0.38 86.04%

1989 0.55 −0.69 0.43 −0.22 81.85%

1992 0.57 −0.65 0.38 −0.32 79.06%

1995 0.57 −0.68 0.44 −0.15 80.70%

1998 0.60 −0.59 0.38 −0.37 83.36%

2001 0.57 −0.65 0.47 −0.14 87.53%

2004 0.64 −0.60 0.37 −0.31 72.34%

2007 0.71 −0.57 0.09 −0.41 87.41%

2010 0.63 −0.63 0.35 −0.27 84.36%

2013 0.59 −0.65 0.29 −0.38 83.30%

2016 0.43 −0.68 0.45 −0.38 85.74%

2019 0.45 −0.70 0.43 −0.36 84.51%

2022 0.42 −0.68 0.48 −0.35 85.64%
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and bad EEQ decreased from 31.58% to 27.49%, and the percentage
of area with medium EEQ decreased from 38.16% to 34.38%. From
the trajectory of change, the degree of change of EEQ is mainly in
one level, in which the type of improvement is mainly “bad-poor”,
“poor-medium” and “medium-good”. This indicates that the EEQ in
the study area shows an overall improving trend during this period.
From 1998 to 2007, the percentage of good and excellent EEQ
decreased from 38.13% to 34.36%, the percentage of poor and bad
EEQ increased from 24.49% to 35.75%, and the percentage of

medium EEQ decreased from 34.38% to 29.89%, and the degree
of change of EEQ was mainly in one level, in which the type of
deterioration was dominated by “good-medium” and “medium-
poor”. This indicates that the EEQ of the study area deteriorated at
all levels during this period. From 2007 to 2022, the percentage of
good and excellent EEQ increased from 34.36% to 39.29%, the
percentage of poor and bad EEQ decreased from 35.75% to 25.31%,
and the percentage of medium EEQ increased from 29.89% to
35.40%, and the change of EEQ was mainly in one level, where

FIGURE 3
The mean value changes of RSEI (1986–2022).

TABLE 5 Time and descriptions of historical disasters.

Start and end times Descriptions of historical disasters

2006.1–2006.5 From January to May 2006, there was a severe spring drought in the central and northern parts of North China

2007.1–2007.11 In 2007, most parts of North China were hit by severe spring drought, summer drought, autumn drought and winter drought

2008.3–2008.8 In 2008, the drought in Shanxi was severe in spring and summer, and the drought in Hebei developed rapidly in March
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the improvement type was mainly “poor-medium” and “medium-
good”. It indicates that the EEQ in the study area shows an
improving trend. In 2022, the percentage of good and excellent
EEQ is 39.29%, poor and bad EEQ is 25.31%, and moderate EEQ
is 35.40%.

This study classified the EEQ change types into five categories
based on the degree of increase or decrease in the RSEI levels. The
categories were: significantly worse (−2, −3, −4), worse (−1),
unchanged (0), better (+1), and significantly better (+2, +3, +4).
The percentage of each category’s area was then calculated (as shown
in Figure 6). With regard to the different change periods, from

1986 to 1998, the EEQ, except the northern part of Chengde and the
Xilinguole area, was characterized by a dominant trend of
improvement. This was evidenced by the percentage of change
for the worse and significantly worse was 8.25%, while the
percentage of change for the better and significantly better was
29.48%. The percentage of change for the unchanged was 62.27%.
The areas of change for the better were located in the western part of
the study area in Datong, Zhangjiakou, and Wulanchabu.
Additionally, some degree of change for the better has been
observed in parts of Tianjin, Tangshan, and Qinhuangdao. From
1998 to 2007, the percentage of better and significantly better was

FIGURE 4
RSEI in YLRB (1986-2022).
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FIGURE 5
Sankey diagram of EEQ levels transfer matrix (1986-2022).

FIGURE 6
The spatial distribution of changes in the EEQ (1986-2022).
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11.33%, the percentage of worse and significantly was 24.65%, and
the percentage of unchanged was 64.03%. The EEQ of the study area
showed a trend of deterioration overall. The most significant
deterioration was observed in Zhangjiakou, Xilinguole, northern
Chengde, the periphery of the Beijing metropolitan area, and
Langfang, in comparison to other areas. From 2007 to 2022, the
EEQ of the study area showed an overall improvement trend, with
25.88% of the percentage of better and significantly better, 11.62% of
the percentage of worse and significantly worse, and 62.49% of the
percentage unchanged. The improvement is particularly notable in
the Datong, Shuozhou, and Wulanchabu areas, which have
exhibited a significant positive change. Conversely, the
deterioration was primarily concentrated in Tianjin and
Tangshan in the southeast and Chengde and Xilinguole in the
north. The EEQ of Xilinguole and northern Chengde showed
different degrees of deterioration in the three change periods,
which may be related to the grazing activities in the Damshang
Plateau of Inner Mongolia.

