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The industrial economy occupies a crucial position in China’s national economy,
and industrial eco-efficiency (IEE) as a significant indicator of regional green
development levels. Balancing the positive interaction between industrial
economy and resource environment, and enhancing ecological efficiency in
industrial development are vital for achieving sustainable regional economic
development. This study measures the IEE of 115 cities in coastal China based
on panel data of industrial resources and the environment factors. Subsequently, it
further analyzes the influencing mechanisms and future trends of IEE. The results
indicate that the overall IEE in coastal China is on an upward trend, with higher
efficiency values in provinces and regions characterized by faster economic
development and better environmental conditions. Significant changes in spatial
patterns are observed, with the gaps between cities narrowing and a “multi-core”
development model emerging. Factors such as per capita GDP, the ratio of
industrial pollution control investment to GDP, innovation index, the proportion
of foreign direct investment to GDP, and industrial labor productivity significantly
positively influence IEE. In contrast, the proportionof industrial added value toGDP,
urbanization rate, and the number of industrial enterprises exhibit notable negative
inhibitory effects. Moreover, the interaction effect between industrialization level
and other factors is most significant. In the future, IEE is expected to continue
improving, although the sustainability of these changes appears weak. These
findings reveal the potential impact mechanisms of resource consumption and
environmental pollution caused by industrial activities on economic benefit output.
This study provides a scientific basis for optimizing energy development layout,
enhancing the comprehensive utilization of energy resources, and improving
ecological compensation and protection mechanisms.
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1 Introduction

As the only country in the world with a complete industrial system, China has
experienced rapid industrial development in recent years. The development of
industrial sectors has become a key driver of China’s high economic growth, with the
industrial economy occupying a crucial position in national economic development. A
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notable feature is the increase in China’s industrial added value from
13.17 trillion yuan in 2008 to 39.91 trillion yuan in 2023, with an
average annual growth rate of 7.67%. This sector accounts for the
largest share of value added among all industries and has shown an
upward trend year by year. Concurrently, the share of China’s
industrial added value in the global total has been rising,
reaching 30.2% of the global manufacturing value added in 2022.
However, this rapid development has also placed significant
pressure on resources and the environment. Specifically, the
extensive development model characterized by high resource
consumption, high pollution, and low productivity resulting from
industrial development has led to prominent resource and
environmental issues in China, with increasingly evident
economic externalities. (Chen et al., 2013; Gehrsitz, 2017). As of
2022, China remained the world’s largest energy consumer,
accounting for 26.4% of global energy consumption, with
industrial energy consumption comprising 70% of the national
total. Meanwhile, environmental pollution problems arising from
industrial energy consumption, such as wastewater and exhaust gas
emissions, have become increasingly severe (Wu et al., 2015).
Currently, the resource and environmental issues caused by
industrial development have become major obstacles to China’s
ecological security, making industrial ecological problems a critical
“bottleneck” in China’s economic growth (Cao et al., 2018).
Therefore, how to balance the positive interaction between
industrial economy and resource environment, and how to
enhance IEE, are urgent and crucial issues that China needs
to address.

As industrialization advances, global issues such as resource
scarcity and worsening environmental pollution are becoming
increasingly prominent. Accurately assessing IEE is crucial for
improving resource and environmental performance in industrial
production processes (Chen et al., 2020). However, the academic
community currently faces challenges in defining the essence of
ecological efficiency, particularly in assessing ecological efficiency
with a focus on industrial production. For instance, Maxime et al.
(2006) believes that eco-efficiency is a method for evaluating
sustainable development parameters, aiming to reduce resource
consumption and environmental impact. Schmidheiny and
Stigson (2000) point out that eco-efficiency aims to lower
ecological effects and resource capacity to a level comparable to
the Earth’s carrying capacity while meeting basic human needs and
improving quality of life. Despite these varied definitions, research
on IEE aims to achieve sustainable economic and social
development, emphasizing minimization of resource and
environmental consumption and maximization of economic
benefits in industrial production processes (Liu Y. et al., 2020).
Based on this, IEE is primarily focused on measuring the ratio of
outputs to inputs in industrial production processes (Schaltegger
and Sturm, 1990). “Outputs” include industrial economic benefits
and emissions of pollutants generated, while “inputs” represent
resources and energy consumed during production processes
(Leontief, 1936). Previous studies have typically used indicators
such as capital investment and various energy resource
consumption as input measures, and economic output value as
an output measure to construct an indicator system (Zhang et al.,
2017; Moutinho et al., 2018). In addition, regarding the
measurement methods of IEE, Data Envelopment Analysis

(DEA) is one of the most representative approaches (Wu, 2015).
Early scholars often used traditional DEA models such as Charnes-
Cooper-Rhodes and Banker-Charnes-Cooper for calculations
(Chung et al., 1997). In recent years, Slacks-Based Measure
(SBM) models or super-efficiency DEA models have emerged
(Shuai and Fan, 2020; Liu et al., 2022), providing new and
effective methods for evaluating IEE. In terms of selecting
research subjects, previous studies have often focused on specific
sectors within the industrial industry, with a predominant focus on
energy-intensive industries (Pravdić, 1995; Rigina, 2002), as
industrial sectors are key targets for improving IEE. For example,
Azadeh et al. (2007) empirically analyzed the spatiotemporal
distribution of industrial energy efficiency in Organization for
Economic Cooperation and Development countries’
manufacturing sectors such as steel, cement, and paper using
DEA models. Other studies have employed DEA models
incorporating undesirable outputs and directional distance
functions to assess the spatiotemporal variations in energy
efficiency within the cement manufacturing industry in India
(Mandal, 2010; Mukherjee, 2010). However, the industrial
economic situation in coastal regions has been significantly
overlooked. Since the 1980s, China’s marine economy has rapidly
developed, leading to increased attention on the exploitation of
coastal resources and environments. Consequently, the speed and
scope of pollution have continued to rise, making the ecological
issues in coastal areas impossible to ignore (Lin andWang, 2021). In
addition, another focus of research on IEE is the analysis of
influencing factors, which forms the basis for proposing future
development directions. The selection of influencing factors must
consider both data availability and the unique characteristics of the
industrial sector compared to others. Relevant studies have
suggested that IEE is mainly influenced by social development
factors (Liu Z. et al., 2020). The economic development level,
industrial development level, and human capital status are the
most representative indicators (Verhoef and Nijkamp, 2002; Ren
et al., 2003). In recent years, factors such as market environment,
institutional structure, technological capabilities, and the proportion
of state-owned enterprises have gradually been included in the
selection of influencing factors (Wang et al., 2017; Zhang and
Zhao, 2018). For example, Wang and Yuan (2018) argue that a
higher proportion of state-owned enterprises significantly inhibits
energy conservation and emissions reduction, providing insights
into efficiency improvement.

