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Introduction: Soil respiration (SR), the release of carbon dioxide (CO2) from soil
due to the decomposition of organic matter and root respiration, is an important
indicator for understanding agricultural carbon cycling and assessing
anthropogenic impacts on the environment. Hyperspectral remote sensing
offers a potential rapid, non-destructive approach for monitoring in
agriculture. However, it remains uncertain whether hyperspectral remote
sensing can provide an accurate and efficient method for estimating SR rate
in croplands, particularly across different maize growth stages of under varying
drought conditions.

Methods: In the study, we investigated the potential of combining hyperspectral
remote sensing data with machine learning model (ML) to quantify SR rate in
croplands. A drought field experiment was conducted, and SR and hyperspectral
imagery were collected during four maize growth stages: Jointing Stage (JS),
Tasseling Stage (TS), Flowering Stage (FS), and Grain Filling Stage (GFS). We
compared the performance of traditional multiple linear regression (MLR) with
that of an ML model (extreme gradient boosting, XGBoost), in simulating SR rate
across these four growth stages.

Results: Our findings demonstrated that the simulation of the XGBoost model,
utilizing soil temperature (Ts) and hyperspectral data, outperformed the MLR
model. Across different growth stages, the SR simulated by the XGBoost model
(R2 = 0.8103) was more reliable than that of the MLR model (R2 = 0.7451). The
XGBoost model can also effectively capture the impact of drought treatments
on SR.

Discussion: The XGBoost model’s tree-based structure allows it to effectively
capture complex interactions and nonlinear patterns within variables, while its
high sensitivity to changes in SR rates under drought conditions makes it more
reliable for modeling SR across different growth stages compared to the linear-
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based MLR model. This study highlights the great promise of ML combined with
hyperspectral imaging in predicting SR rate in croplands, which will help guide
future agricultural management and environmental informatics.

KEYWORDS

machine learning, soil respiration, maize, soil temperature, hyperspectral image

1 Introduction

Soil is a vital component in the Earth’s carbon (C) cycle, playing
a pivotal role in C sequestration and release on climate change
(Macías and Camps Arbestain, 2010;Meena et al., 2020; Swift, 2001).
Soil respiration (SR), mainly the CO2 emissions from uplands,
accounts for a significant portion of total ecosystem respiration
by 60% and 90% annually. As such, SSR is the largest C resource in
natural ecosystems (Yuste et al., 2005; Xu and Shang, 2016).
Remarkably, the SR in croplands contributes approximately 10%–

20% of the total global (Raich and Schlesinger, 1992; Sotta et al.,
2004), depending on various agriculture management practices,
crop types, and environmental conditions (Six et al., 2002).
Additionally, cropland soil is not only a source of C emissions
but also can act as a C sink through crop photosynthesis and the
accumulation of soil organic matter (West and Post, 2002; Smith,
2008). Therefore, accurate monitoring and estimation of SR in
croplands are crucial for understanding the complex dynamics of
terrestrial C cycles, which are increasingly influenced by
human actives.

Many approaches are currently used to monitor and estimate SR
in croplands. The main field monitoring methods include the static
chamber method (Rochette et al., 1992), dynamic chamber method
(Rochette et al., 1997), and micrometeorological method (Van Cleve
et al., 1979; Pete et al., 2010). However, these approaches have
certain limitations, such as: 1) insufficient representation due to
limited observations of spatial heterogeneity (Liu et al., 2016), and 2)
an inability to capture regional patterns influenced by varying
agricultural practices, land-use changes, and other management
activities (Chen et al., 2020; Ramesh et al., 2019). Recently,
hyperspectral remote sensing has been widely used, as it can
capture detailed spectral information across a wide range of
wavelengths, enabling precise assessment of various soil and
vegetation parameters (Yu et al., 2020; Teke et al., 2013). For
example, wavelengths around 1,400 nm and 1,900 nm are
effective for detecting soil moisture due to water absorption
features, while 680 nm (red) and 750–800 nm (near-infrared) are
commonly used to assess chlorophyll content and plant health
(Lobell and Asner, 2002; Tucker, 1979).Hyperspectral remote
sensing offers a promising way for more accurate and efficient
monitoring of agricultural ecosystems (Singh and Babu, 2022),
which is crucial for sustainable agriculture and environmental
conservation. However, due to the large volume of hyperspectral
data, challenges arise in efficiently processing, analyzing, and
interpreting this data using traditional methods (Bioucas-Dias
et al., 2013; Liang et al., 2020). For example, traditional statistical
models often struggle to handle the high dimensionality of
hyperspectral data, leading to overfitting or poor generalization
(Ullah et al., 2024). Moreover, these statistical methods typically
involve manual feature selection, making the processes both labor-

intensive and susceptible to human error (Hastie et al., 2009; Feng
et al., 2015).