4.2 Trend analysis of EEQ

The results of the trend of change in EEQ are shown in Table 6.
Overall, 62.38% of the changes were for the better or significantly

better, while 27.29% were for the worse or significantly worse. The
remaining 10.34% were unchanged.

Figure 7 illustrates the spatial distribution characteristics of EEQ
trends. The EEQ of the study area in 2022 had shown a marked
improvement compared to the 1986 level. The areas of improvement
in EEQ are primarily concentrated in Wulanchabu, Datong,
Shuozhou, Xinzhou, Zhangjiakou, Qinhuangdao, and
southeastern Chengde. Notably, Wulanchabu, Datong, Shuozhou,
and Xinzhou, situated within the Loess Plateau, exhibited the most
pronounced improvement. This may be attributed to the “Grain-to-
Green Program” which was consistently implemented in this region
towards the end of the 20th century (Gong et al., 2023), and the
substantial investment in numerous ecological restoration
initiatives, which has contributed to the sustained enhancement
of the region’s EEQ.

The areas with deteriorated EEQ are mainly concentrated in
Xilinguole, northern Chengde, the periphery of the Beijing
metropolitan area, Langfang, Tianjin and parts of Tangshan.
Among them, the deterioration of the EEQ in the northern areas
of Xilinguole and Chengde may be related to the vegetation cover
and frequent agricultural and livestock activities in the area. The
periphery of the Beijing metropolitan area, Langfang, Tianjin and
Tangshan areas are the core areas of the economic development of
the JJJ region, and the urbanization process and the economic
activities of the area in the last 40 years may be the reason for
the deterioration of the EEQ in the area.

4.3 Driving factors of EEQ

4.3.1 Single factor detection analysis
To gain further insight into the underlying factors driving EEQ

changes in the study area, this study employed the factor detector to
assess the explanatory power of each factor related to the RSEI (as
shown in Table 7). The results show that 1) With all p-values below
0.001, the analysis confirms a significant impact of these factors on

TABLE 6 Changes in the ecological levels from 1986 to 2022.

β |Z| Type of change Percentage

β< − 0.0005 |Z| ≥1.96 Significantly worse 10.92%

|Z| <1.96 Worse 16.37%

β> 0.0005 |Z| ≥1.96 Unchanged 10.34%

|Z| <1.96 Better 26.33%

| β | ≤0.0005 |Z| <1.96 Significantly better 36.05%

FIGURE 7
The spatial distribution characteristics of the EEQ change trend (1986-2022).
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TABLE 7 The result of factor detection.