Indeed, the evaluation framework for the coordinated
development of resources, economy, and environment has
already gained recognition (Ahmed et al., 2020). However,
previous studies have rarely constructed an interconnected
evaluation system based on the connotations of IEE (Yang L.
et al., 2024). Furthermore, effective optimization strategies for the
sustainable development of coastal industrial areas, through the
simulation of future trends and analysis of influencing mechanisms,
have not received sufficient attention. The Hurst index can
effectively reflect the trend intensity and long-term persistence of
a subject’s development over a certain period, making it particularly
useful for understanding the behavioral patterns of complex
systems. It has been widely proven to be applicable to fields such
as stock market analysis, river flow levels, and climate change (Tong
et al., 2018; Tao et al., 2022). Therefore, this study focuses on
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115 cities in China’s coastal areas, measures and analyzes the
characteristics and influencing factors of IEE, and explores its
future evolution trends. Firstly, we construct an IEE evaluation
system from three dimensions: industrial resource input,
industrial economic output, and industrial pollution
emissions. We use a mixed directional distance function
model to measure IEE and analyze its spatiotemporal
evolution characteristics. Second, we employ the Tobit model
and geo-detector to investigate the influencing mechanisms of
IEE. Finally, we simulate and predict the future evolution trends
of IEE by calculating the NICH index and the Hurst index, and
propose optimization strategies. The results of this study can
provide a valuable basis for decision-makers in marine industrial
governance. Additionally, the findings are crucial for promoting
the transformation and upgrading of regional industrial
structures, further fostering human-land coordination and
protecting marine ecosystems.

2 Study area and data sources

2.1 Study area

Coastal areas generally possess geographical advantages such as
favorable climate, convenient external communication, and
conducive conditions for economic development. Approximately

60% of the world’s population resides within 100 km of the coast,
a trend that is even more pronounced in China. The 14 coastal
provinces of China are characterized by good environmental
conditions, developed economies, and high population
carrying capacities. The GDP of these provinces consistently
accounts for over 60% of the national total. Based on this, this
study selected 115 cities across 12 coastal provinces (excluding
Taiwan, Hong Kong, and Macau) in China as the research area.
These provinces include Beijing, Tianjin, Hebei, Liaoning,
Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong,
Guangxi Zhuang Autonomous Region, and Hainan.
Considering data availability, only Haikou and Sanya were
included from Hainan Province. Additionally, although Beijing
does not have a coastal location, it was included in the study area
due to its significant locational advantages as the capital and a
national central city (Figure 1).

2.2 Data sources

The data of this study were obtained from the China Urban
Statistical Yearbook, China Urban Construction Statistical
Yearbook, China Industrial Statistical Yearbook, China
Environmental Statistical Yearbook, and China Regional
Economic Statistical Yearbook for the years 2004–2021, as well
as relevant statistical yearbooks, economic and social

FIGURE 1
Study area.
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development statistical bulletins, water resources bulletins, and
environmental statistical bulletins from various cities.
Additionally, the calculation method for the innovation index
of certain cities is derived from the China Urban and Industrial
Innovation Report published by the Fudan University Industrial
Development Research Center. We carefully considered the
continuity and operability of the data, conducting thorough
organization and cleaning for the relevant data from 115 cities
within the study area. This approach effectively minimized errors
due to data gaps. For the missing data in certain years, we applied
exponential smoothing and moving average methods for
preprocessing. Furthermore, the SPSS software was used to
identify and remove outliers.

3 Methodology

3.1 Framework and indicator system for IEE

The concept of IEE emphasizes optimizing economic benefits
and environmental impacts in industrial production through
improved resource utilization efficiency and reduced
environmental pollution (Matsumoto and Chen, 2021).
Specifically, it focuses on coordinating the material exchange and
energy transformation processes in industrial economic
development, assessing the overall benefits of industrial energy,
economy, and environment. This holistic approach reflects the
sustainability of industrial resource and environmental
development systems (Xing et al., 2018). The basic idea
underscores the coordinated development among resources,
economy, and environment, where the resource system serves as
the foundational dynamic for economic and environmental systems,
the economic system sustains continuous development of resource
and environmental systems, and the environmental system acts as
the carrier for both economic and resource systems. These
interconnected systems aim to minimize environmental pollution
while creating value through products and services (Meng et al.,
2022) (Figure 2).

Based on the above framework, this study fully considers the
industrial economic development in China’s coastal regions. It
establishes an evaluation index system for IEE in China’s coastal
areas, focusing on industrial resource input, industrial economic
output, and industrial pollution emissions (Table 1).

3.2 Methods for evaluating IEE

3.2.1 Hybrid directional distance function
Directional distance function models are commonly employed

in efficiency assessment processes that incorporate unexpected
outputs. In previous studies, radial and directional DEA models
have been used to compute directional distance functions, which
may result in non-zero slack between inputs and outputs, leading to
efficiency values higher than actual efficiency. Alternatively, using
non-radial, non-angular SBM models to compute directional
distance functions can result in proportional changes between
inputs and outputs, potentially yielding efficiency values lower
than actual efficiency (Zhou et al., 2010). To avoid the
aforementioned issues, this study adopts the approach proposed
by Tone (2015), extending the radial and non-radial directional
distance functions into a hybrid directional distance function. This
model integrates the characteristics of both radial and non-radial
distance functions. While capturing the proportional relationship
between observed and actual values, it also reflects the non-radial
differences among variables.

