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Climate risks include two elements: physical risks and transition risks. Exploring
the impact of climate risks on green technology innovation contributes to
sustainable development. This study uses panel data from 269 cities in China
from 2008 to 2022 to explore the impact of climate risks on green technology
innovation, and it employs Spatial Dubin Models for spatial effects analysis. The
main research conclusions are as follows. First, the two components of climate
risks—physical risks and transition risks—significantly hinder green technology
innovation. Second, physical risks suppress green technology innovation by
reducing market potential, while transition risks do so by decreasing foreign
direct investment. Third, over time, green technology innovation shows a spatial
clustering pattern of “low-low” and “high-high.” Fourth, physical risks create
negative spatial spillover effects, while transition risks generate positive ones.
Fifth, the spatial spillover effects of physical risks are mainly seen in the central
region, while those of transition risks are primarily observed in the eastern and
western regions, indicating significant regional heterogeneity. Finally, transition
risks promoted green technology innovation in the period of 2018–2022, which
is different from their suppressive effects in other time periods. In general, this
study establishes a more comprehensive analytical framework that fills existing
research gaps.

KEYWORDS

climate risks, green technology innovation, Spatial Dubin Models, spatial spillover
effects, regional heterogeneity

1 Introduction

Agricultural, industrial and household sectors are the main causes of climate change
and global warming (Abbas et al., 2022; Elahi et al., 2024). Global warming has intensified
the instability of the climate system, causing climate factors to gradually become a new
source of risk affecting the stability of economic and financial activities (Cai and Lontzek,
2019; Rising et al., 2022; Zhao et al., 2024). The “China Climate Change Blue Book (2023),”
released in July 2023, indicates that China’s rate of warming is significantly higher than the
global average, with a notable increase in the frequency and intensity of extreme heat,
extreme cold, and extreme precipitation in recent years. Currently, China is in a crucial
stage of economic transformation and upgrading, and its vast territory, large population,
and diverse climate changes make it particularly sensitive to climate risks (Wang et al.,
2024b). Climate risks include physical risks and transition risks, physical risks refer to the
direct impacts on society and the economy caused by natural environmental changes due to
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climate change, such as the increased frequency and intensity of
extreme heat, extreme cold, and extreme precipitation, while
transition risks measured by carbon emissions per unit of Gross
Domestic Product (GDP), arise from policy and market changes
during economic transformation to address climate change. Against
the backdrop of increasing climate risks (Elahi et al., 2022), green
technology innovation has emerged, which can effectively mitigate
climate risks and reduce the harms caused by climate change
(Schiederig et al., 2012; Waseem et al., 2021; Habiba et al., 2022;
Lin et al., 2023; Xiao and Fei, 2024).

The existing literature’s research conclusions partially address
the impact of physical risks and transition risks on green technology
innovation. The existing literature clarifies the concept of physical
risks, which includes extreme heat, extreme cold, and extreme
precipitation. Moreover, previous studies have explored the
impact of extreme heat and extreme precipitation on green
technology innovation, yielding some contradictory conclusions.
Meanwhile, the existing literature has clarified the measurement
transition risks and explained their impact on economic variables
such as foreign direct investment (FDI) and industrial structure.
More importantly, existing research has demonstrated the
significance of green technology innovation, such as its ability to
promote economic growth, reduce carbon emissions, alleviate
energy poverty, and facilitate green transition, making it
necessary to pursue green technology innovation.

Although exploring the relationship between climate risks and
green technology innovation is crucial for achieving sustainable
development, existing research has not comprehensively and
systematically addressed this issue. For example, climate risks
typically include both physical risks and transition risks, but
existing research often focuses on only one aspect, neglecting the
other. Meanwhile, the measurement indicators for physical risks
include extreme heat, extreme cold, and extreme precipitation, yet
few studies encompass all three aspects simultaneously. Additionally,
the existing literature has not addressed the impact of transition risks
on green technology innovation. Furthermore, existing research has
not mentioned the mediating variables of climate risks affecting green
technology innovation. Finally, existing research primarily focuses on
simple causal inference without considering the spillover effects of
various variables in spatial dimensions.