Factors 1989 1995 2001 2004 2007 2010 2013 2016 2019

q
value

q
ranking

q
value

q
ranking

q
value

q
ranking

q
value

q
ranking

q
value

q
ranking

q
value

q
ranking

q
value

q
ranking

q
value

q
ranking

q
value

q
ranking

X1 0.259 2 0.373 1 0.531 1 0.284 2 0.278 3 0.474 1 0.267 2 0.411 1 0.173 4

X2 0.196 4 0.136 5 0.191 4 0.142 5 0.183 4 0.080 5 0.088 6 0.103 6 0.093 6

X3 0.076 6 0.075 6 0.104 6 0.054 6 0.043 7 0.040 7 0.039 7 0.041 7 0.060 7

X4 0.058 7 0.054 7 0.079 7 0.050 7 0.076 6 0.073 6 0.105 4 0.142 5 0.146 5

X5 0.238 3 0.174 4 0.282 3 0.229 4 0.281 2 0.217 4 0.206 5 0.198 4 0.175 3

X6 0.165 5 0.215 3 0.153 5 0.233 3 0.162 5 0.276 3 0.252 3 0.218 3 0.236 2

X7 0.004 8 0.003 8 0.003 8 0.005 8 0.003 8 0.005 8 0.006 8 0.005 8 0.006 8

X8 0.344 1 0.362 2 0.356 2 0.349 1 0.321 1 0.405 2 0.387 1 0.360 2 0.352 1

The p-values of all factors are less than 0.001.
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the spatial distribution of RSEI. 2) RSEI in the study area is affected
by both natural and anthropogenic factors, with the explanatory
power of the factors varying from year to year. The most significant
factors are land use type, annual average precipitation, elevation and
slope. Furthermore, the explanatory power of land use type and
annual average precipitation has been particularly high, exceeding
that of other factors. The maximum q-value for land use type is 0.405,
while the maximum for annual average precipitation is 0.531. These
two factors are identified as the primary driving forces behind RSEI in
the study area. 3) With regard to the ranking, the q-value rankings of
land use type, annual average precipitation, and elevation are
relatively stable, the rankings of slope and population density
demonstrate an upward trend, the rankings of temperature and
GDP exhibit a downward trend, and the rankings of aspect remain
consistently low. The results demonstrated that among the natural
factors, annual average precipitation, elevation, and slope exhibited
the greatest explanatory power for changes in RSEI. This was
evidenced by the observation that the EEQ in the region with high
precipitation and complex topography was generally superior to that
in the region with low precipitation and flat topography. Among the
anthropogenic factors, land use type and population density have the
greatest explanatory power for changes in RSEI. The rapid growth of
the urbanization level and population density in the study area has an
important impact on changes in regional land use types (kullo et al.,
2021), which in turn affects the EEQ of the study area. A comparison
of the results of the spatio-temporal analysis with the aforementioned
factors reveals that the impact is both positive and negative. The
continuous implementation of the “Grain-to-Green Program” is an
example of a positive impact, as it has transformed a significant
amount of cropland into forests. This has led to an improvement in
the EEQ of the cities in the western region. However, human activities
have also had a negative impact in some regions. The expansion of
urban areas in the southern region and the reduction of vegetation
cover in the northern region resulting from agricultural and pastoral
activities, have led to a continuous deterioration of the EEQ.

Land use type, as the top-ranked driving factor, its changes
encompass a wealth of information on human activities and directly
affect EEQ by altering landscape patterns and the structure,

function, and ecological processes of ecosystems (Nelson et al.,
2010; Polasky et al., 2011). To explore the impact of land use
changes on EEQ, we utilized Shannon’s Diversity Index (SHDI)
and Patch Cohesion Index (COHESION) to reveal how changes in
land use lead to changes in landscape patterns, thereby affecting
EEQ. The SHDI and COHESION were calculated based on the land
use data using the Fragstats software. We analyzed their relationship
with RSEI in the study area, as shown in Figure 8. SHDI shows a
significant increasing trend with the growth of RSEI, indicating that
SHDI may have a positive impact on EEQ (R2 = 0.76). Conversely,
COHESION shows a significant decreasing trend with the increase
of RSEI (R2 = 0.72), suggesting that COHESIONmay have a negative
impact on EEQ. Overall, in the study area, the richer the landscape
diversity, the more likely it is to have a positive effect on EEQ. Based
on this finding, the decision-makers can enhance regional EEQ by
altering certain landscape patterns.

4.3.2 Interaction detection analysis
In this study, the interaction detector was used to investigate the

interaction between the factors. The findings indicate that 1) the
interactions of the factors were two factors enhancement or nonlinear
enhancement (as shown in Figure 9). This suggests that the
cumulative impact of multiple factors exerts a more substantial
influence on the RSEI of the study area than any single factor. 2)
The strongest explanatory power for RSEI in each year is X1∩X8, with
a maximum of 0.691, indicating that the interaction between land use
type and annual average precipitation has a strong influence on RSEI,
and the sharp decline of RSEI in 2007 due to the consecutive droughts
in North China in 2006-2008 also side by side confirms this result.
Land use type reflects the intensity of human activities to a certain
extent (kullo et al., 2021), and the development of land resources by
human activities will cause a large amount of water consumption, and
the EEQ in areas with low intensity of human activities and high
precipitation is better than that in areas with high intensity of human
activities and low precipitation. 3) The interaction between slope,
aspect and other elements mostly shows non-linear enhancement,
slope and aspect reflect the complexity of the terrain to a certain
extent, and the development difficulty of the complex terrain area is

FIGURE 8
The trend of SHDI and COHESION as RSEI changes.
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greater than that of the flat area, and relatively less human activities.
This is reflected in the spatial distribution of RSEI that the EEQ of
mountainous areas is better than that of flat plains and plateaus, and
this confirms that the EEQ of the central part of the study area is better
than that of the southern part.