Recently, the integration of machine learning (ML) has
advanced the applications of hyperspectral remote sensing
(Guerri et al., 2024; Le et al., 2020). For example, ML is capable
of managing large datasets and revealing intricate relationships
between hyperspectral variables (Burger and Gowen, 2011). Many
ML algorithms, such as Artificial Neural Networks (ANN), Random
Forest (RF), Support Vector Machines (SVM), and Extreme
Gradient Boosting (XGBoost), have been extensively utilized to
estimate agricultural indicators, such as leaf nitrogen content
(Yamashita et al., 2020), leaf chlorophyll content (Wang et al.,
2020; An et al., 2020), and soil moisture content (Tang et al.,
2023) etc., very well. Moreover, the integration of special ML
algorithms with hyperspectral remote sensing can also enhance
the analytical efficiency of hyperspectral data. For instance, as a
boosting-based ensemble learning method capable of handling both
regression and classification problems, the XGBoost features parallel
and distributed computing capabilities, making it to be one of the
fastest and most efficient decision tree algorithms (Ma et al., 2021).
However, the application of hyperspectral data with XGBoost model
has not been well examined in estimating SR rate in croplands.

Hence, this study seeks to investigate the capabilities of
hyperspectral remote sensing in monitoring SR in maize
croplands through different modeling approaches. Based on the
observations of the SR, hyperspectral parameters and climate factors
in the summer maize cultivation, we established two different SR
models of the summer maize cropland, using traditional multiple
linear regression (MLR) and ML XGBoost. We examined their
modeling performances on the accuracy of simulated SR across
different growth stages and drought treatments. The simulated and
measured relationship between the SR and soil temperature (Ts)
were also analyzed. The study can contribute to the dynamic
monitoring and simulation of SR in agricultural ecosystems with
hyperspectral remote sensing, and benefit soil health management
and agricultural sustainability under global climate change.

2 Materials and methods

2.1 Study site

Shandong province is the main critical grain-producing area in
China, characterized by maize is one of the main grain crops in the
province. The experiment was conducted at the Agricultural Water
Resource Efficient Use Experimental Site of Ludong University
(37.54° N, 121.39° E) in the province. The elevation of the site is
47.8 m. The region experiences a warm temperate continental
monsoon climate, with mean annual temperature ranging from
11.8°C to 13.0°C, and annual precipitation varying between
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651.9 mm and 722.2 mm (mainly occurring in July and August)
(Yantai Meteorological Bureau, 2023). The soil is loam, with
pH value of 6.5–7.0, organic matter content ranging from 1.5%
to 2.5%, organic C content between 1.0% and 1.5%, and nitrogen
content ranging from 0.05% to 0.15% (Chen et al., 2019). The
maximum field water holding capacity of the soil is about 22%
(Zhang et al., 2021).

2.2 Experimental design

The summer maize cultivar “Jinhai No. 5” was sown in pots on
11 June 2023 and harvested on 27 September 2023. We conducted
drought experiments during four different growth stages of maize:
Jointing Stage (JS), Tasseling Stage (TS), Flowering Stage (FS), Grain
Filling Stage (GFS). During each drought period, the soil moisture of
control treatment was maintained at 60%–70% of the maximum
field capacity, while the drought treatment was maintained at 40%–
50% of the maximum field capacity. Each treatment was replicated
in three pots, resulting in a total of 15 potted plants (4 drought-
period treatments × 3 replicates + 1 control treatment × 3 replicates)
(Figure 1). The pots used for the maize were plastic containers
weighing 1.4 kg, with an upper diameter of 43 cm, a bottom diameter
of 26 cm, and a height of 24 cm (Figure 1). Each pots was filled with a
mixture of 20 kg of soil from the site and 5 g of “Sackoff” compound
fertilizer (total nutrient content of 51.0%). Soil moisture of all
treatments was monitored and maintained daily between 17:

00 and 18:00 by weighting the pots. During watering, the pots
were placed on an electronic scale to ensure precise control of water
application, allowing for accurate adjustments as necessary.

