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This study investigated the historical and future trends of urban expansion and its
subsequent impact on agricultural land-use in Hawassa city, Ethiopia. A time-
series of remote-sensing imageries from Landsat Thematic Mapper for the years
1984, 1990, 2000, and 2010 and Operational Land Imager for 2021 were used to
extract the LULC information from the study area. Seven major land-cover
classes’ waterbody, built-up, agricultural land, wetland, grassland, woody
vegetation, and agroforestry were identified with visual image interpretation
along with supervised image classification techniques using the maximum-
likelihood algorithm for the study years. The urban and agricultural lands were
then extracted from the original LULC data to quantify the extent, rates, and
number of area conversion between the two. The Land Change Modeler module
of TerrSet software was used to predict the spatial extents of built-up and
agricultural lands in 2030 and 2050. The results showed that there have been
significant changes between the LULC types in Hawassa city within the past
37 years, from which built-up and agricultural land have shown the most
prevalent changes. It showed that built-up land has increased from 584.73 ha
in 1,984–3,939.03 ha in 2021, representing a 573.65% increase at an annual
growth rate of 15.50%. However, agricultural land decreased from 8,324.64 ha to
3,595.68 ha in the respective years, with a 56.81% decrease at a rate of −1.54%
each year. A total of 3,148.74 ha (37.82%) of agricultural land was converted into
built-up land within the past 37 years (85.10 ha per year, a rate of 1.02%. The built-
up land is projected to increase to 5,009.85 ha and 6,794.73 ha from 2021 to
2030 and 2050, with annual growth rates of 3.02% and 2.50%, respectively. In the
same years, agricultural land will decrease to 2,849.58 ha and 2033.46 ha by
2.31% and 1.50% annually, respectively, from which 64.76 ha (1.80%) and 48.41 ha
(1.35%) will be converted into built-up land, respectively. Future planning and
development in the city should consider the rapid increase in built-up land
toward agricultural land areas and develop appropriate adaptation
mechanisms for the local community, which is highly dependent on agriculture.
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1 Introduction

The dynamics of land use and land cover change (LULCC) are
crucial drivers of global environmental change, contributing to
ecological degradation, loss of biodiversity, and alterations in
local climates and natural landscapes (Rimal et al., 2018).
LULCC involves the conversion between different types of land
use and stems from complex interactions between human activities
and the natural environment. It significantly influences ecosystem
processes, biological cycles, and biodiversity (Hamad et al., 2018;
Hyandye and Martz, 2017; Liping et al., 2018).

Urbanization, a prominent and accelerating trend worldwide, is
one of the most significant anthropogenic activities affecting LULCC
(UN-DESA, 2015; Shi et al., 2016; Wu et al., 2010; Roy et al., 2021).
This transformation involves a shift from rural to urban culture,
characterized by an increase in urban populations, expansion of
urban built environments, and establishment of urban landscapes,
leading to changes in social structures and lifestyles (Chaolin, 2020;
UN-DESA, 2019). However, there is no common universal
definition of “urban,” as countries adopt different criteria to
categorize urban and rural areas. As outlined by UN-DESA
(2019) and Chaolin (2020), the level of urban expansion is often
represented as the percentage of the population residing in urban
areas, a statistic that has grown significantly over time. For instance,
in 1950, approximately 29.6% of the global population lived in urban
areas, which increased to 50.15% by 2007 and is projected to reach
about 6.68 billion by 2050 (UN-DESA, 2019). UN-Habitat (2020)
anticipates that within the next decade, all regions will experience
increased urbanization, although highly urbanized regions will see
slower growth. Less developed regions, particularly East Asia, South
Asia, and Africa, are expected to witness the most substantial
increases in urban populations, with India, China, and Nigeria
projected to account for 35% of the global urban population
increase from 2018 to 2050.

The patterns of urban expansion observed globally,
characterized by rapid urbanization driven by economic growth,
rural-to-urbanmigration, and infrastructural development; resonate
closely with the situation in Hawassa City, where similar dynamics
are at play. As seen in many developing regions, the influx of
populations into urban areas in Ethiopia reflects global trends of
urban agglomeration, which often lead to the conversion of
agricultural lands into urban spaces, socio-economic stress, and
cultural shifts. The rapid growth of urban populations has led to
significant land consumption for urban development, resulting in
the loss of prime agricultural land and posing challenges to food
security (Pandey & Seto, 2015; Barati et al., 2015; Roy et al., 2022). In
Ethiopia, approximately 80% of the rural population relies on
agriculture for their livelihoods, constituting over 50% of the
gross domestic product (GDP) and engaging more than 85% of
the labor force, generating over 95% of foreign exchange earnings
(Ayele and Tarekegn, 2020). However, agricultural land in peri-
urban areas is increasingly being transformed into built
environments due to horizontal urban expansion, adversely
affecting land use value (Admasu et al., 2019; Ayele and
Tarekegn, 2020). This trend is particularly evident in major
Ethiopian cities such as Addis Ababa, Hawassa, Bahir Dar, and
Mekele, where demand for urban land continues to rise (Dires, 2016;
Roy et al., 2023a).

For effective sustainable development and natural resource
management, timely and accurate information on land-use
change patterns and urban expansion trends is essential (Das and
Angadi, 2021). Remote sensing (RS) and Geographic Information
Systems (GIS) are advanced technologies and essential for the
comprehensive assessment, evaluation, and visualization of the
spatial heterogeneity of urban environmental (ubham Roy a,
2022). These technologies provide critical historical datasets and
depict an urban expansion trend that enables the decision makers to
understand the environmental transformations and its impacts to
prepare well informed monitoring plan alternatives (Lambin et al.,
2001; Wu et al., 2016; Roy et al., 2023b). Multi-temporal satellite
imagery has been used to analyze urban expansion patterns and
model future changes (Pandey & Seto, 2015; Rimal et al., 2018;
Zhong et al., 2011), offering valuable insights for urban planners and
land use specialists regarding potential landscape alterations (Wu
et al., 2006). Among various predictive models, the integration of the
Land Change Modeler (LCM) with cellular automata (CA) and
Markov chain models (CA-Markov) has proven to be particularly
effective for simulating urban growth trends (Leta et al., 2021;
Mohamed and Worku, 2020; Rimal et al., 2018; Sarkar and
Chouhan, 2019).

This study investigates the historical trends of LULCC and
urbanization in Hawassa City and their implications for
agricultural land use. Using a time series of Landsat images from
1984 to 2021, this research also forecasts urban and agricultural land
areas for 2030 and 2050 using GIS and RS analysis tools. Currently,
LULCC poses significant environmental challenges. The rapid
expansion of urban areas into agricultural and non-agricultural
lands alters the physical landscape and contributes to complex
social and economic issues. As one of the key aspects of LULCC,
urbanization is an inevitable component of economic development,
fundamentally changing the physical patterns of the environment
(Barow et al., 2019; Belay, 2014; Majumder et al., 2023).

In Ethiopia, uncontrolled and illegal settlements in peri-urban
areas are on the rise, leading to horizontal urban expansion and the
consequent loss of fertile agricultural land. The increasing urban
population in major cities such as Addis Ababa, Bahir Dar, Hawassa,
and Mekele has intensified the demand for land for housing and
infrastructure purposes in peri-urban areas, resulting in the
transformation of agricultural land into urbanized spaces (Dires,
2016; Roy et al., 2024a; b). For example, Hawassa city has
experienced rapid urbanization since its establishment; it
expanded from approximately 48 ha in 1959 to over 4,044 ha in
2006, accompanied by a significant increase in population, estimated
to be about 281,158 by 2015 (Admasu, 2015). This swift
urbanization necessitates new urban land for various
developments, including residential, commercial, institutional,
industrial, and infrastructural projects, thereby prompting further
land-use dynamics (Admasu, 2015).

In Ethiopia context as urban areas expand into previously fertile
agricultural and non-agricultural lands, the transformation disrupts
traditional land uses and exacerbates social issues, such as
psychological distress and the erosion of cultural practices, as
urban lifestyles increasingly encroach upon rural traditions. This
growth, despite being a byproduct of economic development,
threatens food security, exacerbates conflicts over land
ownership, increasing migration towards urban areas in search of
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better economic opportunities and livelihood opportunities by
reducing available cropland and limiting livestock rearing.
Consequently, the Ethiopian experience underscores the urgent
need for balanced urban planning that considers both
development goals and sustainability to mitigate the adverse
impacts of urban expansion. Consequently, land previously used
for agricultural production and livestock farming is increasingly
being converted for urban use. This shift exposes farmers to a range
of challenges, including social issues like psychological distress, loss
of traditional cultural practices due to the encroachment of urban
culture, and economic setbacks stemming from reduced cropland
availability, limited opportunities for livestock rearing, and
diminished income sources (Dires, 2016).

Existing studies on urban expansion in Hawassa City have
primarily focused on the spatial and economic aspects of growth,
often overlooking the nuanced effects on agricultural land use and
the social implications for local communities (Abate et al., 2021;
Desta and Zeleke, 2020). While research has highlighted the
quantitative loss of agricultural land due to urban encroachment,
there is a lack of comprehensive analysis on the qualitative
consequences, such as the impact on food security, traditional
livelihoods, and local cultural practices, which are crucial for
understanding the broader implications of urban sprawl
(Mekuriaw and Gokcekus, 2019). By exploring these dimensions,
my work aims to fill this critical gap, providing a holistic perspective
that connects urban development with agricultural sustainability
and social wellbeing, thereby enhancing stakeholders’
understanding and informing better land-use policies in the
context of Ethiopia’s rapid urbanization.