The main research topic of this paper is to comprehensively
explore the impact of climate change on green technology
innovation and to address the shortcomings of existing research.
Therefore, the marginal contributions of this study are as follows.
First, this research measures climate risks from both physical and
transition risks perspectives and calculates their respective effects on
green technology innovation. Second, it comprehensively assesses
physical risks from the three aspects of extreme heat, extreme cold,
and extreme precipitation. Third, this study includes the mediating
effects analysis that is often overlooked in existing research on this
topic. Fourth, while exploring the causal relationships between
variables, this study also measures the spatial spillover effects of
each variable.

This study uses data from 269 cities in China from 2008 to 2022. It
explores the impact of climate risks on green technology innovation
through panel regression models and employs mediation effects
analysis to identify the mediating variables through which climate
risks influence green technology innovation. Additionally, this

research investigates the spatial spillover effects of each variable
using Spatial Dubin Models. This paper is divided into seven
sections: introduction, literature review, theoretical foundation and
research hypothesis, research design and methods, empirical analysis,
robustness tests, and conclusions and discussions. The introduction
part provides an overview of the research topic, outlining the
significance of the study. The literature review part reviews existing
studies on climate risks and green technology innovation, highlighting
gaps in the current research and establishing the context for this study.
The theoretical foundation and research hypothesis part presents the
theoretical framework guiding the research and formulates the
hypotheses to be tested. The research design and methods part
details the research design, data sources, and methodologies
employed to analyze the effects of climate risks on green
technology innovation. The empirical analysis section presents the
results of the empirical analysis, showcasing the findings regarding the
impact of climate risks on green technology innovation, as well as the
spatial spillover effects. The robustness tests part conducts various
robustness tests to validate the reliability and consistency of the
study’s findings. Finally, the conclusions and discussions section
summarizes the key findings, discusses their implications for policy
and practice, and suggests directions for future research.

2 Literature review

Green technology innovation mainly refers to technological
innovations that improve resource utilization efficiency, reduce
pollutant emissions, and promote the transition of the economy
to a green economy (Wang et al., 2019; Lv et al., 2021; Shang et al.,
2022; Bai et al., 2023). Regarding climate risks, based on existing
literature, this paper identifies two main aspects: physical risks and
transition risks (Chen et al., 2022). The following will review the
relationships between the variables discussed in the paper, in
conjunction with existing literature.

Although existing literature has thoroughly analyzed the
connotation of physical risks and examined their impact on some
economic variables, there have been few comprehensive studies on
the impact of physical risks on green technology innovation. The
main conclusions of existing research are as follows. First, the
casualties and damage to production facilities caused by physical
risks directly impact enterprise production costs and efficiency, while
infrastructure damage increases capital costs, leading regions with
higher physical risks to face higher bond issuance costs and the need
to offer higher yields compared to areas with lower risks (Escaleras
and Register, 2011; Zscheischler et al., 2018; Painter, 2020). Second,
damage to key transportation routes, such as roads and railways,
caused by climate disasters may lead to supply chain disruptions,
resulting in decreased sales and production for enterprises (Huang
et al., 2018). Third, some studies indicate that certain components of
physical risks affect green technology innovation, but their
conclusions are somewhat contradictory. For instance, one study
suggests that extreme precipitation can promote green technology
innovation in the short term, while extreme high and low
temperatures do not (Wang et al., 2024a). However, other studies
argue that the negative impact of extreme precipitation on green
technology innovation is the most significant, while some research
claims that extreme high temperatures promote green technology
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innovation (Ling and Gao, 2023; Wen et al., 2023; Hou et al., 2024).
Therefore, analyzing the impact of physical risks on green technology
innovation helps to complement existing research.

Regarding transition risks, existing research has mentioned their
impact on some economic variables, but no studies have addressed the
influence of transition risks on green technology innovation. The
following are the conclusions from the existing literature. First,
transition risks can alter the comparative advantages of a region
and increase transition costs, leading multinational companies to take
these factors into account, which in turn affects the quantity and
structure of international capital inflows (Doytch, 2021; An et al.,
2022; Gu andHale, 2023). Second, transition risks can lead to changes
in industrial structure, negatively impacting industries related to fossil
fuel production and consumption, resulting in changes in asset values
and debt defaults, which affect the stability of the financial system (Lin
and Sun, 2016; Semieniuk et al., 2021). However, existing literature
has not established a connection between transition risks and green
technology innovation, so it is necessary to supplement the
relationship between the two.