2.3 Soil measurement

SR rates were measured using the Photosynthesis-Fluorescence
System (LI-6400XT, LI-COR Biosciences, Lincoln, NE,
United States) equipped with the 6400–09 SR Chamber. The SR
measurement collar was installed in each pot to a depth of 3 cm and
2 cm above the soil surface, with a measurement surface area of
80 cm2. There was a 24-hour waiting period between the placement
of the ring and the first SR monitoring. The Ts was measured using
the soil temperature sensor (equipped with LI-6400-09) during SR
measurements, with the sensor inserted near the SR measurement
point at a depth of 5–10 cm. SR and Ts were measured
simultaneously for all pots to ensure consistency across the
experiment.

To estimate the dependence of seasonal variations in SR on Ts,
the relationship was fitted using an exponential equation
(Equation 1):

SR � keaTs (1)
Where the unit of SR is μmol·m−2·s−1, the unit of Ts is ◦C, and k and
a are constants (Davidson et al., 1998; Knohl et al., 2008). The
temperature sensitivity of SR, represented by Q₁₀, which indicates

FIGURE 1
Schematic diagram of the experimental design of summer maize across different growth stages (JS, TS, FS, GFS). JS: Jointing Stage, TS: Tasseling
Stage, FS: Flowering Stage, GFS: Grain Filling Stage. The green arrows indicate the progression of this growth stage. The grey bars represent the drought
treatments applied during the corresponding growth stages, while the blank bars represent the control treatment. The dates in the figure represents the
time when >75% of the maize had reached the specific growth stage.
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the increase in SR for every 10°C rise in temperature, was calculated
using Equation 2:

Q10 � e10a (2)

2.4 Hyperspectral measurement and data
processing

Hyperspectral data for summer maize were collected using a
spectrometer (ASD FieldSpec HandHeld2) between 11:00 a.m. and
1:00 p.m. under clear skies with minimal wind to ensure consistency.
The spectrometer was calibrated with a standard reference panel to

approximate 100% reflectance. During each measurement, the
spectrometer was held 10–15 cm above the maize canopy, with
ten readings averaged. In this study, spectral data from 350 to
910 nm were used (Table 1). For example, wavelengths of 680 nm
and 800 nm were used to calculate Normalized Difference
Vegetation Index (NDVI), while 705 nm and 750 nm were used
to calculate NDVI705 (Table 1). These hyperspectral vegetation
indices are important indicators of plant health, biomass, and
stress levels, providing critical information for monitoring crop
conditions. They help assess photosynthetic activity and water
content of vegetation, both of which are essential for evaluating
crop performance and SR dynamics. Triangular parameters, such as
edge amplitudes and areas (e.g., blue, yellow, red edges), are often

TABLE 1 The hyperspectral parameters used in this study.

Parameter
category

Parameter name Definition/Function Source

Vegetation indices NDVI (Normalized Difference Vegetation Index) (R800 − R680)/(R800 + R680) Navarro et al. (2017)

NDVI705 (Normalized Difference Vegetation Index
at 705 nm)

(R750 − R705)/(R750 + R705) Gitelson et al. (2003)

DVI (Difference Vegetation Index) R800 − R680 Inoue et al. (2012)

RVI (Ratio Vegetation Index) R800/R680 Hellawell (2013)

EVI (Enhanced Vegetation Index) 2.5(R800 − R680)/(R800 + 6R680 − 7.5R450 + 1) Huete et al. (2002)

PRI (Photochemical Reflectance Index) (R531 − R570)/(R531 + R570) Zhang et al. (2023)

Triangular parameters Db (blue edge amplitude) Maximum value of the first derivative spectrum within the
wavelength range 490–530 nm

Wang et al. (2023)

λb (blue edge position) Wavelength position corresponding to the blue edge
amplitude Db (nm)

Lin et al. (2021)

Dy (yellow edge amplitude) Maximum value of the first derivative spectrum within the
wavelength range 560–640 nm

Wang et al. (2023)

λy (yellow edge position) Wavelength position corresponding to the yellow edge
amplitude Dy (nm)

Lin et al.(2021)

Dr (red edge amplitude) Maximum value of the first derivative spectrum within the
wavelength range 680–760 nm

Wang et al. (2023)

λr (red edge position) Wavelength position corresponding to the red edge
amplitude Dr (nm)

Yuan et al. (2021)

Rg (green peak reflectance) Maximum spectral reflectance within the wavelength range
510–560 nm

Wang et al. (2023)

λg (green peak position) Wavelength position corresponding to the green peak
reflectance Rg (nm)

Yuan et al. (2021)

Rr (red trough reflectance) Minimum spectral reflectance within the wavelength range
640–680 nm

Wang et al. (2023)

λo (red trough position) Wavelength position corresponding to the red trough
reflectance Rr (nm)

Huang et al. (2018)

SDb (blue edge area) Integral of the first derivative band values within the blue
edge range

Broge and Mortensen
(2002)

SDy (yellow edge area) Integral of the first derivative band values within the yellow
edge range

Broge and Mortensen
(2002)

SDr (red edge area) Integral of the first derivative band values within the red
edge range

Broge and Mortensen
(2002)

SDo (red trough area) Integral of the first derivative band values within the red
trough range

Huang et al. (2018)

Note: R represents reflectance, and the subscript number corresponds to the wavelength (nm).