Thus, knowledge of historical trends and rates of change among
the different land cover types in the study area is essential for
informed future planning and environmental management.
Although various studies have investigated urban expansion
patterns (Admasu, 2015; Gashu and Gebre-Egziabher, 2018),
changes between different land cover types (Wondrade et al.,
2014), and drivers of these changes (Degife et al., 2019) in
Hawassa, previous research has not specifically addressed the
extent of agricultural land loss due to urbanization or provided
forecasts for future urban and agricultural land use in this area. To
fill this research gap, this study analyzes the historical and future
trends of urbanization and its impacts on agricultural land use by
utilizing a time series of Landsat satellite imagery from 1984 to
2021 and forecasting potential developments for 2030 and 2050.
This information will serve as a critical resource for urban land-use
planning and the sustainable management of the urban
environment in Hawassa city.

2 Materials and methods

2.1 Description of the study area

Hawassa city is located on the shore of Lake Hawassa (from
which the name of the city was driven) on the fringes of the Great
Ethiopian Rift Valley (Bekele, 2010). Hawassa city has been the
capital of the Southern Nations, Nationalities, and People’s Region
(SNNPR). Since June 2020, the city has been the capital of the
Sidama Regional State. Hawassa city is located in the Southern part

of Ethiopia along the Addis Ababa-Nairobi international highway at
a distance of 275 km from the country’s capital, Addis Ababa,
(Admasu, 2015). The city is located astronomically between
6054′42″N – 70 05′50″N latitude and 38024′51″E – 38033′25″E
longitude. Hawassa city lies on a relatively flat plain in the rift valley
topography, with an average elevation of approximately 1,690 m
above mean sea level. Recently, the city has been structured into
eight sub-cities, locally named “Kifle Ketema” (Figure 1): Addis
Ketema, Bahil Adarash,Haik Dar,Mehal,Menharia,Misrak, Tabor,
and Tula, and 32 Kebeles (Admasu, 2015). According to the
2020 Hawassa city administration boundary, the total area of the
city is approximately 23,538.24 ha, which was used in the
present study.

2.2 Methods of data collection

2.2.1 Data types and sources
To carry out the research, different types of data from different

sources were collected and used (Table 1). Data types used include
time series Landsat Thematic Mapper (TM) and Operational Land
Imager (OLI) images, Copernicus’s Sentinel-2 images from the
European Space Agency (ESA), Orthophotos, DEM, Google
Earth, Hawassa city boundaries, field survey data (GPS),
population data, soft ideas, and related written documents.

2.2.2 Materials and analytical tools
Different materials and analysis software were used to carry out

the research. Materials like handle GPS and field notebooks have
been used to collect data during field observation. A computer with
the necessary software installed was used for data analysis and report
writing in the office.

Software like ArcGIS, QGIS, TerrSet, Kobo toolbox, and
Microsoft Office were used as the major analysis and
presentation tools for the study. ArcGIS was used to prepare
variables for the prediction of future LULC and for accuracy
assessment. Spatial variables like elevation, slope, distance to the
city center, and distance from the road were prepared as input
variables for the prediction using ArcGIS’s ArcMap program. In the
accuracy assessment, a Frequency tool was used to compute the
frequency of the reference and predicted land cover classes and
combines them into a table of a matrix (error matrix table). QGIS
was used to perform the image analysis processes and preparation of
the final maps. Additional plugins such as the Semi-Automatic
Classification Plugin (Congedo, 2021) were installed to perform
image analysis and classification for producing thematic land cover
classes from the source images. TerrSet (Eastman and He, 2020)
software was used to predict future land cover in the study area.

2.2.3 Spatial data collection methods
The data used in this research were mostly from remote sensing

data collected from secondary sources. The time series Landsat
images for the study area were downloaded from the online data
archives (Table 2) for each study year from 1984 to 2021 to generate
the land cover information in the study area. Landsat TM for 1984,
1990, 2000, and 2010 and OLI and Sentinel-2 for 2021 were
downloaded from USGS website, https://earthexplorer.usgs.gov.
The base year, 1984, for the study was chosen in closer to the
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FIGURE 1
Location of the study area.

TABLE 1 Types and sources of data used in this study.

No. Data type Data source Description

1.1 Landsat TM and OLI: WRS path/row:
168/055

USGS
https://earthexplorer.usgs.gov

Producing land use and land cover (LULC) information and
mapping for the study area

1.2 Orthophoto, 2018 Hawassa city administration For validation of land-use/cover classifications

1.3 Sentinel-2 image https://scihub.copernicus.eu/dhus

1.4 Google Earth images https://google.com/earth

1.5 ASTER GDEM (DEM) NASA
https://earthdata.nasa.gov/

Used to characterize the topography of the study area

1.6 Study area boundary Hawassa city administration To indicate the boundary and extent of the study area

1.7 GPS survey data Field survey Ground truth data samples were used to validate the
classification map for the recent 2021 land cover map

1.8 Population Hawassa city administration, department of finance and
economic development (DFED)

To determine the sample size for the household survey and
investigate its growth rate in the study area

1.9 Soft idea Interview (household and key informant) The interview results reveal the historical and current status
of LULC in the study area

1.10 Written documents Hawassa city administration, Internet, and literature
(published or unpublished articles)

Written documents providing information about the city,
documented as hard/soft copies or from online sources, like
google and journal articles
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historical evidence of the city municipality establishment (Kinfu
et al., 2019) and the availability of a medium resolution historical
satellite image data to generate the land cover information. The
devastating famine of 1984 triggered significant shifts in
urbanization and land use patterns, as people migrated from
rural areas to urban centers in search of relief and opportunities.
This event served as a pivotal moment in Ethiopia’s development
trajectory, shaping subsequent land management policies and
practices. Following this, based on the political transformations,
population growth, socio-economic development, and urban land
supply and administration policy, a near 10 year gap land use and
cover change was investigated for the years listed above.

Google Earth Pro and DEM data were also downloaded from
their respective websites. Ortho-photographs and study area
boundary data were obtained from the Hawassa city
administration. A field survey was also conducted to collect some
ground truth sample points using handle GPS for validation of the
2021 classification map as well as to get a general overview of the
study area. The collection of GPS points was done randomly on the
accessible land areas (except lake and swampy areas) within the
study area. The sampling methods for ground truthing involved
systematically selecting training sites based on stratified random
sampling to ensure representation across different land cover types,
while the final selection was guided by accessibility, variability in the
landscape, and the availability of high-resolution imagery for
accurate classification.

2.3 Data management and analysis

2.3.1 Data management
The data collected from different sources in different formats

were combined into a structured folder in the form of a file database
to facilitate the searching and use of the data for analysis. The
datasets were stored in sub-folders according to their type and
format for easy retrieval and analysis.

2.3.2 Analyzing the spatial datasets
2.3.2.1 Preprocessing images

Data collected from different sources can be in different file formats,
coordinate reference systems, geometry, and radiometric conditions.
Thus, these variations in the dataset must be corrected before use in
any analysis. Satellite images acquired from different sources must be
corrected for geometric and radiometric errors before use. The Landsat

images used (Table 2) in this research were already corrected for these
errors at the source, and these steps were skipped. In this study, the pre-
processing steps applied to the images were the selection of bands and
merging, clipping with the study area, and enhancing the image’s visual
clarity. The selected bands for characterizing the land cover information
were blue, green, red, near-infrared (NIR), and shortwave infrared
(SWIR) bands (https://www.usgs.gov/faqs/what-are-best-landsat-
spectral-bands-use-my-research; accessed on 03 September 2022).
These bands were merged to form a single multi-band image and
then clipped in the study area. The image scene for the study area
was taken with a spatial reference system of the WGS 1984 datum and
UTM Zone 37 N projection, and that of the study area was Adindan,
UTM Zone 37N. To align the datasets correctly, the study area was
projected into the image’s reference system (WGS 1984;UTMZone 37N)
with the same datum.

2.3.2.2 Analyzing land use and land cover patterns
The LULCpattern of the study area was obtained using a supervised

classification technique with the maximum-likelihood classifier (MLC)
in QGIS. In this process, training samples were collected for different
land cover categories based on visual interpretation of the remote
sensing images (Figure 2). The visual interpretation method was
selected to identify and collect training samples for the land cover
categories. These samples were then trained in software to perform the
classification process. Approximately 10 different land cover classes
were identified. Water bodies, built-up, agricultural land, wetland,
grassland, woody vegetation, agroforestry, wet grassland, cultivated
land, and open land are considered. These classes were later recoded
into seven major land cover classes—waterbody, built-up, agricultural
land, wetland, grassland, woody vegetation, and agroforestry (Table 3),
to reduce the amount of error in the classifications using the
assumptions of Congalton (1991).

Agriculture and cultivated lands are grouped into a common
name, agriculture, where the former class indicates land with no
crop cover and the latter class indicates crop cover, in the context of
this study. Wetland and wet grassland were also grouped into the
wetland class. Grass-dominated areas with a high degree of
reflection as vegetation and smooth texture in the Cheleleka
wetland were classified as wet grassland and later merged into
the wetland class. Open and grassland land were merged into a
common grassland class. This process was performed because
medium-resolution Landsat images did not allow for the
identification of correct and detailed land cover classes and types
that were recorded in the images.