Consider the input-output matrices X and Y, where the output
matrix Y is further divided into the desirable output matrix Yd and
the undesirable output matrix Yu. X is (r × n), Yd is (s × n), and Yu is
(t × n), representing r input variables, s desirable output variables,
and t undesirable output variables, respectively, for n decision-
making units (Färe and Grosskopf, 2010; Zhou et al., 2012).
Decompose X into two parts m = m1 + m2, that is, radial inputs

and non-radial inputs X � XR

XNR( ). Similarly, divide Yd into two

parts s = s1 + s2, that is, radial desirable outputs and non-radial

desirable outputs Yd � YRd

YNRd( ). Decompose Yu into two parts t =

t1 + t2, that is, radial undesirable outputs and non-radial undesirable

outputs Yu � YRu

YNRu( ). Correspondingly, this can be decomposed

into six directional vectors, denoted as
h � (hxR , hxNR , hyRd , hyNRd , hyRu , hyNRu ). Thus, the linear
construction of the hybrid directional distance function can be
seen in Equation 1:

�H x, yd, yu; h( ) � max vT · φ (1)

subject to

FIGURE 2
The interaction among the three systems of resources, economy, and environment.
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XRλ≤ xR + φxR · diag hxR( )
XNRλ≤ xNR + φxNR · diag hxNR( )
YRdλ≤yRd + φyRd · diag hyRd( )

YNRdλ≤yNRd + φyNRd · diag hyNRd( )
YRuλ≤yRu + φyRu · diag hyRu( )

YNRuλ≤yNRu + φyNRu · diag hyNRu( )
φ � φ · sgn h| |( )T, ≥ 0

where v � (vxR , vxNR , vyRd , vyNRd , vyRu , vyNRu )T represents the
normalized weight vector corresponding to the inputs and outputs.

3.2.2 Kernel density analysis
Kernel density analysis is a non-parametric method used to

estimate the dynamic evolution of random variables (Xie and
Yan, 2008). This approach can investigate the spatial
differentiation density among various cities in China’s coastal
regions, providing a more intuitive reflection of the regional
differences in industrial resource environmental efficiency
among different cities. The model is presented as shown in
Equation 2:

f̂n x( ) � 1
mn

∑m
i�1
K

x − xi

n
( ) (2)

where K(x−xin ) represents the kernel function, where (x−xi) denotes
the distance between x and xi. The variablem represents the number
of observed samples, and n > 0 denotes a smoothing parameter or
bandwidth. Higher kernel density values indicate a greater
concentration of patches and are represented by darker colors.
Conversely, lower kernel density values correspond to fewer
patches and lighter colors.

3.2.3 Malmquist index model
The Malmquist index allows for the decomposition of efficiency,

enabling the examination of efficiency variations across different
time periods (Caves, 1981). Under the technological conditions of
time t, the change in technical efficiency from t to t + 1 can be
measured using the Malmquist index. The Malmquist index was
calculated using Equation 3.

Mt � Dt xt+1, yt+1( )
Dt xt, yt( ) (3)

Similarly, under the technological conditions of time t + 1, the
change in technical efficiency from t to t+1 can also be measured
using the Malmquist index. Its calculation is shown in
Equation 4.

Mt+1 � Dt+1 xt+1, yt+1( )
Dt+1 xt, yt( ) (4)

whereDt andD+1 represent the output distance functions for periods
t and t + 1, respectively. Similarly, xt and xt+1 denote the inputs for
periods t and t + 1, while yt and yt+1 represent the outputs for these
respective periods.

To avoid potential biases arising from time selection, this study
adopts the geometric mean of the Malmquist index to measure the
change in total factor productivity from period t to t + 1. Its
calculation is shown in Equation 5.

Tfpch � M xt+1, yt+1, xt, yt( ) � ��������������������������
Dt+1 xt+1, yt+1( )
Dt+1 xt, yt( ) ×

Dt xt+1, yt+1( )
Dt xt, yt( )

√
(5)

When assuming constant returns to scale, the Malmquist
index can be decomposed. Its calculation is shown in
Equation 6.

Tfpch � Effch × Tech � Pech × Sech (6)
where Tfpch represents changes in total factor productivity,
Effch represents changes in technical efficiency, Tech reflects
technological change, Pech denotes changes in pure technical
efficiency, and Sech represents changes in scale efficiency. If
Tfpch is greater than 1, it indicates an improvement in total
factor productivity. If Effch is greater than 1, it suggests an
enhancement in technical efficiency. A Tech value greater than
1 signifies technological progress, while Pech greater than
1 reflects an improvement in the application of technology.
Sech greater than 1 indicates an optimization of scale
efficiency. Conversely, if any of these indices are less than 1,
it implies a decline or deterioration in the corresponding
efficiency.

TABLE 1 Evaluation index system of IEE.

Indicator category Primary indicators Secondary indicators Units

Input Indicators Capital factor Fixed capital stock (Chen and Jia, 2017) 100 million yuan

Labor factor Number of persons employed in industry (Wang et al., 2023b) 104 people

Energy factors Total industrial water consumption (XIAO and ZHANG, 2019) 104 m3

Industrial land area (Bian et al., 2020) km2

Industrial electricity consumption (Zhang et al., 2019) 104 kW h

Output Indicators Expected output Total industrial output (Vaninsky, 2018) 104 yuan

Unexpected outputs Industrial wastewater discharge (Wang et al., 2024b) 104 tons

Industrial SO2 emissions (Zhang et al., 2019) ton

Industrial particulate matter emissions (Kaye et al., 2006) ton
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3.3 Analysis of influencing factors

3.3.1 Selection and description of variables
The influencing factors chosen for this study are listed in Table 2.

Based on previous research, these variables are significantly related to
industrial development and its potential ecological impact. The per
capita regional GDP is a macroeconomic indicator used to assess the
economic development status of a country or region. The proportion
of industrial added value to GDP is a key indicator of the contribution
of the industrial sector to regional economic output, reflecting the
significance of industrial activities within the economy. Compared to
other sectors, the high pollution levels of industrial activities have a
more pronounced negative impact on the ecological environment.
The proportion of investment in industrial pollution control to GDP
represents the government’s emphasis on environmental governance.
The level of technological innovation can measure the capacity of
industrial enterprises to innovate and produce technological
advancements, ideally supporting efficient resource utilization and
environmental management, thereby improving industrial ecological
efficiency. The proportion of foreign direct investment to GDP
indicates the dependence of regional industrial development on
foreign investment and its potential spillover effects, which may
influence industrial ecological efficiency in different ways. Previous
studies suggest that the urbanization rate may exhibit an inverted
U-shaped relationship with environmental pollution (Zhang T. et al.,
2023), warranting further investigation of its relationship with
industrial ecological efficiency. Industrial labor productivity reflects
the labor efficiency of industrial workers per unit of time and serves as
a comprehensive economic measure of industrial enterprise
management, operation, and production technology. The number
of industrial enterprises can represent the prosperity of industrial
economic development, and while promoting economic growth, the
impact on the ecological environment also deserves further
discussion.