Frontiers in Environmental Science frontiersin.org04

Zeng et al. 10.3389/fenvs.2024.1505987

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1505987


used to represent spectral shifts related to changes in vegetation
physiology, including pigment concentration, stress response, and
overall growth status (Table 1).

2.5 Modeling approach

2.5.1 Multiple linear regression
Multiple linear regression (MLR) is a traditional statistical

technique used to model the relationship between a dependent
variable and two or more independent variables, assuming a
linear association. Due to its computational simplicity and strong
explanatory power, MLR is widely applied in hyperspectral
inversion studies of crop indices (Ma et al., 2023). In this study,
SR was the dependent variable, while key hyperspectral parameters,
along with climate factors such as Ts, were the independent
variables. The final optimal model was selected using the Akaike
Information Criterion (AIC) (Vrieze, 2012).

The MLR model can be represented as Equation 3:

yi � β0 + β1x1 + β2x2 + . . . + βnxn + ϵ (3)
Where, yi represents the SR in this study, β0 is the intercept, β1, β2,
. . . βn are the regression coefficients for the input parameters x1, x2,
. . . xn; x1, x2, . . . xn are the key hyperspectral parameters and Ts

listed in Table 1, ϵ is the error term.
The MLR model was developed using MATLAB (version 2022a,

Math Works, Natick, MA, United States) with the Statistics and ML
Toolbox. AIC was employed for variable selection, iterating through
all parameter combinations to identify the subset that minimized
AIC values, which yielded the final optimal model. The model’s
performance was evaluated using the “fitlm” function, with AIC
calculated based on the residual sum of squares. The coefficients of
the best-performing model were standardized to assess each
predictor’s contribution to SR, and these contributions were
visualized in a bar chart. During AIC selection, all results were
systematically documented, providing a comprehensive overview of
the final optimal MLR model’s performance and variable
contributions.

2.5.2 Machine learning model
XGBoost, an advanced gradient boosting algorithm, is

composed of K CART trees and can be represented by the
following Equation 4:

Φ xi( ) � ∑K
k�1

fk xi( ), fk ∈ F (4)

Here, fk represents the kth tree, fk(xi) the score of the ith node
of the kth tree, and F is the collection of all conceivable CART trees,
defined as F � f|f(x) � wq(x){ }, where wq(x) is the weight vector
comprising the leaf node weights in the regression tree.

Like many ML algorithms, XGBoost includes a loss function to
measure model accuracy, paired with a regularization term to
control model complexity and prevent overfitting. The complete
objective function L is defined as Equation 5:

L Φ( ) � l yi, ŷi( ) +∑K
k�1

Ω fk( ) (5)

In this equation, l is the loss function, measuring the difference
between predicted values (ŷi) and the actual targets (yi), while Ω
represents the regularization term, detailed as Equation 6:

Ω f( ) � γT + 1
2
λ ω‖ ‖2 (6)

Here, γ quantifies the complexity of the tree’s leaves; T is the
number of leaves; λ controls the penalty; and ω represents the leaf
node scores (Ma et al., 2021).

The XGBoost model was implemented using the ‘xgboost’
package in R (version x64 4.0.4), with the following parameters:
the objective function was “reg: squarederror,” the evaluation metric
was root mean square error (RMSE), the learning rate was 0.1, the
maximum tree depth was 6, and both data and feature subsampling
ratios were set to 0.7. The XGBoost model was trained over
100 iterations, and performance was assessed using the coefficient
of determination (R2) and RMSE. After model training, feature
importance was evaluated using the ‘xgb.importance’ function.
All results were systematically documented and exported for
further analysis, providing a comprehensive view of the XGBoost
model’s performance.

2.5.3 Statistical analysis
Statistical analysis was primarily conducted using SPSS software

(version 22, IBM Corp., Armonk, NY, United States), and all figures
were generated using R (version x64 4.0.4; R Core Team, Vienna,
Austria) to ensure high-quality visualization. Descriptive statistics
were computed to summarize the sample characteristics, and
independent sample t-tests were used to assess differences
between groups a, b, and c. A significance level of 0.05 was set,
with p < 0.05 considered statistically significant.