TABLE 2 Description of satellite images used in the analysis.

Satellite/sensor Acquisition date (yyyy/
mm/dd)

Path/
row

Spatial resolution of visible- and near-infrared (NIR)
bands (m)

Landsat-5 TM 1984/12/17 168/055 30

1990/12/18 168/055 30

2000/01/28 168/055 30

2010/11/07 168/055 30

Landsat-8 OLI 2021/01/05 168/055 30

Sentinel-2B MSI 2021/12/29 168/055 10
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After the recoding process was completed, the r. neighbors grass
tool in QGIS was used to remove unnecessary pixels from the
classification results. A mode neighborhood operation with a 3 ×
3 size was used to determine the most frequent value around the
pixel and assign that value to the central cell (https://grass.osgeo.org/
grass82/manuals/r.neighbors.html).

2.3.2.3 Accuracy assessment
Accuracy assessment was performed to identify variations that

may have occurred between classification and reference sample data

for each study year. Due to the complexity of digital classification,
the reliability of the results must be assessed (Congalton, 1991).
Accuracy assessment requires two things; one is the ground truth
(reference) data and classification map data, to produce measures of
the amount of error between them.

2.3.2.3.1 Reference data collection. Reference samples were
collected from all images used for classification to assess accuracy.
Reference samples from 1984, 1990, 2000, and 2010 were collected
from Google Earth images, Landsat image interpretations, field

FIGURE 2
Flowchart of the analysis.

TABLE 3 Description of major LULC categories.

No. Class names Description

1 Waterbody The land area is covered by lakes and large water reservoirs

2 Built-up Built-up areas include residential, commercial, industrial, and transportation facilities, construction sites, large excavation/quarry sites,
and settlements

3 Agriculture Land that was cultivated or uncultivated on both small- and large-scale agricultural land was used for growing annual crops such as
maize, wheat, and potatoes

4 Wetland Waterlogged and swampy areas covered by grass

5 Grassland Land includes grasses, open areas, scattered shrubs used for grazing, and other areas, such as open green areas (with no trees) and open
market areas (with no shade)

6 Woody vegetation Includes natural forests, plantations, woodlots, and trees in compound green areas

7 Agroforestry Farmlands with perennial crops such as ense, fruit trees, Khat, coffee, sugarcane, etc
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observations, and interviews conducted in 2021. For 2021, Google
Earth images, Orthophotos, Sentinel image interpretations, field
observations, and interviews were used as sources for collecting
reference samples. Although it is recommended that a minimum of
50 reference sample sizes be required for each land cover category in
the error matrix, the number may increase or decrease depending on
the size of the area under study, the number of land cover categories
and the relative importance of the categories (Congalton, 1991).
Accordingly, the reference samples collected for each category
varied (Table 4). A total of 1,017 reference sample points were
collected for all study years to assess the accuracy of the classification
maps for the study area.

2.3.2.3.2 Assessing classification accuracy. Using the
classification results and reference data, the classification accuracy
was determined by cross-tabulating the observed and classified map
data. The class value of the classification map was extracted for each
reference location, and the frequency of the class values from the
reference data and the classified maps was computed in
ArcMap. The reference class values, classified class values, and
frequency fields were combined into an error matrix table form
using the Pivot table tool in ArcGIS software. An error matrix table
is the most common method of representing the accuracy of remote
sensing data, using reference data as columns and classification data
as rows (Congalton, 1991). The total accuracy, producer accuracy,
user accuracy, and kappa values using the Equations 1–4 were
calculated manually in Microsoft excel using the error matrix
tables generated in ArcMap.

OA � Sumof correctly classified samples

Total number of sambles used
� ∑Nii

N
(1)

PA � Correctly classified samples in a class

Total number of reference samples of the class
� Nii

Ni.
(2)

UA � Correctly classified samples in a class

Total number of classification samples of the class
� Nii

N.j

(3)

K � N∑Nii −∑ Ni. p N.j[ ]
N2 − ∑ Ni. p N.j[ ]

(4)

Where OA is the total/overall accuracy, PA is the producer’s
accuracy, UA is the user’s accuracy, K is kappa of the classifications,
N is the total number of samples, Nii is the number of samples
correctly classified (diagonal), Ni. is the total number of reference
samples in a class, andN .j is the total number of classification samples
in a class.

The total, producer, and user accuracy results are presented as
percentages.

2.3.2.4 Land use and land cover change analyses
Change analysis was performed between consecutive study years

to characterize the pattern of changes and quantify the amount of
land area changed from the older classification to the latter one in
the QGIS environment. The changes were performed for 1984–1990,
1990–2000, 2000–2010, 2010–2021, and 1984–2021.

2.3.2.4.1 Percentage change (PC). The percentage of change
(PC) between the classes from the older year to the later year was
computed using Equation 5 as the ratio of the difference between the
final and initial year areas of a class to the initial year’s area of the
same class.

PC � At2 − At1

At1
p 100 (5)

Where PC is the percent change in the area for each class, At1

and At2 are the area of a class at time one and time two,
respectively.

2.3.2.4.2 Annual rate of change (ARC). The annual rate of
change (ARC) for each LULC type was calculated using Equation 6
(Israel, 2013) using the data derived from the remote sensing
analysis. It was computed as the proportion of the percentage
change (PC) to the time interval between the first and second
classification maps.

ARC � At2 − At1

Δt p At1
p 100 � PC

Δt
(6)

Where ARC is the annual rate of change, At1 and At2 are the
areas of a class in time one and time two classification maps,
respectively, and Δt is the time interval between time one and
time two classification maps.

2.3.2.4.3 Net change in area according to land cover types. The
net change for each land cover type is computed using Equation 7 as
the difference between the areas gained and lost by land cover class
in each study year. The net change can be negative or positive. If the
net change is negative, then the area gained is less than the area lost,
indicating the loss of the area for that particular land cover type.
Positive net change indicates that the area lost in the class is less than
the area gained, indicating an increase or gain in the area of the land
cover class between the study years.

Net change � Area gain − Area loss (7)

The area gained in a land cover class is when the area from the
other land cover classes in the older year classification is reduced to a
class in the recent year classification, whereas an area loss occurs
when the area of a class in the older classification is reduced to other
land cover classes in the later year classification.

TABLE 4 Total number of reference samples from each category for
accuracy assessment.

Class
names

Number of reference samples

1984 1990 2000 2010 2021 Total

Waterbody 28 39 39 37 38 181

Built-up 14 13 15 31 47 120

Agriculture 85 76 87 67 44 359

Wetland 30 31 36 29 20 146

Grassland 12 17 10 9 14 62

Woody
vegetation

7 4 3 8 8 30

Agroforestry 27 19 22 23 28 119

Total 203 199 212 204 199 1,017
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2.3.2.5 Analyzing urban expansion and agricultural land
use trends

Urban and agricultural land use categories were extracted from
the generated LULC information. LULC classes were reclassified
into three classes, namely, other lands, built-up, and agricultural
land, by recoding the original LULC data. The original classes like
waterbody, wetland, grassland, woody vegetation, and agroforestry,
were combined into a new class named other lands, and the
remaining built-up and agricultural lands were left unchanged.
These processes were performed for each year’s classification, the
spatial patterns and trends of the built-up and agricultural lands
were mapped, and their area extent was generated accordingly.

2.3.2.6 Predicting urban and agricultural land use
The land change modeler (LCM) module of TerrSet software

(Eastman and He, 2020) was used to predict urban and agricultural
lands for 2030 and 2050. LCM primarily uses a multilayer
perceptron neural network-CA-Markov chain (MLPNN-CA-MC)
approach to predict the future extents and patterns of LULC changes
(Leta et al., 2021; Roy et al., 2024c). The model is strong due to its
dynamic projection proficiency, suitable calibration, and ability to
simulate several types of land cover (Leta et al., 2021; Rimal et al.,
2020). The LCM was used to determine the transitions between the
different LULC classes and predict future changes based on the
historical changes between the time one and time two land cover
classification maps (Eastman and He, 2020; Khawaldah et al., 2020;

Rimal et al., 2020; Rimal et al., 2018). Three steps were followed
(Figure 3). To perform land change prediction in LCM as an
empirically driven process that moves in a stepwise fashion
(Eastman and He, 2020): 1) Change Analysis, 2) Transition
Potential Modeling, and 3) Change Prediction.

The combination of Land Change Modeler and Markov chain
was selected due to their proven effectiveness in modeling land-use
change, particularly in scenarios with complex dynamics.
Alternative methods, such as cellular automata or artificial neural
networks, were considered but deemed less suitable for this study
due to their limitations in handling large datasets and complex
interactions. While the chosen tools are powerful, it’s essential to
acknowledge potential limitations, such as the sensitivity of Markov
chains to historical trends. The CA-Markov model was selected for
its effectiveness in simulating land-use changes by integrating
cellular automata with Markov chains, allowing for a nuanced
representation of urban dynamics; however, its limitations
include potential oversimplification of complex urban growth
patterns, reliance on historical data that may not account for
unforeseen socio-economic factors, and the possibility of
overestimating the predictability of future land-use changes in
rapidly urbanizing settings and the need for accurate calibration
of Land Change Modeler.