3.3.2 Methodology of influence factor analysis
To address issues related to censored dependent variables, Tobin

(1958) first proposed the Tobit model. In this study, the calculated
values of IEE range between 0 and 1, categorizing them as “censored
dependent variables”. If ordinary least squares regression is used, it
may result in inconsistency or bias in the results. Therefore, this

study employs the Tobit model to estimate parameters and conduct
regression analysis on the factors influencing IEE in China’s coastal
regions. The basic expression is shown in Equation 7.

Ymn � Ymn
* � α0 +∑i

n�1
αnxmn + εm, Y*

m > 0

0, Ymn
* ≤ 0

⎧⎪⎪⎨⎪⎪⎩ (7)

where Ymn represents the dependent variable, where m denotes the
IEE of the mth city. Xmn represents the independent variables. α0
denotes the intercept. αn is the vector of estimated coefficients, and
εm represents the random error term.

Based on the effects of industrial economy, technological level,
environmental protection, and incorporating the Tobit model, we
derive the basic expression of IEE as shown in Equation 8:

IEEmn � θ0 + θ1SDLmn + θ2IDLmn + θ3ERmn + θ4TILmn + θ5FDImn

+ θ6URmn + θ7PDLmn + θ8IDSmn + εm

(8)

Based on the computational results, this study conducted LR and
Hausman tests using Stata 14.0 software. The results reject the null
hypotheses of mixed effects and random effects. Therefore, we opt
for fixed effects results for the regression analysis.

Geo-detector was originally used to detect the mechanisms of
disease risk and is now commonly employed to detect spatial
heterogeneity of geographic factors, thereby revealing their
underlying driving mechanisms (Fotheringham et al., 2000;
Wang et al., 2010). This study applies factor interaction detection
in geo-detector to identify the influencing factors of IEE in China’s
coastal regions, Equation 9 as follows:

q � 1 − 1
Yω2

∑L
n�1

Ynω
2
n (9)

where Y and Yn denote the total number of study areas and the
number of units into which the study area is divided, respectively. L
represents the sub-regions of the detection factor. w2 and w2 n
respectively denote the overall variance and the variance within sub-
regions of the study area. q signifies the detection power of the factor,
ranging from 0 to 1. A higher q indicates a greater influence of the
detection factor, whereas a lower q indicates a lesser influence.

TABLE 2 Variable index selection of IEE.

Indicator attributes Indicator name Interpretation of indicators

Implicit Variable
Independent Variable

IEE IEE values

Social development level (SDL) per capita of GDP

Industrialization level (IDL) The proportion of industrial added value to GDP

Environmental regulation (ER) The proportion of investment in Industrial pollution control to GDP

Technological innovation level (TIL) Innovation index

Foreign direct investment level (FDI) The proportion of foreign direct investment to GDP

Urbanization level (UR) Urbanization rate

Production level (PDL) Industrial labor productivity

Industrial scale (IDS) The number of industrial enterprises
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3.4 Methods for simulating
evolutionary trends

During the urban industrial development process, IEE exhibits
evolving trends. Therefore, this study simulates and predicts the
future evolution of IEE by calculating the NICH and the Hurst
index. The NICH Index, also known as the Relative Growth Rate
Index, is primarily used to measure the relationship between the
economic growth rate of a region and the overall growth level of the
area. The NICH Index is a crucial economic analysis tool that
enables researchers to better understand the dynamics of regional
or industrial development, providing a scientific basis for policy
formulation and economic development planning. This study
employs the NICH Index to represent the relative relationship
between the changes in IEE of various cities during the study
period and the overall changes in IEE in the study area. This
approach is used to assess the relative growth and trends in IEE
across different cities. Its calculation is shown in Equation 10.

NICH � c t−1( )k − ctk
ct−1 − ct

(10)

where c(t−1)k and ctk respectively denote the IEE of city k at time
t−1 and time t. ct−1 and ct respectively represent the overall IEE of
the study area at time t−1 and time t.

The Hurst index effectively reflects the trend intensity of
variables over the study period (Hurst, 1951). In this study, it is
used to gauge the sustainability of future development of IEE. The
Hurst index was calculated using Equation 11.

<E> � 1
T
∑T
t�1
Et (11)

where, E represents the IEE value, while Et denotes the time series.
We recognize that there are various methods to calculate the Hurst
index, each with different applicability, which may lead to different
estimated values. In this study, we used the R/S (rescaled range)
analysis method to determine the Hurst index by analyzing the long-
term correlations of the time series data, which we believe is suitable
for the prediction model of IEE’s future trends. If the ratio between

the range R(T) and the standard deviation S(T) follows the
relationship R/S∝TH, it indicates the presence of the Hurst
phenomenon (Granero et al., 2008).

4 Results

4.1 IEE characteristics

4.1.1 Spatial characteristics of IEE
Figure 3 illustrates the spatial pattern and the evolution of spatial

disparities in IEE in China’s coastal areas from 2003 to 2020. The
spatial pattern of IEE in these regions has experienced significant
changes. In 2003, the high IEE areas were mainly concentrated in the
Yangtze River Delta, Pearl River Delta, and Shandong Peninsula. By
2020, the number of cities with high IEE levels had increased,
expanding to include regions such as Guangxi, Zhejiang, and
Hebei. Specifically, cities such as Dongguan, Weihai, Yantai,
Foshan, Shenzhen, and Suzhou consistently maintained an IEE
level between 0.823 and 1, indicating high efficiency. This may be
attributed to the relatively high total industrial output and relatively
low industrial environmental pollution emissions in these cities,
which contributes to the improvement of IEE. Conversely, Laibin
City has consistently remained in the low IEE category. This is due to
its low capital stock, limited basic resource inputs required for
industrial development, and high emissions of industrial
pollutants such as wastewater and exhaust gas, which are higher
than those in most other coastal cities, leading to its low IEE.