Pearson correlation analysis was conducted in R using the ‘cor()’
function to calculate the Pearson correlation coefficients.
Additionally, a correlation matrix plot was generated using the
“PerformanceAnalytics” package in R to visually represent the
relationships between variables.

A randomly selected 1/3 samples set was used to validate the
reliability and robustness of all models. To assess the accuracy of SR
simulations produced by the MLR and XGBoost models, we applied
three key evaluation metrics: the coefficient of determination (R2),
root mean square error (RMSE) and residual. R2 indicates how well
the model predictions explain the variability in observed SR values.
A higher R2 value suggests that the model captures more of the data’s
variability, with values closer to 1 indicating stronger predictive
accuracy. The RMSE quantifies the average magnitude of the error
between predicted and observed SR values, with lower values
indicating better model performance. The residuals were
computed as the difference between the observed and predicted
values of SR. Their equations (Equations 7–9) are as follows:

R2 � 1 −
∑n
i�1

yi − p xi( )( )2
∑n
i�1

yi − �yi( )2 (7)

RMSE �
															
1
n
∑n
i�1

p xi( ) − yi( )2√
(8)

Residuali � Observedi − Predictedi (9)

Frontiers in Environmental Science frontiersin.org05

Zeng et al. 10.3389/fenvs.2024.1505987

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1505987


Where n represents the number of samples in the predictive set;
p(xi) represents the simulated values, and yi represents the
measured value; Observedi is the observational SR rate for the ith
sample; Predictedi is the predicted SR rate for the i-th sample.

3 Results

3.1 Model evaluation for the whole
growth season

Figure 2 showed the importance of input features in both the
XGBoost and MLR models, along with their contributions to
simulating SR. In the XGBoost model (Figure 2A), the feature Ts

was the most significant factor, suggesting that soil temperature Ts

had the largest influence on SR predictions for summer maize. Other
important features included the red edge position (λr) and red
trough reflectance (Rr). In contrast, the MLR model (Figure 2B),
which was optimized using the AIC (AIC = −68.3913), revealed that
the Ratio Vegetation Index (RVI) had the greatest impact. This
finding suggests that specific vegetation indices played a critical
explanatory role in the MLR model’s simulation of SR. Additional
features, such as the NDVI and the Photochemical Reflectance Index
(PRI), also had significant effects on the MLR model’s performance.

The XGBoost model significantly outperformed the MLR model
in estimating SR for summer maize throughout the whole growth
season (Figure 3A). The XGBoost model achieved a higher R2 value
(R2 = 0.9298), indicating a stronger ability to explain variance, and a
lower RMSE (RMSE = 0.2887), demonstrating lower prediction
error. The fitted curve for the XGBoost model closely aligned

FIGURE 2
Parameter contributions of the MLR and XGBoost models. (A) MLR; (B) XGBoost. The parameters full names see Table 1.

FIGURE 3
Different behaviors of MLR and XGBoost models in simulating soil respiration rate (A). Relationships between soil respiration measurements and
simulations by the MLR and XGBoost models for the whole growth season (n = 30) (B). Comparison of residual error distributions for XGBoost and MLR
models (n = 30).
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with the 1:1 line, with data points clustered around it, suggesting that
the XGBoost model accurately simulated SR across both high and
low values. In contrast, the MLR model’s fitted curve deviated more
from the 1:1 line, with data points showing greater scatter. The MLR
model tended to overestimate lower SR values and underestimate
higher SR values.

In the comparative analysis of model errors, the residual
distributions of the XGBoost and MLR models exhibited
significant differences (Figure 3B). The error of the XGBoost
model was smaller and more concentrated, with residuals
primarily ranging between −1 and 1, and a median close to 0,
indicating that XGBoost demonstrated higher accuracy and stability
in its prediction of SR rate. In contrast, the error range of the MLR
model was broader, spanning from −2 to 2, with notably higher
variability in the residuals. The boxplot of the MLR model displayed
a wider interquartile range and pronounced lower outliers,
suggesting that this model yielded larger errors for certain data
points and lacked stability in its predictions.

3.2 Comparison of simulated SR under
different treatment conditions

As shown in Figure 4, both the MLR and XGBoost models
successfully captured the effects of drought on SR rates, indicating
that SR rates decreased under drought treatments across all growth
stages (JS, TS, FS, and GFS). However, the XGBoost model
performed better than the MLR model, with its simulated values
more closely aligning with the measured values, particularly under
the control treatment across all four stages. In contrast, the MLR
model exhibited significant discrepancies between its simulated and
measured values, especially during drought treatments.