2.3.2.6.1 Change analysis. In this step, the changes/transitions
between the different LULC types of time one and time two

FIGURE 3
Generalized flow of prediction process using the LCM model Source: Adapted from Eastman and He (2020).
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classification maps were performed. The proposed method
determines the potential combinations between the two
classification maps and produces a change map as the output.
This approach also allows one to examine the contribution of
changes as derived by one land cover category in the classification.

2.3.2.6.2 Transition potential modeling. The transition
potential modeling step is where transition potential maps were
generated, which are, in essence, maps of suitability for each
transition. Here, a collection of transition potential maps is
organized within an empirically evaluated transition sub-model that
has the same underlying driver variables and is used to model the
historical change process (Eastman and He, 2020; Roy et al., 2024d).
The transition potential modeling tap of LCM helps group transitions
into a set of sub-models and explore the potential power of explanatory
variables. The variables can be either static or dynamic. Static variables
are variables that do not change over time and are used to express basic
suitability for the transition under consideration. Dynamic variables are
time-dependent drivers such as proximity to existing development or
infrastructure, and they are recalculated over time during a prediction
(Eastman and He, 2020). In the context of this study, the variables used
(elevation, slope, distance to road, and distance to city center) for the
prediction were all assumed to be static.

2.3.2.6.3 Change prediction. The change prediction step in
LCM uses historical rates of change and the transition potential
model to predict future scenarios for a specified future date
(Figure 3). It determines how the variables influence future
changes and how much change occurred between time one and
time two, and then calculates the relative amount of transition to the
future date (Eastman and He, 2020; Roy et al., 2024e). The LCM
change prediction produces two basic models of changes: hard and
soft prediction models. The hard prediction model was based on a
competitive land allocation model (Figure 3). The soft prediction
yields a map of vulnerability to change for the selected set of
transitions. The hard prediction yields only a single realization,
whereas the soft prediction comprehensively assesses the change
potential (Eastman and He, 2020).

2.3.2.6.4 Model validation. Validation of a model is significant
before its use because it allows the quality of the predicted land cover to
be determined compared to the actual land cover (Leta et al., 2021),
although there is no consensus on the criteria used to assess the
performance of land change models (Keshtkar and Voigt, 2016; Roy
et al., 2024f). In the context of this study, the land cover maps of
2000 and 2010were used to predict the land cover in 2021. The predicted
maps were then compared to the actual land cover map of 2021 to
determine the number of errors and quality of the prediction model.

3 Results and discussion

3.1 Historical trends of land cover change

3.1.1 Land cover extents and patterns in Hawassa
from 1984 to 2021

The results of the Landsat image analysis (Table 5; Figure 4)
indicated that there has been a significant change in the pattern and

extent of land use and land cover types in Hawassa between
1984 and 2021. Table 5 summarizes the area and percent cover
generated from the Landsat image analysis. It showed that water
bodies and agricultural lands covered the largest share (about 73.6%)
of the land cover types investigated in the study area, which were
about 38.3% and 35.3%, respectively, in 1984.

The largest coverage of water bodies was comprised of Lake
Hawassa in the western part of the study area, as there was no other
water body area detected in the images of the study area. The area
coverage of the water bodies in 1984, 1990, 2000, 2010, and 2021 was
reported to be 9,031.68 ha (38.3%), 9,150.57 ha (38.8%), 9,312.57 ha
(39.49%), 9,298.08 ha (39.43%), and 9,178.02 ha (38.92%),
respectively (Table 5). It increased from the beginning of the year
until 2010 and then decreased by a small amount in 2021.Wondrade
et al. (2014) found similar results for the increment of Lake Hawassa
from 1973 to 2011 in their study on mapping land cover changes in
the Lake Hawassa Watershed using multi-temporal remotely sensed
image data. The reason for the increase in the lake water level was
indicated an increase in runoff from the upper watershed as a result
of excessive deforestation (Wondrade et al., 2014).

The major agricultural land area was the large-scale farms
around Hawassa airport in the northwest and to the east of Lake
Hawassa, and the fragmented smaller areas of the peasant’s
farmlands were in the southern part of the study area. The
agricultural land has been decreasing faster from 8,324.64 ha
(35.3%) in 1984–3,595.68 ha (15.25%) in 2021 among the total
land cover types in the study area. This trend was mainly due to the
fastest expansion of built-up land driven by many pushing factors
and to the expansion of agroforestry systems in the area.

Built-up land covered the least area next to woody vegetation,
584.73 ha (2.48%) in 1984. It has been increasing slowly from the
date to 1990 (2.79%), increased by 0.31% within 6 years, but showed
to increase very quickly (approximately one-half of the area in the
previous year) starting from 2000 to 2021 (Table 5). These periods
saw the formation of large settlements, higher development
activities, and high informal settlements in the peripheral areas of
the city. Higher development activities included the establishment of
Hawassa University (main campus) and the establishment of
Hawassa industrial park, to list a few, which occupied wider
areas. Agroforestry has also shown an increase from 1,453.95 ha
(6.17%) in 1984–2,784.24 ha (11.81%) in 2021. This was mainly due
to the shifting of annual crop production systems into perennial cash
crops like Enset and Khat in the rural Kebeles in the study area,
which consume the largest agricultural cropland areas.

The amount of wetlands has also been decreasing in the study
area. It was about 3,385.62 ha (14.36%) of the total land cover in the
study area in 1984. This has gradually decreased to 2,980.71 ha
(12.64%), 2,832.3 ha (12.01%), 2,538.09 ha (10.76), and 2,171.07 ha
(9.21) in 1990, 2000, 2010, and 2021, respectively. This was due to
the drying of the swampy area on the periphery as a result of climate
change, which gradually changed into grassland, agricultural land,
and built-up (2010 and 2021 maps in Figure 4) over time, resulting
in a decrease in the total area of the wetland. The results were
consistent with studies conducted in the Lake Hawassa watershed,
which reported a decline in the wetland area (Degife et al., 2019;
Wondrade et al., 2014).

Grasslands have also been shown to increase gradually over the
study period. According to the image analysis results, 735.48 ha
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(3.12%) of the total land area in 1984 was covered by grasslands,
mostly around the Alamura and Tabor mountains and along the
boundary between the Cheleleka wetland and agricultural land, as
shown in Figure 4. This increased to 1,268.37 ha (5.38%) in 2021.
The area has gradually been increasing because of the drying of the
Cheleleka wetland and the formation of open spaces through the
reservation and fencing of agricultural land for construction or other
purposes for a longer time. Woody vegetation has also been
increasing in the study area from 67.14 ha (0.28%) in 1984 to
361.26, 156.96, 463.14, and 646.86 ha in 1990, 2000, 2010, and 2021,
respectively. This was due to the formation of protected areas and/or
parks, the establishment of green areas, and the planting of trees in
institutional compounds within the city.

3.1.2 Rate of land use and land cover changes from
1984 to 2021 in Hawassa city

This section demonstrates the amount of area transition
(Table 6) between the different categories that resulted in an
increase or decrease in the spatial extents (Table 7) and patterns
of change between the different LULC categories within the study
years. Table 7 summarizes the amount of land area and percentage
of change in each category between the years 1984–1990,
1990–2000, 2000–2010, and 2010–2021.

Water bodies, particularly Lake Hawassa, increased by 0.5% and
0.69% of the total land area from 1984 to 1990 and from 1990 to
2000, respectively, but decreased from 2000 to 2010 and from
2010 to 2021 by −0.06% and −0.51, respectively (Table 7). As
shown in Table 6, water bodies gained a total of 132.57 ha from
built-up (0.09 ha), agriculture (2.6 ha), wetland (128.26 ha), and
grassland (1.62 ha) in 1990 and lost about 13.68 ha (7.29 ha into a
wetland, and 6.39 ha into woody vegetation) in 1984, with a net gain
of 118.89 ha (0.5%) of the total study area. In the same way, from
1990 to 2000, it gained a net area of 162 ha from the other land cover
types. It has lost 14.49 and 120.06 ha in the years 2000–2010 and
2010–2021, respectively. The increase or decrease in the water body
level might have been due to the increase or decrease in the water
discharge from the upper watershed in the area as a result of the
variability in the climatic factors in the area, which could require
further investigation. The other possible reason is misclassification

of the pixel values due to confusion between the spectral values with
other land cover types and shadows in the images as a result of the
spatial resolution of the images used for classification.

The amount of built-up land has been increasing between the
study years. It increased by a net area of 72.36 ha (0.31% of the total
land cover area) from 1984 to 1990 in 6-year intervals. The number
increased to 2.12%, 4.99%, and 6.81% between 1990 and 2000,
2000–2010, and 2010–2021, respectively (Table 7). The net
change in built-up land from 1984 to 2021 was approximately
3,354.30 ha (14.22% of the total area of the LULC types in the
study area). It showed that the built-up land experienced a 6.7-fold
increment during the study period (584.73 ha in 1984–3,939.03 ha in
2021) (Table 7). Built-up land gained its area from the different
LULC classes, where agricultural land was the most changed and
reduced from the other five.