In addition, existing literature indicates that green technology
innovation also impacts a wide range of economic variables, as
detailed below. First, green technology innovation has a significant
positive correlation with economic growth in both the long term and
short term, while it has a significant negative correlation with carbon
emissions (Meirun et al., 2021; Zhang, 2021; Dong et al., 2022; Chen
et al., 2023). Second, green technology innovation effectively alleviates
energy poverty and improves energy efficiency (Lee et al., 2022).
Finally, green technology innovation promotes the transition of
energy consumption to green energy (Song et al., 2023; Wei et al.,
2023). Since green technology innovation can bring various benefits, it
is necessary to explore the factors that can influence it.

Based on the above literature, although existing studies have
addressed physical risks, transition risks, and green technology
innovation, they have not fully measured the relationship among
the three. Additionally, the enhancement of green technology
innovation can bring various benefits. Therefore, it is necessary
to explore how climate risks, including physical risks and transition
risks, influence green technology innovation, while also conducting
mediating effects analysis to determine the influencing mechanisms.
Next, this paper will elaborate on the theoretical basis and research
hypotheses, thereby providing further support for the study.

3 Theoretical foundations and research
hypothesis

3.1 Climate change economics

Climate change economics was first proposed by Nordhaus in
1991. He constructed an Integrated Assessment Model (IAM) that
combines ecological and economic systems, using marginal analysis
to conduct a cost-benefit analysis of economic growth and
environmental governance, thereby establishing a connection
between climate and the economy (Nordhaus, 2007).
Subsequently, Stern conducted a comprehensive analysis of the
economic, social, and environmental impacts of climate change
in 2006, which is considered the most thorough report in the
field of climate change economics to date. Stern argued that all

countries will be affected by climate change, with the poorest nations
experiencing the earliest and most severe impacts. The harm caused
by climate change could amount to 20% or more of global GDP,
while the cost of actions to reduce greenhouse gas emissions to avoid
severe impacts could be limited to about 1% of global GDP per year.
If countries around the world take coordinated international action,
it can prevent the severe effects of climate change, and if countries
act together as required, by 2050, the market value of low-carbon
technologies could reach at least $500 billion, or even higher
(Nordhaus, 2007; Stern, 2008). However, it is still unknown what
kind of impact environmental changes will have on green
technology innovation. Based on the discussion of climate change
economics mentioned above, there is reason to believe that climate
risks may hinder green technology innovation. Since physical risks
often have a broad reach, they may create negative spatial spillover
effects (Gopalakrishnan and Damanpour, 1997; Shen et al., 2021).
Therefore, the following two research hypotheses are proposed.

Hypothesis 1: Both physical risks and transition risks will have a
negative impact on green technology innovation.

Hypothesis 2: Physical risks will generate negative spatial
spillover effects.

3.2 Externality theory

In economics, externalities refer to the effects of economic
behavior on the public that are not reflected in market prices.
Specifically, they can be divided into positive externalities that
have a beneficial impact on the public and do not require
repayment, and negative externalities that have an adverse impact
on the public and do not require payment (Tisdell, 1970). Generally,
the measurement method for transition risks is the carbon emissions
per unit of GDP (Gu and Hale, 2023; Ciccarelli and Marotta, 2024).
Carbon emissions can be seen as a good that generates negative
externalities. When a region increases its own carbon emissions, it
does not incur additional costs, but it can pollute the environment of
nearby areas, thereby stimulating green technology innovation in
those areas. Based on this, the following hypothesis is proposed.

Hypothesis 3: Transition risks will generate positive spatial
spillover effects.

3.3 Environmental Kuznets curve

The Environmental Kuznets Curve (EKC) is a theoretical
framework in economics that illustrates the connection between
economic growth and environmental pollution. According to the
EKC, as a country or region develops economically, environmental
pollution initially rises alongside economic growth. However, once a
specific turning point is reached, further economic advancement
leads to a decrease in environmental pollution, resulting in an
inverted “U” shaped curve representing this relationship (Kaika
and Zervas, 2013).