Figure 4 shows the kernel density maps of IEE in China’s coastal
regions for the years 2003, 2012, and 2020. In 2003, cities with higher
kernel density values were primarily concentrated in the Yangtze
River Delta and the Pearl River Delta regions, with the highest
average city density reaching 0.913. These regions exhibited strong
spillover effects on the surrounding areas. In the Yangtze River
Delta, the high-density areas appeared as patches, showing a slight
tendency to extend northward and southward. The Pearl River Delta
displayed a strip-like distribution from the southwest to the
northeast. The Beijing-Tianjin-Hebei region showed signs of
emerging as a new core cluster, with kernel density values

FIGURE 3
Evolution characteristics of spatial of IEE. (A) 2003. (B) 2012. (C) 2020.
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slightly lower than those of the Yangtze River Delta and the Pearl
River Delta, averaging 0.553. By 2012, the overall increase in
kernel density was modest. The Beijing-Tianjin-Hebei urban
agglomeration had become a new core cluster, with a kernel
density value of 0.730. The Pearl River Delta and the Yangtze
River Delta remained the primary core clusters. However, the
aggregation in the Pearl River Delta had slightly weakened,
reducing its influence towards the northeast. Conversely, the
aggregation in the Yangtze River Delta had intensified,
showing a trend of extending northwards, gradually connecting
with the Beijing-Tianjin-Hebei region to form a contiguous
cluster. The region centered on Shenyang, Liaoyang, and
Anshan showed increased aggregation, indicating a tendency to
become a small-scale core cluster. In 2020, the spatial distribution
of IEE exhibited a multi-core aggregation pattern with significant
increases. The highest average city density reached 0.940. The
Beijing-Tianjin-Hebei region had developed into a new core
cluster, surpassing the Pearl River Delta in spatial extent. The
core cluster centered around the Pearl River Delta expanded
southwestward and northeastward, forming a horizontally
elongated distribution. The core clusters centered around the
Yangtze River Delta and the Beijing-Tianjin-Hebei region had
connected into a contiguous development pattern with strong
spillover effects. Meanwhile, the aggregation region centered on
Shenyang, Liaoyang, and Anshan had gradually diminished,
failing to form a new core cluster.

4.1.2 Temporal characteristics of IEE
Figure 5 illustrates the average efficiency values for 12 coastal

provinces in China in 2003, 2012, and 2020. A static analysis of the
temporal evolution of IEE reveals that five provinces, namely,
Beijing, Tianjin, Jiangsu, Fujian, and Guangxi, have experienced an
increase in IEE. Notably, Guangxi has shown the most significant
upward trend, with its efficiency rising from 0.24 in 2003 to 0.71 in
2020, achieving an average annual growth rate of 6.59%. In
contrast, the other four provinces have exhibited weaker
upward trends, with annual growth rates below 6.20%. Hebei,
Liaoning, Shanghai, Zhejiang, Shandong, and Hainan demonstrate

a trend of initial increases followed by subsequent declines in IEE.
Among these, Liaoning exhibits the greatest fluctuation, with
efficiency rising from 0.49 in 2003 to 0.65 in 2012, before
dropping to 0.31 in 2020, resulting in an average annual change
rate of −2.66%. This fluctuation is attributed to Liaoning’s
economic structure, which predominantly relies on traditional
heavy industries, leading to issues such as inefficient resource
utilization and continuous increases in pollutant emissions,
thereby resulting in lower IEE. Additionally, Guangdong shows
a trend of initial decline followed by a subsequent increase, though
the upward trend is not significant, with an average annual change
rate of −0.37%.

The study employs the Deap2.1 software to calculate indices of
IEE changes (Tfpch), technical efficiency changes index (Effch),
technological progress change index (Techch), pure technical
efficiency changes index (Pech), and scale efficiency change index
(Sech) for the period from 2003 to 2020. This facilitates the analysis
of dynamic changes and heterogeneity in efficiency (Supplementary
Table S1). The Tfpch values for 36 cities, including Beijing,
Shijiazhuang, Qingdao, and Yantai, are all greater than 1,
indicating an improvement in IEE in these cities over the study
period. Regarding the technical efficiency change index, Effch values
are greater than 1 for nearly half of the cities, suggesting that the
majority of cities experienced significant technical efficiency changes
from 2003 to 2020, contributing substantially to IEE. In terms of the
technological progress change index, only 33 cities, including
Shijiazhuang, Nanjing, Qingdao, and Dongying, have Techch
values greater than 1, indicating that technological progress was
relatively slow in most coastal cities during the study period,
contributing minimally to IEE. The pure technical efficiency
changes index (Pech) values exceed 1 for over 63% of the cities,
including Tianjin, Dalian, Shanghai, and Zibo, implying that
changes in pure technical efficiency made a minimal contribution
to IEE in these cities. Conversely, the scale efficiency changes index
(Sech) values for 55 cities, including Tianjin, Zhenjiang, Jining, and
Nanning, are all less than 1, indicating that changes in scale
efficiency contributed minimally to changes in technical
efficiency in these cities.

FIGURE 4
Kernel density analysis diagram of IEE. (A) 2003. (B) 2012. (C) 2020.
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4.2 Analysis of influencing factors

4.2.1 Analysis of influential factors based on
Tobit modeling

Table 3 presents the regression results on the factors
influencing IEE. The analysis reveals that per capita GDP, the
proportion of foreign direct investment to GDP, and industrial
labor productivity have a significant positive impact on IEE, with
all factors being significant at the 1% level. Per capita GDP has the
highest coefficient of 0.0082, indicating it has the strongest effect

on IEE. Investments in industrial pollution control as a
percentage of GDP and the innovation index also positively
influence IEE, with significance at the 5% and 10% levels
respectively, and coefficients of 0.0050 and 0.0010. Conversely,
the proportion of industrial added value to GDP, the
urbanization rate, and the number of industrial enterprises
have a negative impact on IEE. The inhibitory effects of the
proportion of industrial added value to GDP and the
urbanization rate are particularly significant, with coefficients
of 0.0054 and 0.0006 respectively, indicating that the proportion

FIGURE 5
Change characteristics of IEE. (A) Industrial Eco-efficiency. (B) Industrial Eco-efficiency Margin.

TABLE 3 The regression results.