Our current analysis identifies several primary factors driving
urban expansion, including informal settlements, industrial
development, and residential expansion. Notably, the urban
growth pattern is characterized by horizontal development in all
directions. The increase in built-up land in the study area can be
attributed to population growth and a rising demand for land to
accommodate various needs, such as housing, infrastructure
services, industries and factories, institutional buildings, and
other construction activities. This interconnected set of factors
underscores the dynamic nature of urban development in the
region. Classification error sources in remote sensing can
significantly impact the reliability of results, particularly due to
spectral confusion among land cover types and resolution
limitations. Spectral confusion arises when different land cover
types exhibit similar reflectance characteristics in certain spectral
bands, leading to misclassification; for instance, vegetation types
such as grassland and forest can appear similar in spectral
signatures, making it challenging to accurately distinguish
between them. Additionally, resolution limitations pertain to the
spatial resolution of the imagery used; lower resolution can
amalgamate various land cover types within a single pixel,
resulting in further classification inaccuracies. These factors
together complicate the land cover classification process and
highlight the necessity for additional validation and refinement

TABLE 5 Area summary of different land cover types over the study years.

LULC classes
Years

1984 1990 2000 2010 2021

Area (ha) % Area (ha) % Area (ha) % Area (ha) % Area (ha) %

Waterbody 9,031.68 38.30 9,150.57 38.80 9,312.57 39.49 9,298.08 39.43 9,178.02 38.92

Built-up 584.73 2.48 657.09 2.79 1,156.77 4.91 2,332.44 9.89 3,939.03 16.70

Agriculture 8,324.64 35.30 7,533.54 31.94 7,504.29 31.82 5,453.46 23.12 3,595.68 15.25

Wetland 3,385.62 14.36 2,980.71 12.64 2,832.3 12.01 2,538.09 10.76 2,171.07 9.21

Grassland 735.48 3.12 778.32 3.30 687.78 2.92 1,041.3 4.42 1,268.37 5.38

Woody vegetation 67.14 0.28 361.26 1.53 156.96 0.67 463.14 1.96 646.83 2.74

Agroforestry 1,453.95 6.17 2,121.75 9.00 1932.57 8.19 2,456.73 10.42 2,784.24 11.81

Total 23,583.24 100 23,583.24 100 23,583.24 100 23,583.24 100 23,583.24 100
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methods, such as supplementary ground truthing and the
application of advanced classification algorithms, to enhance the
reliability of the results obtained from remote sensing data.

Haregeweyn et al. (2012) found similar results of the increase in
built-up land at the expense of agricultural land in their study in Bahir
Dar on the dynamics of urban expansion and its impacts on land use/
land cover change and small-scale farmers living near the urban fringe.
Terfa et al. (2019) reported that the extent of major cities in Ethiopia
(Addis Ababa, Adama, and Hawassa) have experienced significant
changes from 1987 to 2017. It showed that the increment of the
three cities was about 3-fold, 6-fold, and 6-fold during the study
period (Terfa et al., 2019). A comparison of satellite estimates and
census data in India, as reported by Pandey and Seto (2015), indicated
that the conversion of agricultural land into built-up was largely
concentrated in areas with high economic growth. The survey

results also revealed that the rapid increase in the built-up area was
due to the use of the city as a political center, improved basic
infrastructure and utility services (road, water, electricity),
educational and health services, population (birth and migration),
and topographic and natural elements. Studies have witnessed a
rapid increase in the city’s spatial extent (Admasu, 2015; Degife
et al., 2019; Gashu and Gebre-Egziabher, 2018; Kinfu et al., 2019;
Terfa et al., 2019; Wondrade et al., 2014) in the past few decades.

The potential ripple effects of the rapid conversion of
agricultural land to urban uses in Hawassa’s economy could be
considerable, as this trend threatens the livelihoods of many
residents who depend on agriculture for their income and food
security, potentially leading to increased poverty levels and
economic instability if alternative employment opportunities
within the urbanized areas do not materialize (Abate et al.,

FIGURE 4
Patterns of land cover types in Hawassa during 1984, 1990, 2000, 2010, and 2021.
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2021). Furthermore, this transformation is likely to exacerbate
migration to other regions or urban areas, as rural populations
facing land loss seek improved livelihoods and escape the socio-
economic pressures stemming from diminished agricultural
viability, mirroring trends seen in other rapidly urbanizing
societies where rural disenfranchisement drives urban migration
(Kebede & Gezahegn, 2021).

Agricultural land in the study area has been converted not only
into built-up but also into other types of land cover. Next to built-up,
the net conversion of agricultural land was to agroforestry,
grassland, and woody vegetation from 1984–2021 with the
respective area converted was 1,093.96 ha, 429.07 ha, and
275.78 ha. The highest percentage of change in agricultural land
was observed between 2000 and 2010 (Table 8); approximately
2050.83 ha (8.7%) of the total land cover was changed into other
land cover types. Between 1990 and 2000, the least agricultural land
loss was 29.25 ha. In this period, agriculture gained much of the land
area from other land cover types like grasslands. In general, the net
loss of agricultural land from 1984 to 2021 was −4,728.96 ha,
representing 20.05% of the total land cover.

Wetlands have also been decreasing each year and are being
converted into other land cover types, such as grassland,
agriculture, built-up, and agroforestry. Approximately
404.91 ha of wetland was lost between 1984 and 1990, from
which 158.32 ha and 108.10 ha were converted into grassland and
agricultural lands, respectively. A large conversion of the
wetlands into grasslands was observed between 2000 and
2010 and between 2010 and 2021, which was 177.68 ha and
293.84 ha, respectively. The net area lost from 1984 to 2021 was
about 1,214.55 ha, or 5.15% of the total area. Wondrade, Dick,
and Tveite (2014) found similar results of a decrease in the
wetland in the area that arises as a result of climate change, as
discussed in other studies (Terfa et al., 2019; Wondrade
et al., 2014).

On average, agroforestry increases within the study period. A net
area of 1,330.29 ha of land was gained by agroforestry from other
land cover types, such as agriculture, wetland, and grassland from
1984 to 2021. This is due to the conversion of croplands into
perennial cropping systems in the area, which covers open land
areas with perennial crops such as Khat and fruit trees.

TABLE 6 Area (ha) transitions between different land cover categories from 1984 to 1990.

LULC 1984
LULC 1990

WB BU AG WL GR WV AF Total Loss

Waterbody (WB) 9,018.00 — — 7.29 — 6.39 9,031.68 13.68

Built-up (BU) 0.09 467.99 80.65 0.63 7.11 25.74 2.52 584.73 116.74

Agriculture (AG) 2.60 179.84 6,873.99 62.38 249.77 108.01 848.05 8,324.64 1,450.65

Wetland (WL) 128.26 5.58 108.10 2,860.06 158.32 90.10 35.19 3,385.62 525.56

Grassland (GR) 1.62 3.15 267.14 43.57 344.25 42.45 33.29 735.48 391.23

Woody vegetation (WV) — 0.08 2.31 2.10 4.77 56.25 1.62 67.14 10.88

Agroforestry (AF) — 0.45 201.35 4.68 14.09 32.31 1,201.07 1,453.95 252.88

Total 9,150.57 657.09 7,533.54 2,980.71 778.32 361.26 2,121.75 23,583.24

Gain 132.57 189.10 659.55 120.65 434.07 305.01 920.68

Net change 118.89 72.36 −791.10 −404.91 42.83 294.13 667.80

TABLE 7 Summary of changes in total area in LULC categories between the study years.

LULC classes
Area and percentage change between study years

1984–1990 1990–2000 2000–2010 2010–2021 1984–2021

Δ ha Δ% Δ ha Δ% Δ ha Δ% Δ ha Δ% Δ ha Δ%

Waterbody 118.89 0.50 162 0.69 −14.49 −0.06 −120.06 −0.51 146.34 0.62

Built-up 72.36 0.31 499.68 2.12 1,175.67 4.99 1,606.59 6.81 3,354.30 14.22

Agriculture −791.10 −3.35 −29.25 −0.12 −2050.83 −8.70 −1857.78 −7.88 −4,728.96 −20.05

Wetland −404.91 −1.72 −148.41 −0.63 −294.21 −1.25 −367.02 −1.56 −1,214.55 −5.15

Grassland 42.84 0.18 −90.54 −0.38 353.52 1.50 227.07 0.96 532.89 2.26

Woody vegetation 294.12 1.25 −204.3 −0.87 306.18 1.30 183.69 0.78 579.69 2.46

Agroforestry 667.80 2.83 −189.18 −0.80 524.16 2.22 327.51 1.39 1,330.29 5.64
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3.1.3 Rate of changes in land use and land cover in
Hawassa city

As presented in Table 8 the annual rate of change for each LULC
category in the study area was computed. As presented in the table,
agriculture and wetlands decrease each year in the study area from
1984 to 2021. The largest loss of agricultural land was observed in
the years from 2010 to 2021, where approximately 168.89 ha (3.10%)
of the land was lost each year, and the least was observed from
1990 to 2000, where only 2.93 ha (0.04%) was lost each year. From
2010 to 2021, the highest expansion of built-up (expansion of
settlements) has been experienced, and large investments have
taken place, like Hawassa industrial park. The least loss of
agricultural land from 1990 to 2000 indicates the net loss of
agricultural lands because it gained a large amount of land area
from other land cover types like grassland and agroforestry, over the
years (Table 8). Thus, approximately 127.81 ha (1.54%) of
agricultural land was lost each year from 1984 to 2021 in
Hawassa city. On the other hand, wetlands have been decreasing
by 67.49 ha (1.99%) each year between 1984 and 1990, and this
change were slowly decreasing until 2021. The net loss of the
wetland, as shown in Table 8, from 1984 to 2021 was
approximately 32.83 ha (0.97%) each year for the last 37 years,
and the reason for the decrease in the wetland area is discussed in the
previous sections.