Economic growth benefits environmental improvement
because, as the growth rate increases, people have more
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disposable income and are therefore more willing to pay higher
prices for better environmental standards. The primary drivers of
long-term economic growth are technological advancements and
improvements in productivity, which help conserve raw materials
and reduce energy consumption, all of which are closely related to
green technology innovation (Sun et al., 2021). The transition risks
are measured by carbon emissions per unit of GDP (Gu and Hale,
2023; Ciccarelli and Marotta, 2024), and thus, based on the above
discussion, it is closely related to environmental pollution and
economic growth, and should be influenced by EKC, with its
coefficient changing over time. Therefore, Hypothesis 4 is proposed.

Hypothesis 4: The impact of transition risks on green
technological innovation will vary over time.

4 Research design and methods

4.1 Variable definitions

4.1.1 Dependent variable
The dependent variable of this study is the level of green

technology innovation (lnInnovation). Based on existing research,
this study uses the total number of green invention applications
and green utility model applications in each region per year. Since
inventions and utility models are two components of patents, this
measurement reflects the status of green patents in each region, thereby
indicating the level of green innovation (Du et al., 2019; Lv et al., 2021;
Shang et al., 2022). To avoid the impact of dimensionality on model
estimation, the logarithm of this variable is taken.

4.1.2 Core independent variables
Climate risk includes two aspects: physical risks and transition

risks. This study will measure these two dimensions separately
(Chen et al., 2022).

To measure physical risks (lnPhysical), the article uses the total
number of extreme high-temperature days, extreme low-
temperature days, and extreme precipitation days in each region
per year (Escaleras and Register, 2011; Han et al., 2018; Wang et al.,
2024a). To avoid the impact of dimensionality on model estimation,
the logarithm of this variable is also taken.

For transition risks (lnTransition), this study refers to existing
literature andmeasures them by dividing the carbon emissions of each
region per year by the regional GDP (Gu and Hale, 2023; Ciccarelli
and Marotta, 2024). This represents the carbon emissions per unit of
GDP. With a constant GDP, higher carbon emissions indicate greater
transition risks faced by the region. Similarly, to avoid the impact of
dimensionality, the logarithm of this variable has also been taken.

Therefore, this paper has established the measurement of the
core independent variables.

4.1.3 Mediator variables
To comprehensively explore the mechanisms through which

climate risk affects green technology innovation, this study will
conduct a mediation effects analysis and propose the following
intermediary variables based on existing research.

Market potential (MktPotential), as an intermediary variable for
physical risks, means that physical risk first impacts market

potential, which in turn affects the city’s capacity for green
technology innovation (Midelfart-Knarvik et al., 2000; Hanson,
2005). Green technology innovation primarily focuses on green
inventions and green utility models, both of which require
sufficient market conditions to be effective. Physical risks,
including extreme heat, extreme cold, and extreme precipitation,
can disrupt agricultural and industrial productivity, damage
infrastructure, and alter the cost-benefit scenarios across various
industries, thereby reducing market potential (Baker, 2009; Hong
et al., 2019). In this context, market potential is understood as the
potential demand and profitability for goods and services, including
green technologies used to mitigate the impacts of physical risks
(Arora and Gambardella, 2010). The erosion of market potential due
to physical risks can diminish profit incentives for research and
development, hindering green technology innovation, while an
increase in market potential can promote it, as seen in regions
with high market potential that may experience a rise in green
technology patents and investments due to firms seeking to
capitalize on the demand for environmentally friendly solutions
(Arora and Gambardella, 2010). Therefore, physical risks, market
potential, and green technology innovation are interconnected,
making it theoretically justified to explore market potential as a
mediating effect in the influence of physical risks on green
technology innovation. The calculation method for MktPotential
is to divide the GDP of each neighboring area by the distance to that
area, and then sum these values for all neighboring areas. Then, the
dimensions are processed to reduce their dimensionality, resulting
in the market potential data.