The performances of both models in simulating SR rates for
summer maize varied across different treatments and growth stages.
Under control treatment, the XGBoost model more accurately

simulated SR rates, though it slight overestimated them by
approximately 5.6% during the JS. In contrast, the MLR model
consistently underestimated SR rates across all growth stages, with
the most significant underestimation occurred during the JS
(15.35%), and the least during the FS (7.32%). Under drought
treatments, both models significantly overestimated SR rates
across all stages. However, the MLR model’s overestimations
were much larger than those of the XGBoost model. The MLR
model overestimated SR rates by 87.25% during the JS, with the
highest error occurring under drought treatments, while the smallest
overestimation occurred during the GFS (4.54%). Although the
XGBoost model also overestimated SR rates at all stages, its
errors were much smaller, with the largest overestimation
occurring during the JS stage (40.1%) and the smallest during the
GFS stage (14.6%). These results indicate the superior performance
of the XGBoost model in modeling SR under varying moisture
conditions.

3.3 Comparison of measured and simulated
relationships between SR and Ts

The sensitivity of SR rates to Ts varied between the MLR and
XGBoost models (Figure 5). Both models reasonably captured the
relationship of Ts on SR, as evidenced by their fitted curves
aligning with the observed data points. However, the sensitivity
of the simulated SR values to temperature (Q10) decreased in both
control and drought treatments. Despite this, the XGBoost model
generally outperformed the MLR model. Under control
treatments, the sensitivity coefficient of SR rates to Ts

simulated by the XGBoost model (Q10 = 1.3418), was only
6.1% lower than the measured sensitivity coefficient (Q10 =
1.4287). In contrast, the MLR model’s sensitivity coefficient
(Q10 = 1.1888) showed a more substantial decrease of 16.79%.
Additionally, both models exhibited reduced explanatory power

FIGURE 4
Comparison of measured and simulated soil respiration rates by the MLR and XGBoost models across the four growth stages under different
treatment conditions. (A) Control treatment; (B) Drought treatment. JS: Jointing Stage, TS: Tasseling Stage, FS: Flowering Stage, GFS: Grain Filling Stage.
Values with different letters (A–C) indicate significant differences between the model simulations and the measured values (p < 0.05).
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in their fitted functions, suggesting that discrepancies between
simulated and measured values affected the Q10 values.
Nevertheless, the XGBoost model (R2 = 0.6584) provided
better explanatory power than the MLR model (R2 = 0.6528).
Under drought treatments, the XGBoost model’s sensitivity
coefficient (Q10 = 1.1208) was 4.49% lower than the measured
coefficient (Q10 = 1.1735), while the MLR model’s coefficient
(Q10 = 1.0544) decreased by 20.48%. Although both models
showed reduced explanatory power for SR variability under
drought conditions, the Q10 values from the fitted functions in
both models indicated higher explanatory power than the
measured values.

4 Discussion

4.1 Model performance comparison

In this study, we compared the performance of the MLR and
XGBoost models in simulating SR across different growth stages
under both drought and control treatments. The results consistently
demonstrated that the XGBoost model outperformed the MLR
model, as indicated by its higher R2 and lower RMSE values. The
superior performance of the XGBoost model is primarily attributed
to its ability to capture non-linear relationships between parameters
(Chen and Guestrin, 2016; Ding, 2024).

A Pearson correlation analysis was conducted to examine the
relationships between various parameters and SR (Figure 6). The
analysis revealed that parameters, such as Db, Dr, DVI, EVI, Rg, Rr,
SDb, SDr, SDy and Ts, exhibited clear nonlinear trends with SR,
indicating that the response of SR to these parameters is not uniform
but varies in intensity depending on other parameters. In contrast,
parameters, such as λb, λg, and λy, showed weak linear relationships
with SR, with their correlations being statistically insignificant. This
indicates that, while some parameters may exhibit linear

relationships with SR, their overall contribution to SR variability
is minimal.

The XGBoost, a decision tree-based gradient boosting
framework, excels at handling non-linear relationships (Chen and
Guestrin, 2016; Liang et al., 2020; Nabavi et al., 2023). The decision
trees in the XGBoost model divide data into distinct regions,
enabling the model to capture complex interactions. The
XGBoost model builds these tree models incrementally, using a
boosting method where each new tree corrects the errors of the
previous one (Kiangala and Wang, 2021; Zhang et al., 2019). This
recursive process allows the XGBoost model to capture intricate
patterns and non-linear features in the data, whereas the traditional
MLR model struggles due to its inherent linear assumptions. For
instance, parameters like Ts and Db, which showed high non-
linearity with the SR rate (Figure 6), were better captured by the
XGBoost model, while the MLR model failed to account for their
non-linear impacts.