Built-up was the only class in the study area that showed the
fastest rate of change, particularly increased, in the study years. It has
been increasing at a rate of 12.06 ha (2.06%) since 1984 to 1990 and
increased to 49.97 ha (7.60%), 117.57 ha (10.16%) and 146.05 ha
(6.26%) each year between 1990 and 2000, 2000 and 2010, and
2010 and 2021, respectively. Within the past 37 years, built-up land
has been increasing at a net annual rate of 90.66 ha (15.50%). Water
bodies have also increased at a rate of 0.22% and 0.18% each year
from 1984 to 1990 and from 1990 to 2000, respectively, but have
decreased from 2000 to 2010 and from 2010 to 2021 at a rate of
0.02% and 0.12% annually, respectively.

Grassland, woody vegetation, and agroforestry lands have
also shown increasing rates from 1984 to 1990 and from 2000 to
2021 but decreasing rates in the years between 1990 and 2000 in
the study area. Between 1990 and 2000, these LULC classes lost
much of their area to agricultural lands than they gained in the

years, resulting in a net loss of the area among the categories.
From 1984 to 2021, annual rates of approximately 1.96%, 23.34%,
and 2.47% changes in grassland, woody vegetation, and
agroforestry, respectively, were determined (Table 8) by image
analysis in Hawassa.

3.1.4 Accuracy assessment of classifications
Based on the reference samples collected and the classification

maps, the accuracy report showed that the total accuracy of all maps
in each year ranged from approximately 89%–93% and kappa
ranged from 0.86 to 0.92. However, the total accuracy does not
represent the errors in each category in the classification maps. The
error amounts in each category were reported using the producer’s
and user’s accuracy. The producer’s accuracy can be determined
according to the interest of the map producer in how a certain area is
classified or mapped, while the user’s accuracy can be determined
from the point of view of the map user to indicate the probability
that a pixel classified on the map represents that category on the
ground (Congalton, 1991). For example, the producer accuracy of
the 1984 classification was approximately 71.43%, whereas the user
accuracy was 100%. This result can be interpreted as follows.
Although 71.43% of the woody vegetation was classified on the
map, 100% of the woody vegetation was actually as such on
the ground.

Similarly, in 2010, the error matrix table showed that
although the producer of this map can claim that 100% of the
time an area that was grassland was identified as such, a user of
this map will find that only 69.23% of the times will an area he/
she visits that the map says is grassland will be grassland. The
errors that occurred in the maps were because some pixels that
were categorized into different/same land cover classes may have
different/similar spectral reflectance, which makes it difficult to
classify (Wondrade et al., 2014).

Agricultural land may be confused with open land classified as
grassland. The accuracy of classification may also affected by the
spatial resolution of the image used. High-resolution images can
produce highly accurate land cover information for an area because
they record every detail on the land. However, medium-resolution
images can produce information that reveals the changes in LULC
types over time but with fewer details.

TABLE 8 Annual rate of change (ha and percentage per year) in LULC from 1984 to 2021.

LULC classes
Change years

1984–1990 1990–2000 2000–2010 2010–2021 1984–2021

Ha % Ha % Ha % Ha % Ha %

Waterbody 19.81 0.22 16.20 0.18 −1.45 −0.02 −10.91 −0.12 3.96 0.04

Built-up 12.06 2.06 49.97 7.60 117.57 10.16 146.05 6.26 90.66 15.50

Agriculture −131.85 −1.58 −2.93 −0.04 −205.08 −2.73 −168.89 −3.10 −127.81 −1.54

Wetland −67.49 −1.99 −14.84 −0.50 −29.42 −1.04 −33.37 −1.31 −32.83 −0.97

Grassland 7.14 0.97 −9.05 −1.16 35.35 5.14 20.64 1.98 14.40 1.96

Woody vegetation 49.02 73.01 −20.43 −5.66 30.62 19.51 16.70 3.61 15.67 23.34

Agroforestry 111.30 7.66 −18.92 −0.89 52.42 2.71 29.77 1.21 35.95 2.47

Frontiers in Environmental Science frontiersin.org13

Molla et al. 10.3389/fenvs.2024.1499804

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1499804


3.2 Impacts of urban expansion on
agricultural land

3.2.1 Historical trends in urban expansion and their
effects on agricultural lands

The analysis of satellite imagery in the study area revealed a
highly increasing trend of urban expansion, largely at the expense of
agricultural land area, between the study years in Hawassa
(Figure 5). In 1984, only 584.73ha (2.48%) of the total area was
covered by built-up, whereas agricultural land covered 8,324.64 ha
(35.30%) in the year. However, in 1990, 2000, 2010, and 2010, built-
up increased to 2.79%, 4.91%, 9.89, and 16.70%, respectively,
whereas a decrease in agricultural land in the same respective
years (31.94%, 31.82%, 23.12, and 15.25%). The spatial patterns
and trends of changes between the two land use types are shown
below. As summarized in the change matrix table (Table 9), built-up
land gained a large amount of agricultural land in between the study
years. This means that the largest amount of agricultural land was
lost due to expansion in the built-up area. From 1984 to 1990, a net
change of 99.18 ha of agricultural land was converted into built-up,
which increased to 434.07 ha, 1,160.04 ha, and 1,058.31 ha between
the years 1990–2000, 2000–2010, and 2010–2021, respectively. A
total of 3,148.74 ha (13.35%) of agricultural land was converted into
built-up within the past 37 years of the study period. The expansion
of the built-up was restricted to the northeast, east and southeast
because Lake Hawassa is located in the western part of the study area
(Terfa et al., 2019), which prevented the built-up area to expand to
the western part from the center.

Historical evidence indicates that the total area of built-up land
in the city was 48 has in 1959 (Admasu, 2015), where 404 pensioned
soldiers from different parts of the country (Addis Ababa, Harar,
Korem, and Wukro) were given land to settle in the eastern part of
Hawassa Lake during Haile Selassie, according to the elders and
socioeconomic profile of Hawassa city (2020). This was the time
where the prime agricultural land in Hawassa has started to be
converted into housing units to serve the housing needs of
the people.

This initial stage of the city has gradually been consuming large
amounts of agricultural land for housing, industries, and other

infrastructure services to serve the population of the city,
resulting in the current status of the city. The rapid increase of
the city’s population results in the need for housing, social services,
infrastucture development, and socio-economic changes. In areas of
weak government control, these results in an increasing informal
settlemtnts and urban sprawl, with faster horizontal expansion of the
built-up lands. This inturn consumes the larger agricultural lands,
and leads to shorter food security.

Urban expansion affects local livelihoods and food security by
often leading to the encroachment of agricultural lands,
displacement of communities, and increased competition for
resources, thereby highlighting the urgent need for policies that
integrate sustainable urban planning with the preservation of
livelihoods and agricultural practices to ensure resilient and food-
secure urban environments.

Studies on urban land use dynamics have witnessed an
increase in urban expansion in the main cities of Ethiopia
(Fenta et al., 2017; Haregeweyn et al., 2012; Jenberu and
Admasu, 2020; Terfa et al., 2019; Terfa et al., 2020), which
results in the loss of major agricultural lands and mainly
affects food security (Muchelo, 2018), particularly in countries
like Ethiopia, where the majority of the people depend on
agricultural products (Terfa et al., 2020). The increase in
urban area reduces the available agricultural land area, which
has seriously impacted peri-urban farmers, who are often left
with little or no land to cultivate and thus have increased
vulnerability (Ayele and Tarekegn, 2020). Wondrade et al.
(2014), in their reports on the mapping of land cover changes
utilizing multi-temporal remotely sensed image data in Lake
Hawassa Watershed, claimed that about 70% of the cropland
was converted into built-up due to the expansion of residential,
industrial, and other infrastructures, including the occupation of
public lands by residents, favorable economic conditions, and a
rapid construction process.

According to the study results of (Dadi et al., 2016) presented in
(Ayele and Tarekegn, 2020), on the major drivers of urban sprawl
and their impacts on land use conversion in the peri-urban Kebeles
of Dukem town, Ethiopia, it was shown that the available land to
grow wheat and teff flour had declined from 2005 to 2011. It showed

FIGURE 5
Trends of urban and agricultural land area in Hawassa from 1984 to 2050.
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that wheat land declined from 230.82 km2 in 2005 to 104.82 km2 in
2011, whereas teff flour shrunk from 134.77 km2 to 93.67 km2 in the
same period.

Field observation and household survey reports also showed that
large amounts of agricultural land in the study area were lost due to
the high expansion of urban built, which arose due to high
population growth (birth and rural-to-urban migration),
infrastructure services, economic development, which aligned
with Pandey and Seto (2019), and the formation of the city as a
regional center. Muchelo (2018) stated that urban population
growth in Sub-Saharan Africa exerted more pressure on
agricultural land in the peripheral areas of cities. The majority of
rural migrants in Sub-Saharan Africa prefer to settle in peri-urban
areas to engage in farming for survival, where the cost of living is
lower and attainment of a home is much more rapid than in
completely urban areas (Muchelo, 2018). These facts, along with
the economic development of a city, result in a change in the LULC,
particularly in the consumption of large agricultural lands for
building purposes.