4.4 Limitations and future perspectives

This study provided a scientific basis for the rapid assessment of
EEQ in the YLRB and explored its spatiotemporal changes and
driving factors. However, there are still some limitations in this
study. 1) The complexity and diversity of factors affecting EEQ,
along with limited data availability, prevented us from including a
broader set of independent variables in our analysis, which limited the
comprehensiveness of our analyses. In order to obtain a long time
series of data, we selected Landsat imagery rather than higher spatial
resolution imagery data, such as Sentinel-2, which limited the

precision of our results. In future studies, we plan to collect as
much data as possible to enhance the accuracy and reliability of
our results. 2) The RSEI model evaluation method mainly revolves
around four evaluation indicators: greenness, moisture, heat and
dryness, which are difficult to cover the comprehensive content of
EEQ. With the development of RSEI, different scholars have
improved RSEI for its incompleteness and proposed new RSEI
models. For example, Bai et al. (Zongfan et al., 2023) incorporated
desertificationmonitoring index (DMI) and salinity monitoring index
(SMI) to RSEI and developed the modified remote sensing ecological
index (MRSEI) for arid regions. However, the new RSEIs have not
been rigorously validated on a larger scale, and therefore have not
been used in this study, but could be used as a direction for improving
the accuracy of the RSEI model in future research. 3) Geodetector is a
powerful tool for measuring, mining, and utilizing spatial
heterogeneity. Its theoretical core is to detect the consistency of
spatial distribution patterns between the dependent variable and
independent variables through spatial heterogeneity, thereby

FIGURE 9
The result of interactive detectors.
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measuring the influence of independent variables on the dependent
variable. However, it cannot simultaneously assess the joint impact of
multiple variables on changes in EEQ (Yao et al., 2023). Therefore, in
future work, we plan to explore the nonlinear driving mechanisms of
multiple factors on EEQ.

5 Conclusion

This study, based on Landsat data and the GEE platform,
constructed a time series dataset of RSEI for YLRB from 1986 to
2022, assessing the EEQ of the region. Utilizing the Sen + Mann-
Kendall trend analysis method, the overall trend of EEQ was
detected, and the spatiotemporal characteristics of the changes
were analyzed. Employing the Geodetector tool, the main driving
factors affecting the EEQ of the YLRB were explored. The findings
can be concluded as follows:

1) From 1986 to 2022, themean value of RSEI in the YLRB shows a
fluctuating upward trend, with the mean value of RSEI
increasing from 0.486 in 1986 to 0.532 in 2022, with an
overall increase of 9.5%, indicating that the EEQ of the study
area is improving. In terms of spatial distribution, the EEQ of
the eastern cities in the study area is generally better than that of
the western cities. In terms of phases, from 1986 to 1998, the
government’s pollution control measures were effective, and the
EEQ improved. From 1998 to 2007, with China’s accession to
the WTO, the economy developed rapidly, urban expansion
accelerated, and the EEQ deteriorated sharply. From 2007 to
2022, the EEQ improved again accompanied by large-scale
investment in ecological restoration (Yang L. et al., 2023).

2) The analysis of temporal and spatial changes shows that the
EEQ of the YLRB has an overall improvement trend from
1986 to 2022, with 62.38% of the areas better and significantly
better, and 27.29% of the areas worse and significantly worse.
Datong, Shuozhou, Xinzhou and Wulanchabu areas show the
most obvious improvement in EEQ, indicating that the Grain-
to-Green Program, which has been continuously implemented
in this area since the end of the 20th century, has been effective.
The deterioration of EEQ in the northern parts of Xilinguole
and Chengde may be related to local agricultural and livestock
activities. In the periphery of the Beijing metropolitan area,
Langfang, Tianjin, and parts of Tangshan, the EEQ has
deteriorated, and the spatial distribution of degraded areas
closely resembles the extent of urban expansion.

3) The results of factor detection showed that land use type and
annual average precipitation had the greatest influence on
RSEI, with the highest q-value ranking for land use type. The
q-value ranking of slope increased the most, from 5th to 2nd
place, and the q-value ranking of population density increased
the second, from 7th to 5th place, indicating that topography
and human activities have had a remarkable influence on RSEI
in recent years. The results of interaction detection showed
that the effects of each factor on RSEI were enhanced to
different degrees, among which the interaction between
land use type and annual average precipitation had the
most significant effect on RSEI, up to 0.691. Building on
these findings, this study further explored the changes in

landscape patterns caused by land use changes and their
subsequent impact on EEQ. It was revealed that in the
YLRB, the SHDI has a positive impact on EEQ, while the
COHESION has a negative impact on EEQ.

This study, for the first time, conducted a comprehensive
monitoring of EEQ across the Yongding and Luan River basins
as a whole, covering a nearly 40-year period that encompassed the
rapid economic development of the region. The results revealed the
spatiotemporal changes in EEQ in response to regional economic
growth and environmental protection investment, explored the
main drivers of EEQ, and discovered the positive impact of
landscape diversity on the EEQ of the study area. It will provide
a basis for scientific decision-making in ecological environment
construction and sustainable development for the region.
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