Variables IEE

Mixed effects Random effects Fixed effects

Cons 0.5889***
(35.52)

0.6214***
(28.22)

—

SDL 0.0081***
(5.07)

0.0030*
(1.94)

0.0065***
(3.51)

IDL −0.0025***
(-7.45)

−0.0015***
(-4.53)

−0.0028***
(-7.04)

ER 0.0008***
(2.79)

0.0006**
(2.31)

0.0005*
(1.90)

TIL 0.0001
(0.09)

0.0001
(1.09)

0.0001*
(0.18)

FDI 0.0001***
(12.64)

0.0001***
(3.88)

0.0001***
(8.23)

UR −0.0004**
(-1.97)

−0.0003
(-1.56)

−0.0004***
(-2.86)

PDL −0.0001***
(-4.99)

0.0001***
(4.25)

0.0001***
(3.70)

IDS −0.0001*
(-1.85)

−0.0001***
(-3.18)

−0.0001**
(-2.14)

Note: The symbols ***, ** and * represent the significance levels of the variables at the 1%, 5%, and 10% levels, respectively.
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of industrial added value to GDP has a greater negative impact on
IEE. The negative effect of the number of industrial enterprises is
significant at the 10% level, with a coefficient of only 0.0001,
suggesting that the adverse effect of industrial scale on IEE is
relatively weak.

4.2.2 Analysis of influential factors based on
geo-detector

Figure 6 shows the interaction detection results of factors
influencing the IEE along China’s coastal regions. The findings
indicate that the spatial variations in IEE are not the result of
individual factors acting in isolation, but rather, they are
primarily characterized by two types of interactions: double-
factor enhancement and non-linear enhancement. This
suggests that the interplay between any two driving factors
can better explain the spatial disparities in IEE. Specifically,
the interaction between SDL and IDL has the most significant
impact on IEE, with the highest q-value of 0.547, explaining
approximately 56% of the variation. Additionally, interactions
that explain more than 50% of IEE variations include: IDL∩IDS,
IDL∩UR, IDL∩PDL, IDL∩FDI, SDL∩PDL, and IDL∩ER. The
level of socio-economic development reflects the scale and
stage of socio-economic progress, with higher industrialization
levels indicating an increasing proportion of industrial output in
the national economy. On one hand, socio-economic
development positively influences IEE, as the promotion of
industrialization relies on the socio-economic development
level as a carrier. On the other hand, the continuous
expansion of industrial scale demands higher resource

utilization efficiency, labor productivity, and environmental
management efficiency during industrial production, which in
turn facilitates foreign investment attraction and accelerates
urbanization. Therefore, the interactions between
industrialization level and factors such as socio-economic
development level, urbanization level, foreign investment level,
and production level positively contribute to the
enhancement of IEE.

4.2.3 Robustness test
Considering the potential presence of omitted variables or

bidirectional causality among variables in the model construction,
which may lead to endogeneity issues, robustness tests were
conducted to ensure the reliability of the regression results.
This study employed Tobit estimation on the IEE for two sub-
samples, covering the periods 2003-2011 and 2012-2020,
respectively (Table 4). In the regressions for both sub-samples,
the results of the LR test and Hausman test only rejected the null
hypothesis of the mixed regression, leading to the selection of
random effects for analysis. The results indicate that per capita
GDP, the proportion of industrial pollution control investment in
GDP, the innovation index, the proportion of foreign direct
investment in GDP, and industrial labor productivity have
significant positive impacts on the industrial resource and
environmental efficiency in China’s coastal regions. In contrast,
the proportion of industrial added value in GDP, the urbanization
rate, and the number of industrial enterprises exhibit notable
negative effects. Although there are some differences in the
significance levels of individual independent variables due to

FIGURE 6
Interaction detection results of driving factors of IEE.
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the numerous variables involved, the signs of the coefficients for
all variables are consistent with those in the full sample.
Therefore, the robustness test results are considered reliable.

4.3 Simulation of evolutionary trends

This study superimposes the spatial distribution maps of NICH
index and the Hurst index in China’s coastal regions to derive the
future development trends of IEE (Figure 7). The results indicate
that areas with significant improvement form two primary bands.
The first extends from north to south, covering key cities such as
Chengde, Beijing, Baoding, Dezhou, Linyi, Lianyungang, and
Yancheng, the second stretches from northeast to southwest,
including cities like Quzhou, Sanming, Meizhou, Guangzhou,
Qingyuan, Guigang, Nanning, and Baise. Cities with moderate
improvement and minor decline are fewer in number and more
dispersed, including Zaozhuang, Ningbo, Tianjin, Shenyang,
Nanjing, Zibo, and Shaoguan. Areas experiencing significant
decline are more clustered, primarily found in Liaoning
province’s cities such as Dalian, Yingkou, Dandong, and
Huludao, as well as in the Yangtze River Delta region’s cities like
Hangzhou, Jiaxing, Shanghai, and Suzhou. Except for cities such as
Nanning, Huizhou, Quanzhou, Suzhou, Jinan, and Chengde, which
exhibit strong sustainability, most other cities demonstrate weaker
sustainability. In the future, while some cities in Liaoning, Zhejiang,
and Guangdong provinces are projected to experience continuous
declines in IEE, the majority of cities are expected to show ongoing
improvements. Notably, cities with strong and sustained
improvement are predominantly located in parts of Hebei,
Shandong, and Guangxi provinces.

5 Discussion

5.1 Influence mechanism and future trends
of IEE

This study analyzes the impact of eight factors, including social,
economic, and industrial, on IEE. The results indicate that social
development level, environmental regulation, technological
innovation level, foreign investment level, and production level
all contribute to the improvement of IEE, as illustrated in
Figure 8. On one hand, the process of industrialization inevitably
brings certain industrial economic benefits, and the improvement of
economic benefits simultaneously implies an enhancement of the
social development level. The increase in socioeconomic levels and
the substantial inflow of foreign investment can provide more
favorable financial support and economic demand for
environmental regulation measures such as energy conservation
and emission reduction, resource recycling, and technological
research and development (Wang F. et al., 2023). This enhances
regional talent attraction and is conducive to improving IEE. On the
other hand, in 2018, China’s innovation index exceeded 200 for the
first time, with a year-on-year growth of 10.9%. The continuous
optimization of technological innovation capabilities and the talent
agglomeration effect have injected new vitality into industrial
upgrading (Zheng and Peng, 2019). To some extent, this can
improve industrial labor productivity, and the resulting strong
spatial spillover effects can expand economic output and social
development levels, thereby enhancing IEE. However, the
proportion of industrial added value in GDP, urbanization rate,
and the number of industrial enterprises show significant negative
effects, indicating that the expansion of industrialization level,
urbanization level, and industrial scale can hinder the
improvement of IEE.