Foreign direct investment (lnFDI), as an intermediary variable
for transition risks, suggests that an increase in transition risks will
reduce the attractiveness of foreign investment, which in turn affects
green technology innovation (Song et al., 2015; Ali et al., 2022).
Existing research indicates that FDI interacts with multiple
economic variables, some of which are related to climate risk and
green technology innovation (Chen and Wu, 2017; Gao et al., 2022;
Ren et al., 2024). Specifically, climate change affects the
attractiveness of FDI through multiple channels. From the
perspective of transition risks, foreign investors’ location choices
in China are influenced by local environmental regulations, leading
them to prefer areas with less variation in site selection (Lin and Sun,
2016). Furthermore, multinational companies incorporate climate
transition risks into their long-term investment decisions, favoring
investments in regions with lower transformation risks (An et al.,
2022). In summary, transition risks, stemming from policy
uncertainties aimed at low-carbon and sustainable development,
can lead to significant changes in industrial structure and investment
environments, and the high costs of adapting to these changes may
undermine investor confidence, negatively affecting their economic
activities (Semieniuk et al., 2021). Meanwhile, the “Pollution Halo”
hypothesis suggests that FDI can bring advanced production
technologies and environmental protection technologies, while
also promoting local green technology innovation through
demonstration effects, learning effects, and technology spillover
effects (Letchumanan and Kodama, 2000). Therefore, the
mechanism by which transition risks affect green technology
innovation through FDI has been identified. The data for lnFDI
is obtained by taking the logarithm of the foreign investment
amount for each city each year.
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At this point, the intermediary variables used in the study have
been determined.

4.1.4 Control variables
To minimize the impact of other factors on green technology

innovation, this study selects per capita government expenditure
(lnGovExpenditure), per capita GDP (lnGDPper), the share of the
tertiary industry (Tertiary), and technological level (Tech) as control
variables, based on existing research on the influencing factors of
green technology innovation (Li et al., 2023; Xu et al., 2023).
Specifically, government expenditure reflects financial support for
innovation, while per capita GDP indicates economic capacity for
investment in new technologies. The share of the tertiary industry
captures the impact of economic structure on innovation, and
technological level represents existing capabilities that facilitate
green technology development. Together, these variables help
isolate the specific effects on green technology innovation. To
avoid the impact of dimensionality, control variables with larger
magnitudes have been transformed using logarithms. The
calculation method for lnGovExpenditure is the total fiscal
expenditure of each region per year divided by the population,
followed by taking the logarithm. The calculation method for
lnGDPper is each region’s GDP per year divided by the
population, also followed by taking the logarithm. For Tertiary, it
is calculated as the output of the tertiary industry in each region per
year divided by GDP. Tech is calculated as the annual research and
development (R&D) expenditure of each region divided by GDP.

4.2 Model settings

4.2.1 Benchmark regression models
To examine the impact of climate risks on green technology

innovation, a panel regression model with double fixed effects is
constructed for both physical risks and transition risks, as shown in
Equations 1, 2.

lnInnovationit � β0 + β1lnPhysicalit + β2lnGovExpenditureit

+ β3lnGDPperit + β4Tertiaryit

+ β5Techit + β6Zi + β7St + εit

(1)

lnInnovationit � β0 + β1lnTransitionit + β2lnGovExpenditureit

+ β3lnGDPperit + β4Tertiaryit

+ β5Techit + β6Zi + β7St + εit

(2)
In the above equations, lnInnovationit represents the level of

green technology innovation, lnPhysicalit represents physical risks,
lnTransitionit represents transition risks, lnGovExpenditureit,
lnGDPperit, Tertiaryit, and Techit are control variables, Zi is the
variable that changes only with individuals, St is the variable that
changes only with time, and εit is the random error term.

4.2.2 Mediation effects models
To further analyze the mechanism by which climate risks affect

green technology innovation, the following mediation effects models
are constructed, referencing existing research (Midelfart-Knarvik
et al., 2000; Hanson, 2005; Song et al., 2015; Ali et al., 2022). See
Equations 3–6.