3.3 Modeling future trends of urban
expansion and agricultural land
(2030 and 2050)

Future trends and extents of the Urban and agricultural lands
for 2030 and 2050 were projected using TerrSet software with the
LCM module. The 2021 classification image was used as the basis
for prediction (Figure 6). The spatial extent of built-up
agricultural lands for the prediction years (2030, and 2050)
was shown in Figure 7. It was projected that the built-up land
will cover an area of about 5,009.85 ha (21.24%) and 6,794.73 ha
(28.81%) of the total land area in 2030 and 2050, respectively. The
change matrix report in Table 10 shows the possible land cover
types that will contribute to the increase in built-up land area
during the study years. Of the LULC types, agricultural land
accounts for the largest part of the area. As presented in Table 10,
built-up land will gain a total of 1,070.82 ha (4.5%) from 2021 to
2030 and 2,855.7 ha (12.1%) from 2050, from which 582.84 ha
(2.5%) and 1,403.91 ha (6%) will come from agricultural land,

TABLE 9 Urban and agricultural land area transition matrix from 1984 to 2021 in the study area.

1984
1990 2000

O B A Total Loss 1990 O B A Total Loss

Other lands (O) 14,085.8 9.27 578.79 14,673.87 588.06 Other lands (O) 14,193.5 71.91 1,127.16 15,392.61 1,199.07

Built-up (B) 36.09 468 80.64 584.73 116.73 Built-up (B) 6.3 572.67 78.12 657.09 84.42

Agriculture (A) 1,270.71 179.82 6,874.11 8,324.64 1,450.53 Agriculture (A) 722.34 512.19 6,299.01 7,533.54 1,234.53

Total 15,392.61 657.09 7,533.54 23,583.2 Total 14,922.18 1,156.77 7,504.29 23,583.2

Gain 1,306.8 189.09 659.43 Gain 728.64 584.1 1,205.28

Net gain/loss 718.74 72.36 −791.1 Net gain/loss −470.43 499.68 −29.25

2000
2010 2021

O B A Total Loss 2010 O B A Total Loss

Other lands (O) 1,4160 88.2 674.01 1,4922.18 762.21 Other lands (O) 1,4395.2 658.8 743.31 1,5797.34 1,402.11

Built-up (B) 72.54 1,014.66 69.57 1,156.77 142.11 Built-up (B) 110.52 2,210.22 11.7 2,332.44 122.22

Agriculture (A) 1,564.83 1,229.58 4,709.88 7,504.29 2,794.41 Agriculture (A) 1,542.78 1,070.01 2,840.67 5,453.46 2,612.79

Total 15,797.34 2,332.44 5,453.46 23,583.2 Total 16,048.53 3,939.03 3,595.68 23,583.2

Gain 1,637.37 1,317.78 743.58 Gain 1,653.3 1,728.81 755.01

Net gain/loss 875.16 1,175.67 −2050.83 Net gain/loss 251.19 1,606.59 −1857.78

1,984 2021

O B A Total Loss

Other lands (O) 13,689.8 254.61 729.45 1,4673.87 984.06

Built-up (B) 49.05 528.93 6.75 584.73 55.8

Agriculture (A) 2,309.67 3,155.49 2,859.48 8,324.64 5,465.16

Total 16,048.53 3,939.03 3,595.68 23,583.2

Gain 2,358.72 3,410.1 736.2

Net gain/loss 1,374.66 3,354.3 −4,728.96
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respectively. During the same period, agricultural land will lose a
total of 746.1 ha (3.2%) and 1,562.22 ha (6.6%), respectively. The
land area will be reduced from 3,595.68 ha in 2021–2,849.58 ha in
2030 and 2033.46 ha in 2050, which will cover a small area in the
study area (Figure left). Mohamed and Worku (2020) simulated
urban land use and cover dynamics in Addis Ababa and proved
that an increase in built-up land consumes ecologically valuable
natural landscapes such as waterbodies, forests, mixed woodland,
and cropland, which will continue at the expense of the loss of
these landscapes. Global projections of urban expansion indicate
that urban land cover in Sub-Saharan Africa will expand at the
fastest rate (Angel et al., 2011). According to Angel et al. (2011),
urban land cover in the region will expand by more than 12-fold
between 2000 and 2050. According to the report, the projected
rate of increase in urban land cover will be higher than the rate of

increase in the urban population because urban population
densities can be expected to decline.

3.3.1 Validation report of the prediction
In comparing the area reports of the actual and simulated land

cover maps for 2021 (Table 11), it was found that there was a small
variation within the area of the same class in both maps. A less
effective simulation was observed for built-up and agricultural land
because these land cover types change faster in actual situations.

Agreement between the actual and simulated land cover in
2021 was determined using the kappa indices (Kno, Kstandard, and
Klocation) in this study. Kno is the measure of the overall proportion of
pixels correctly classified versus the expected proportion correctly
classified with no ability to specify quantity or location, Kstandard is
the proportion assigned correctly versus the proportion that is

FIGURE 6
Patterns and spatial trends of urban and agricultural land changes from 1984 to 2021.
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correct by chance (measure of the ability of the simulated layer to
attain perfect classification), and Klocation is the measure of spatial
accuracy due to the correct assignment of values that also validate
the location between the actual and simulated maps (Keshtkar and
Voigt, 2016; Zadbagher and Becek, 2018). The results of the three
indices were measured to be all above 70% (Kno = 0.75, Kstandard =
0.73, and Klocation = 0.77), The standard kappa index of the which
means that the model is valid with substantial agreement strength
(Leta et al., 2021; Zadbagher and Becek, 2018) and, hence can be
used for predicting the 2030 and 2050 land cover of the study area.
The statistical range of the three indices ranged from 0 (random
location) to 1 (perfect location), (Keshtkar and Voigt, 2016;
Zadbagher and Becek, 2018).

The kappa indices presented in the study provide strong
evidence of the model’s accuracy in predicting land cover change.
Specifically, Kno, Kstandard, and Klocation values of 0.75, 0.73, and
0.77, respectively, indicate that the model’s performance
significantly surpasses random chance and accurately captures
both overall classification and spatial patterns. While these
indices confirm a high level of confidence in the projections,
stakeholders should also consider the potential limitations of the
model and the uncertainties inherent in long-term planning. By
understanding these factors and conducting scenario analysis,
stakeholders can effectively use the projections to inform
decision-making related to land use, infrastructure, and
environmental conservation.

FIGURE 7
Spatial extent of built-up and agricultural lands for the years 2021, 2030, and 2050.

TABLE 10 Transition matrix table for the future built-up and agricultural
land use changes from 2021 to 2030 and 2050.

2021
2030 (Predicted)

O B A Total Loss

Other lands (O) 15,481.2 489.06 78.3 16,048.53 567.36

Built-up (B) 1.08 3,937.95 3,939.03 1.08

Agriculture (A) 241.56 582.84 2,771.28 3,595.68 824.4

Total 15,723.81 5,009.85 2,849.58 23,583.2

Gain 242.64 1,071.9 78.3

Net gain/loss −324.72 1,070.82 −746.1

2050 (Predicted)

2021 O B A Total Loss

Other lands (O) 14,417.3 1,454.67 176.58 16048.53 1,631.25

Built-up (B) 2.88 3,936.15 3,939.03 2.88

Agriculture (A) 334.89 1,403.91 1,856.88 3,595.68 1,738.8

Total 14,755.05 6,794.73 2,033.46 23583.2

Gain 337.77 2,858.58 176.58

Net gain/loss −1,293.48 2,855.7 −1,562.22
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3.3.2 Rates of future urban and agricultural land
use changes

The rate of change in urban and agricultural land was computed
from the data generated from the analysis of the remote sensing
images. The percentage of change (PC) (Table 12) and annual rate of
change (ARC) (Table 13) were computed for urban and agricultural
land use types from 1984 to 2021, 2021 to 2030, and
2050 predictions. The results showed that PC (Table 12) in
urban and agricultural lands increased faster but in opposite
directions (increasing in the urban area, whereas decreasing in
agricultural lands). Built-up land increased by approximately
12.37% from 1984–1990 to 76.04%, 101.63%, and 68.88% from
1990–2000, 2000–2010, and 2010–2021, respectively. In contrast,
agricultural land decreased within the respective years by 9.5%,
0.39%, 27.33%, and 34.07%. The highest percentage of changes in
built-up land (101.63%) was observed between 2000 and 2010, when
a large amount of agricultural land was converted into built-up
(Figure 8). On the other hand, the lowest percentage of change
(0.39%) in agricultural land was observed in 1990–2000, where only
29.25 ha of the land was lost. Between 1990 and 2000, agricultural
land gained much of the lands from other land cover types like
agroforestry and grasslands than it lost during these periods, which
resulted in a smaller rate of change between the years.

The results show that in the study years, built-up land has
increased at a faster rate each year. As presented in Table 13, the
annual rate of change in built-up land between 1984–1990,
1990–2000, 2000–2010, and 2010–2021 was reported to be about
2.06% year−1, 7.60% year−1, 10.16% year−1, and 6.26% year−1,
respectively. In contrast, agricultural land has been declining in
the respective years at rates of 1.58, 0.04, 2.73, and 3.10% each year
(Figure 8). Between 1984 and 2021, built-up land increased by
3,354.3 ha, which increased by 90.7 ha year−1 at a rate of 15.5%
each year. On the other hand, agricultural land decreased by
4,728.96 ha, which has been decreasing by 127.8 ha each year at
a rate of 1.54%.