Additionally, the XGBoost model handles multicollinearity
among parameters effectively (Chen et al., 2022). Its tree-based
structure prioritizes important features during model construction
without being limited by linear relationships (Kern et al., 2019; Tong
et al., 2003). This ensures strong predictive performance even in the
presence of highly correlated variables. For example, in this study,
significant multicollinearity existed among parameters, such as
NDVI, PRI, and Ts, which posed challenges for the traditional
MLR model (Garg and Tai, 2013). Since the MLR model assumes
that predictor variables are independent, it struggles with stability
and reliability when dealing with multicollinearity (Weaving et al.,
2019; Chan et al., 2022). While the MLR model used AIC to select
important predictors, including NDVI, RVI, PRI, Ts, and SDb, it still
struggled to manage the effects of multicollinearity, resulting in
weaker performance. In contrast, XGBoost automatically accounts
for variable interactions in each decision tree split, mitigating the
negative effects of multicollinearity on model performance
(Kavzoglu and Teke, 2022; Wu et al., 2024).

FIGURE 5
Comparison on the measured and simulated relationships between soil respiration and temperature. (A) Control treatment, (B) Drought treatment.
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The XGBoost model stands out in identifying and leveraging
feature interactions, making it suitable for complex, high-
dimensional datasets (Hastie et al., 2009; Huang et al., 2022).
Unlike MLR, which relies on predefined linear relationships and
manually added interaction terms, XGBoost dynamically uncovers
important feature interactions during training (Niazkar et al., 2024).
This enables XGBoost to capture non-linear and higher-order
interactions directly from the data, without the need for explicit
feature engineering (Weaving et al., 2019). In contrast, MLR requires
prior assumptions about feature interactions, which increases the
risk of inaccuracies when dealing with complex variable
interdependencies.

Furthermore, the XGBoost model also uses Lasso and Ridge
regularization techniques to prevent overfitting, enhancing its

modeling robustness (Friedman, 2001; Elavarasan and Vincent,
2020). Regularization penalizes overly complex models, allowing
the XGBoost model to maintain strong performance even in
noisy datasets or when faced with low-importance variables
(Zhang and Jánošík, 2024). In contrast, the traditional MLR
model, lacking these regularization treatments, is more
vulnerable to overfitting, especially in the presence of
multicollinearity (Dormann et al., 2013). Although AIC helps
select optimal predictors in the MLR model, it does not fully
mitigate the risk of overfitting, particularly when dealing with
correlated variables or when the model becomes too complex.
Hence, the XGBoost model’s ability to manage data complexity
more effectively through regularization offers a clear advantage
over the MLR model.

FIGURE 6
The correlation matrix of soil respiration and all parameters. Below the diagonal, bivariate scatter plots with a red fitted line representing the
relationship between the two parameters are displayed. Above the diagonal, the correlation values along with significance levels indicated by stars are
shown. *Represents a significant difference at 0.01 < p ≤ 0.05; **represents a significant difference at 0.005 < p ≤ 0.01; ***represents a significant
difference at p ≤ 0.005. Each parameter is displayed as a blue label on the diagonal, and the full names of the parameters are provided in Table 1.
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In summary, the XGBoost model’s ability to capture non-linear
relationships, manage multicollinearity, and utilize regularization
techniques significantly enhances its robustness and predictive
accuracy. In contrast, the MLR model’s reliance on linear
assumptions and vulnerability to overfitting limit its effectiveness
when applied to complex datasets. Our study underscores the
importance of selecting appropriate modeling techniques tailored
to the complex and non-linear nature of ecological and
agricultural data.

4.2 Changes of soil respiration rate with
hyperspectral features

This study utilized hyperspectral remote sensing features to
predict SR in summer maize, demonstrating the potential of
hyperspectral data for non-destructive SR estimation. The
correlation between SR and hyperspectral features arrised from
the hyperspectral data’s ability to indirectly capture key
vegetation and soil characteristics, which reflect key
environmental and biological factors that influencing SR (Huang
et al., 2014). Previous research has shown that hyperspectral data
can indicate SR indirectly through vegetation indices, chlorophyll
content, soil surface reflectance, and other spectral parameters
(Cicuendez et al., 2015; Ding et al., 2021). These features are
closely related to plant growth, soil moisture, and temperature
conditions, all of which directly impact root respiration and
microbial activity, thereby driving SR.