In the operation of the coastal region’s market economy, the
industrial sector has played a critical role (Wang et al., 2019).
However, IEE comprehensively considers resource inputs, output
benefits, and environmental pollution outputs. Given that the
industrial sector is the largest consumer of resources and
producer of pollution, an increase in the number of industrial
enterprises indicates an expansion of industrial scale, leading to a
heavily industrialized economic structure. Lei et al. (2024)
demonstrated that severe industrialization of the economic
structure leads to a significant decline in both ecological
efficiency and its coordination with urbanization. Although the
expansion of industrial scale has brought considerable economic
benefits to the coastal regions, it has also resulted in exacerbated
pollution. This explains the observed negative impact of increased
industrial output and the growing number of industrial enterprises
on IEE during the study period. Regarding the urbanization rate, its
increase implies a rise in urban population, which plays a crucial role
in regional development. Coastal areas are among the most
populous and dynamic regions of China, particularly in the
eastern and central areas where the urban population often
exceeds the sustainable threshold (Zheng et al., 2024). Rapid
population growth in cities may lead to several adverse
consequences, such as industrial land expansion, environmental
pollution, and intensified resource consumption (Ohene-Asare
et al., 2020). These factors partially clarify why an increased

TABLE 4 Robustness test of influencing factors.

Variables IEE

2003–2011 2012–2020

Cons 0.4138***
(8.75)

0.5160***
(10.23)

SDL 0.0001***
(6.22)

0.0001*
(7.45)

IDL −0.0005
(−0.70)

−0.0026***
(−4.22)

ER 0.0002
(0.13)

0.0009
(0.43)

TIL 0.0015*
(1.76)

0.0005***
(2.83)

FDI 0.0061**
(2.12)

0.0102**
(1.98)

UR −0.0011
(−0.91)

−0.0002
(−0.94)

PDL 0.0001**
(2.09)

0.0001
(0.31)

IDS −0.0001
(−0.26)

−0.0001
(1.43)

Note: The symbols ***, ** and * represent the significance levels of the variables at the 1%,

5%, and 10% levels, respectively.
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urbanization rate contributes to a decrease in IEE. Although China’s
coastal areas play a significant role in terms of urbanization and
economic contribution, the economic and environmental disparities
across different cities and regions create substantial heterogeneity in
the factors influencing IEE (Shen et al., 2024). Most cities in the
southern part of the study area are in the growth or maturity stage of
resource development. Resource development serves as a favorable
condition for attracting foreign investment (Ruan et al., 2020),
helping southern industries obtain more investment and
resources, thus having a significant positive impact on IEE. In
northern cities, a substantial amount of highly polluting and
energy-intensive industries were established in earlier years.
Although the region’s advantageous natural resources have
largely maintained ecological balance, persistent industrial
pollution has exacerbated ecological vulnerability (Ruan et al.,
2020). In recent years, the government has intensified its
regulatory efforts, which has led to a slight improvement in IEE
in northern cities; however, the negative impact of industrial scale
remains significant.

The results of multi-factor interactions reveal that the
interaction between industrialization level and other factors is

significantly stronger than the interactions among other factors,
with the combined effect with social development level being
particularly prominent. Per capita GDP is an essential
foundational factor for regional construction and development, as
well as a crucial indicator of regional economic growth. Robust
economic development facilitates industrial agglomeration within a
region and provides financial support for an intensive industrial
structure. The proportion of industrial added value in GDP
represents the level of industrial development in an area.
Regional development should not solely rely on traditional
industries; it is essential to actively promote the integration of
traditional industries with various sectors and to foster the
transformation and upgrading of extensive industrial sectors (Dai
et al., 2020). This approach aims to achieve a green extension of the
industrial value chain, thereby enhancing urban IEE.

The results based on the Hurst index indicate that there is
significant spatial heterogeneity in the future IEE of coastal cities.
The central region exhibits a strong upward trend for future
enhancement, exemplified by the Yangtze River Delta urban
agglomeration centered on Shanghai. This trend may be
attributed to the ease of product exports in this area, making it

FIGURE 7
NICH index, Hurst index and future development trend. (A) NICH Index. (B) Hurst Index. (C) Future Trends.

FIGURE 8
Influence mechanism of IEE.
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attractive to international investors, thereby expanding access to
international markets, enhancing competitiveness, and subsequently
improving IEE. This aligns with the findings of Li and Lin (2017).
Another contributing factor could be the national ecological redline
policies, which mandate strict compliance and the implementation
of relevant management policies. The political pressure from the
central government requires industrial enterprises to adopt more
incentives to promote IEE (Yu et al., 2018). In contrast, the northern
region is expected to face a downward trend in the future. As an
established industrial base, this region struggles to achieve effective
improvement in the short term in response to nationally established
ecological management policies. Consequently, the northern region
lacks momentum for sustained growth in IEE.

5.2 Optimization of countermeasure

To assess the sources of industrial ecological inefficiency in
China’s coastal areas, projection analysis was used to identify the
development shortfalls and improvement paths for IEE (Table 5). It
was found that inefficient regions generally exhibit redundancy in
industrial resource inputs and industrial pollutant emissions.
Specifically, industrial water and electricity consumption are the
main redundant inputs, while industrial SO2 and dust emissions
are the primary undesirable output redundancies. Additionally,
some cities exhibit insufficient capital and labor inputs, with
significant regional differences in the improvement margins of
input-output indicators. To address the primary causes of
industrial ecological inefficiency, enhancing the allocation of input-
output resources and promoting the orderly flow of these factors are
effective measures (Wang and Yang, 2019). This approach can help
bridge the development gaps among regions. Firstly, to address the
issue of insufficient capital and labor inputs in some cities, it is
recommended to encourage investment from cities with relatively

high capital redundancy rates to increase capital input and strengthen
the industrial economic development momentum of those cities (Cao
et al., 2022). Promoting labor transfer and sharing by allowing more
highly skilled industrial workers to work in areas with labor shortages
can improve regional labor productivity and drive industrial
economic development. Secondly, existing industrial enterprises in
various regions should be encouraged to gradually transition to new
industries characterized by low energy consumption, high output, and
low emissions, thereby reducing industrial resource inputs,
particularly in terms of water and electricity consumption. Thirdly,
efforts should continue to update outdated equipment in regions,
which will help reduce industrial resource consumption and lower
industrial pollutant emissions, thereby promoting the coordinated
development of regional industrial economy and environment.