Field observation and survey reports revealed that a high
expansion of the built-up area in Hawassa City was observed
from 2000 onward. Terfa et al. (2019), in their study on the
characteristics, spatial patterns, and driving forces of urban

expansion in Addis Ababa, Adama, and Hawassa from 1987 to
2017, Ethiopia, reported that the annual expansion of Hawassa city
from 1987–1995, 1995–2005, and 2005–2017 was about 0.65, 0.9,
and 1.57 KM2, respectively, which aligns with the results presented
in this study, although the dates selected for the study are different.

As shown in Table 12, it is expected that approximately
1,070.82 ha (27.18%) and 2,855.7 ha (72.50%) changes in the
area of built-up land will take place from 2021 to 2030 and 2050.
Between the same respective years, about 119.0 ha (3.02%) and
98.5 ha (2.50%) changes will occur annually (Table 13), increasing
the total area of built-up land. At the same time, 746.1 ha (20.75%)
and 1,562.22 ha (43.45%) agricultural land changes (loss) occur at a
rate of 2.31% and 1.5% each year, respectively. From this, 64.76 ha
(1.8%) and 48.41ha (1.35%) of the annual agricultural land loss are
expected to change to built-up land, respectively.

The projection of the built-up and agricultural land changes was
drawn based on the existing situation during the study. However, the
rate of change in the projected land areas would increase or decrease
based on the external factors such as urban land administration and
use policies, climate changes, industrial development, and social
transformations. For instance, if rural-to-urban population
migration decreases and the government implements vertical
growth, the consumption of the land for horizontal built-up will
be slower.

Studies on urban land prediction have reported a significant
increase in the urban built-up area in selected cities worldwide
(Aburas et al., 2016; Bose and Chowdhury, 2020; Mohamed and
Worku, 2020; Sarkar and Chouhan, 2019; Wu et al., 2010). The
analysis results of Sarkar and Chouhan (2019) in the Siliguri
Metropolitan Area, West Bengal, indicated that built-up areas
(urban) have increased very rapidly, and this sudden growth in
the built-up area is also causing a decrease in agricultural land and
forest cover. It showed that built-up land increased from 2.18% in
1991 to 13.71% in 2017, whereas agricultural land decreased from
32.53% to 23.13% in the same years. The projected results of the
authors for the built-up and agricultural land from 2017–2033 and
2033–2043 was 5.4% and 7.07%, and −3.83% and −7.36%,
respectively. Although future LULC prediction research is limited
to Ethiopia, Mohamed & Worku, 2020 projected the urban LULC

TABLE 11 Summary of actual and predicted land cover for 2021.

Land cover classes Actual Projected Difference
(Projected–actual)

Area (ha) % Area (ha) % Area (ha) %

Waterbody 9,178.02 38.92 9,298.08 39.43 120.06 0.51

Built-up 3,939.03 16.70 3,284.1 13.93 −654.93 −2.78

Agriculture 3,595.68 15.25 4,119.84 17.47 524.16 2.22

Wetland 2,171.07 9.21 2,370.6 10.05 199.53 0.85

Grassland 1,268.37 5.38 1,287.72 5.46 19.35 0.08

Woody vegetation 646.83 2.74 551.43 2.34 −95.4 −0.40

Agroforestry 2,784.24 11.81 2,671.47 11.33 −112.77 −0.48

Total 23,583.2 100 23,583.24 100
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TABLE 12 Area changes and percentage changes in built-up and agricultural lands from 1984 to 2050.

LULC classes
Percentage of changes between study years

1984–1990 1990–2000 2000–2010 2010–2021 1984–2021 2021–2030 2021–2050

Area % Area % Area % Area % Area % Area % Area %

Other lands 718.74 4.90 −470.43 −3.06 875.16 5.86 251.19 1.59 1,374.66 9.37 −324.72 −2.02 −1,293.48 −8.06

Built-up 72.36 12.37 499.68 76.04 1,175.67 101.63 1,606.59 68.88 3,354.3 573.65 1,070.82 27.18 2,855.7 72.50

Agriculture −791.1 −9.50 −29.25 −0.39 −2050.83 −27.33 −1857.78 −34.07 −4,728.96 −56.81 −746.1 −20.75 −1,562.22 −43.45

TABLE 13 Annual rate of change [area (ha) and %] in built-up and agricultural lands from 1984 to 2050.

LULC classes
Annual rate of change (%) between study years

1984–1990 1990–2000 2000–2010 2010–2021 1984–2021 2021–2030a 2021–2050a

Ha % Ha % Ha % Ha % Ha % Ha % Ha %

Other lands 119.8 0.82 −47.0 −0.31 87.5 0.59 22.8 0.14 37.2 0.25 −36.1 −0.22 −44.6 −0.28

Built-up 12.1 2.06 50.0 7.60 117.6 10.16 146.1 6.26 90.7 15.50 119.0 3.02 98.5 2.50

Agriculture −131.9 −1.58 −2.9 −0.04 −205.1 −2.73 −168.9 −3.10 −127.8 −1.54 −82.9 −2.31 −53.9 −1.50

aPredictions for 2030 and 2050.
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dynamics of Addis Ababa and the surrounding area and reported
that built-up land continuously increased over time with the decline
of other land cover types, like cropland and forest. It increased from
3.7% in 2005 to 7.0% in 2015 and is expected to increase to 9.6% and
11.9% in 2025 and 2035, respectively.

Angel et al. (2011) based on the global projection of urban
expansion from 2000 to 2050 indicated that the projections will be a
function of urban population growth and density change. Although
the world urban population is expected to increase from 3 billion in
2000 to 5 billion in 2030 and 6.4 billion in 2050, the rate of increase is
expected to slow down from 2% per annum in 2000 to 1.65 in
2030 and 1.14% in 2050, and the rate of urban population growth in
less developed countries will be five times faster than in more
developed countries (Angel et al., 2011). According to the report,
urban land area in less developed regions is expected to grow from
297,048 km2 in 2000 to 767,226 km2 in 2030 and 1,233,461 km2 in
2050 by about 158% and 315%, respectively.

To address the challenges posed by rapid urbanization and the
consequent loss of agricultural land in Hawassa, implementing more
structured urban planning that prioritizes the protection of
designated agricultural zones could prove beneficial. Establishing
clear land-use policies that delineate urban boundaries while
conserving key agricultural lands can help safeguard food
security and sustain local livelihoods. Additionally, incorporating
mixed-use development strategies that integrate residential,
commercial, and agricultural uses may promote sustainable
growth and enhance the resilience of the community. Engaging
local stakeholders in the planning process ensures that policies
reflect the needs and perspectives of those most affected,

ultimately fostering a balanced approach to urban development
that accommodates growth while preserving essential agricultural
resources (Desta & Zeleke, 2020).

4 Conclusion

The application of GIS and remote sensing technologies is
essential for effectively monitoring land use and land cover
(LULC) changes over time, providing valuable insights into
environmental dynamics. Historical remotely sensed satellite
images play a crucial role in this process, with the Landsat
satellite offering global coverage at a medium resolution (30 m)
since 1972. In contrast, Sentinel images, while providing higher
resolution (10 m) since 2015, lack the comprehensive historical data
necessary for long-term analysis. Furthermore, incorporating field
visits and visual interpretation enhances digital image classification
accuracy, while the land change modeler (LCM) tool enables
predictions of future LULC changes by analyzing key
geographical variables such as slope, elevation, and proximity to
urban centers and main roads. Our analysis reveals that there have
been significant changes between the LULC types in Hawassa city
within the past 37 years, from which built-up and agricultural land
have shown the most prevalent changes. It showed that built-up land
has progressively increased from 584.73 ha in 1984–3,939.03 ha in
2021, however, agricultural land decreased from 8,324.64 ha to
3,595.68 ha in the respective years. This implies that there is a
rapid urbanization in Hawassa City, in the expense of agricultural
land. The built-up land is projected to increase to 5,009.85 ha and

FIGURE 8
Spatial trends of agricultural land (left) and urban built-up area (right) from 1984 to 2050.
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6,794.73 ha from 2021 to 2030 and 2050, while, agricultural land will
decrease to 2,849.58 ha and 2033.46 ha same years. This alarming
trend poses a critical threat to the livelihoods of local communities in
peri-urban areas, who primarily depend on agriculture for their
subsistence. To address these challenges and strike a balance
between development and environmental preservation, cities like
Hawassa must adopt smart urban planning strategies. Approaches
such as green infrastructure can promote urban resilience by
integrating natural systems, while vertical urbanization can
optimize land use and reduce pressure on agricultural areas.
Additionally, encouraging peri-urban agriculture could sustain
local food systems and provide alternative livelihoods for those
communities affected by urban expansion. Overall, the implications
of this study emphasize the urgent need for planners and
policymakers to develop proactive urban planning and land-use
policies that protect agricultural zones and support sustainable
urban growth. Future research should focus on assessing the
effectiveness of these smart planning strategies and exploring
innovative solutions that reconcile urban expansion with
environmental conservation, ultimately ensuring a more
sustainable future for cities like Hawassa.
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