In prior studies, hyperspectral remote sensing has represented
SR effectively by capturing vegetation spectral characteristics, such
as chlorophyll concentration and biomass content, that are closely
tied to plant productivity and photosynthetic activity (Ding et al.,
2021). These processes influence root and microbial respiration,
which in turn affect SR (Feilhauer et al., 2017). Additionally,
hyperspectral data are sensitive to soil and plant water content,
which can indicate SR fluctuations by revealing variation in soil
moisture that influence SR rate. By analyzing specific spectral bands
and indices, such as NDVI and chlorophyll-based indices,
hyperspectral data can capture those plant and soil health
indicators relevant to SR, thus enhancing the estimation accuracy
of SR models (Ding et al., 2021; Yao et al., 2021).

However, several environmental and biological factors
significantly influence the relationship between SR and
hyperspectral data. For example, plant species and growth stage
have key influence on spectral characteristics, as they show
substantial variability in physiological responses, canopy
structure, and leaf biochemistry, all of which alter spectral
signatures (Feilhauer et al., 2017). Water condition directly
impacts SR by affecting microbial activity and root respiration,
which drive variation in SR rate (Philippot et al., 2024).
Hyperspectral data, especially water absorption bands, can
indirectly capture this influence on SR. Moreover, soil
temperature is another significant factor. Higher temperatures
tend to promote microbial and root respiration, and temperature
changes influence vegetation spectral response, which in turn affects
SR estimate derived from hyperspectral data (Yao et al., 2021).

Our findings align with some previously observed trends,
though differences also exist. Similar to other studies, we found

that specific vegetation indices (e.g., NDVI) effectively capture SR
changes across different growth stages, indicating that hyperspectral
data are robust in reflecting plant-soil interactions that drive SR
(Cicuendez et al., 2015). However, the sensitivities of SR to drought
treatments and growth stage variation are more pronounced in our
study. These differences may arise from our experimental
conditions, including maize growth stages under controlled
drought treatments, as well as the local climate and soil
properties differing from those in other studies.

4.3 Uncertainties and future work

Although we found that the performance of ML XGBoost model
in simulating SR rates during the growth stages of maize cropland
was better than the traditional MLR model, there are still some
uncertainties in the study. One limitation is the absence of
continuous drought treatments across all four growth stages (JS,
TS, SS, and GFS). While the current experimental design provides
insights into short-term SR responses, long-term drought exposure
could induce more complex responses, potentially altering microbial
activity, root respiration, and C cycling over time (Wang et al.,
2014). Hence, future studies incorporating continuous drought
treatments throughout all growth stages would be valuable for
comprehensively assessing the long-term impacts of water stress
on SR through ML models.

Further modelling research is needed to examine the effects of
initiating drought during different growth stages. The timing of
drought onset is crucial, as SR responses can vary depending on the
developmental stage of the crop. For instance, early-stage drought
may have a more pronounced effect on root development and
microbial interactions, while drought at later stages may alter C
allocation and respiration processes (Liu et al., 2022). Additional
field and modeling experiments applying drought treatments at
varying growth stages over extended periods would provide more
robust estimates of SR dynamics, particularly when using
hyperspectral remote sensing under varying environmental stress
scenarios (Zhang et al., 2019).

Finally, this study was conducted with maize grown in potted
plants, which may not fully represent the complexities of field
conditions. Factors such as soil texture, microclimate, and
micrograph, etc., could also influence SR (Conant et al., 2000).
Therefore, future large-scale field experiments are necessary to
strengthen the evaluation of the ML models using hyperspectral
remote sensing in more complex, real-world conditions. These
studies would provide a more realistic assessment of SR under
various drought conditions and enhance the robustness of the
conclusions drawn from this research.

5 Conclusion

This study compared the performance of traditional MLR and
ML XGBoost models in simulating SR rates of summer maize under
different growth stages and drought treatment conditions. The
results clearly demonstrate that the XGBoost model significantly
outperformed the MLR model in both accuracy and predictive
capability, effectively capturing the variability in SR rates across
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the different stages. Moreover, the XGBoost model demonstrated
superior sensitivity to soil temperature compared to theMLRmodel.
Our findings suggest that the ML XGBoost model, when combined
with hyperspectral remote sensing, provides a robust tool for
simulating SR in summer maize croplands under varying
environmental conditions. This highlights the potential of
integrating ML and hyperspectral remote sensing as a promising
approach for modeling C cycling in croplands.
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