For regions with differing social, economic, and cultural conditions,
differentiated efficiency improvement policies should be formulated to
achieve rational development of the ecological economy (Zhang et al.,
2024). First, the industrial pollutant emissions in most cities in Liaoning
and Hebei provinces remain high. These cities are part of China’s old
industrial base and have a large number of traditional manufacturing
enterprises. However, significant challenges exist, such as unbalanced
industrial structure andweak product upgrading capacity (Zhang L. et al.,
2023). To address these issues, the government can encourage resource-
sharing collaboration between cities, sharing resources, knowledge, and
technology that support industrial ecological efficiency (Yang et al.,
2023). For instance, inter-city industrial symbiosis programs could be
established, where waste or by-products from one industry are used as
raw materials for another, thus reducing waste and resource
consumption. Highly polluting industries can also be encouraged to
relocate to less environmentally sensitive areas, thereby reducing
pollution burdens in densely populated urban areas and improving
overall ecological efficiency. Second, cities in the Yangtze River Delta and
Pearl River Delta regions have higher levels of economic development
and urbanization but also relatively high industrial resource

TABLE 5 Input-output improvement range in major cities (%).

Cities X1 X2 X3 X4 X5 Y1 Y2 Y3

Beijing 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Tianjin 51.36 0.00 −82.25 −61.17 −42.85 3.26 0.00 0.00

Shijiazhuang 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Shenyang 0.00 0.00 −41.40 −24.68 10.41 0.00 30.50 −25.84

Shanghai 0.00 0.00 −12.25 −33.94 6.18 7.45 0.00 0.34

Nanjing 0.00 0.00 −11.43 6.17 6.52 −34.52 0.00 6.84

Hangzhou 8.64 0.00 0.00 0.00 0.00 18.71 0.00 0.00

Fuzhou 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Jinan −32.92 0.00 41.38 4.71 26.99 0.00 0.00 0.00

Guangzhou 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Nanning −24.67 0.00 −10.69 3.04 5.04 3.26 0.00 0.00

Haikou −10.80 −23.03 −27.93 −18.32 10.41 4.35 0.00 0.00

Note: X1 represents the stock of fixed capital, X2 represents the number of employees in the secondary industry, X3 represents industrial water consumption, X4 represents the area of industrial

land, and X5 represents industrial electricity consumption. Y1 represents the volume of industrial wastewater discharge, Y2 represents the volume of industrial SO2 emissions, and Y3 represents

the volume of industrial dust emissions.
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consumption. These citiesmust focus on promoting industrial upgrading
and transformation, encouraging traditional manufacturing enterprises
to adopt cleaner technologies and modernize production processes.
Measures such as using environmentally friendly equipment,
supporting automation, and promoting green manufacturing practices
are recommended (Chen and Liu, 2022). Third, some southern cities
have relatively low socio-economic development levels but significant
potential for optimizing industrial energy and resource use. Given the
financial constraints, the government can provide fiscal support or low-
interest loans to help enterprises replace inefficient equipment and adopt
smart energy management systems. The establishment of government-
enterprise collaboration platforms to explore localized green
development pathways is also encouraged. The government can
provide timely technical support, policy consultation, and other
resources to help enterprises improve environmental protection and
resource utilization (Niu et al., 2024). Fourth, the innovation advantages
of Beijing and Shanghai should be leveraged to drive the development of
surrounding regions (Wang X. et al., 2024). Green investment and
innovation should be promoted by offering subsidies, tax incentives, or
low-interest loans to encourage enterprises to invest in green initiatives,
such as renewable energy, waste recycling, and resource-efficient
technologies.

5.3 Limitations and outlook

This study provides a comprehensive research framework for the
evaluation, influencingmechanisms, and future trend prediction of IEE,
along with an empirical analysis. However, we must acknowledge
certain limitations of this study. Although the Hurst index can
effectively predict the future trends of IEE, the inherent limitations
of the data and models may restrict the comprehensiveness of the
results. The length and overlapping nature of different time series may
lead to varying calculation results, thereby affecting the accurate
assessment of future trend predictions. Yang M. et al. (2024) found
that when the Hurst index is relatively small, the prediction error tends
to be large, whereas the error sharply decreases as the Hurst index
increases. Moreover, while the Hurst index can provide insights into
future developmental trends, it cannot predict how long these trends
will persist (Tong et al., 2018). In the future, we plan to explore IEE
trends further by comparing the differences among various models.

6 Conclusion

This study uses 115 cities in China’s coastal areas as spatial units to
measure IEE based on an input-output model, explore influencing
factors, and simulate future evolutionary trends. The results show that
IEE is generally on the rise, with significant spatial pattern changes.
Regions with rapid economic development and better environmental
conditions tend to have higher levels of IEE. The “multi-core”
development model began to emerge, with the Yangtze River Delta,
Pearl River Delta, and Beijing-Tianjin-Hebei regions serving as strong
radiating and driving forces. The econometric analysis reveals that per
capitaGDP, the proportion of industrial pollution control investment to
GDP, innovation index, the proportion of foreign direct investment to
GDP, and industrial labor productivity have a significantly positive
impact on IEE. Conversely, the proportion of industrial added value to

GDP, urbanization rate, and the number of industrial enterprises have a
notably negative impact on IEE. From the analysis of factor interaction
detection, the interaction effects between industrialization level factors
and other factors are significantly stronger than those between other
factors. Among these, the interaction between industrialization level
and social development level has the most significant impact on IEE. In
China’s coastal areas, 48.70% of cities have IEE in a state of
improvement and sustained DEA effectiveness. The overall Hurst
value is 0.9807, and 75.65% of cities have Hurst values below the
overall level, indicating that future changes in IEE have relatively weak
sustainability. Overall, the future trend for IEE inChina’s coastal areas is
expected to continue improving. This study can help policymakers
formulate reasonable and appropriate resource and environmental
policies, promoting the sustainable and coordinated development of
regional industrial structures and ecological environments.
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