MktPotentialit � β0 + β1lnPhysicalit + β2lnGovExpenditureit

+ β3lnGDPperit + β4Tertiaryit

+ β5Techit + β6Zi + β7St + εit

(3)
lnInnovationit � β0 + β1MktPotentialit + β2lnPhysicalit

+ β3lnGovExpenditureit + β4lnGDPperit

+ β5Tertiaryit + β6Techit + β7Zi + β8St + εit

(4)

lnFDIit � β0 + β1lnTransitionit + β2lnGovExpenditureit

+ β3lnGDPperit + β4Tertiaryit

+ β5Techit + β6Zi + β7St + εit

(5)

lnInnovationit � β0 + β1lnFDIit + β2lnTransitionit

+ β3lnGovExpenditureit + β4lnGDPperit

+ β5Tertiaryit + β6Techit + β7Zi + β8St + εit

(6)

In the above equations, MktPotentialit represents market
potential as the mediating variable for physical risks, lnFDIit
represents foreign direct investment as the mediating variable for
transition risks, and the definitions of the other variables are the
same as in Equations 1, 2.

4.2.3 Spatial effects models
To explore the spatial spillover effects of each variable,

it is necessary to construct spatial effects models. First, a
spatial weight matrix needs to be established based on the
geographical locations of the various regions (Zeng, 2022). See
Equation 7.

Wij � 1, i and j are geographically adjacent
0, i and j are not geographically adjacent

{ (7)

Second, it is necessary to test the spatial correlation of the data
using the global Moran’s I and local Moran’s I. Only if the data
shows significant spatial correlation can a spatial econometric model
be used. See Equations 8, 9.

I �
n∑n
i�1
∑n
j�1
Wij Xi − �X( ) Xj − �X( )

∑n
i�1
∑n
j�1
Wij∑n

i�1
Xi − �X( )2 (8)

Ii � Xi − �X( )
∑n
i�1

Xi − �X( )2 ∑n
j�1 j ≠ i

Wij Xj − �X( ) (9)

In Equations 8, 9, n represents the cities, X represents
the core variables, namely, green technology innovation,
physical risks, and transition risks, and W represents the
spatial weight matrix. Third, construct Spatial Dubin Models
to explore the spatial spillover effects of the variables, see
Equations 10, 11.

lnInnovationit � β0 + β1lnPhysicalit + β2lnGovExpenditureit

+ β3lnGDPperit + β4Tertiaryit

+ β5Techit + θ1W p lnPhysicalit

+ θ2W p lnGovExpenditureit

+ θ3W p lnGDPperit + θ4W p Tertiaryit

+ θ5W p Techit + εit

(10)
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lnInnovationit � β0 + β1lnTransitionit + β2lnGovExpenditureit

+ β3lnGDPperit + β4Tertiaryit + β5Techit

+ θ1W p lnTransitionit

+ θ2W p lnGovExpenditureit

+ θ3W p lnGDPperit + θ4W p Tertiaryit

+ θ5W p Techit + εit

(11)
In Equations 10, 11, W is the spatial weight matrix, and the

definitions of other variables are the same as in Equations 1, 2.
All model settings used in this study have been completed.

Empirical analysis will be conducted after explaining the
data sources.

4.3 Data sources

To ensure data availability and consistency in statistical standards,
this study excluded all cities in Taiwan province, as well as the Hong
Kong Special Administrative Region and the Macao Special
Administrative Region. Ultimately, panel data from 269 cities in
mainland China from 2008 to 2022 was selected as the research
sample for statistical modeling analysis. Climate risks data,
intermediary variables data, and control variables data are sourced
from the “China Urban Statistical Yearbook,” “China Environmental
Statistical Yearbook,” “China Population Statistical Yearbook,” and
the statistical yearbooks of various cities. Data on green technology
innovation comes from all valid patent information published by the
National Intellectual Property Administration. Since the Spatial
Dubin Model requires no missing data, a small number of missing
values for the variables needed for this model have been filled using
linear interpolation. However, the mediation effects analysis does not
require complete data, so to ensure data authenticity, missing values
for the intermediary variables are not filled.

5 Empirical analysis

5.1 Benchmark regressions

5.1.1 Descriptive statistics
Before conducting empirical analysis, descriptive statistics are

needed to grasp the overall characteristics of the data, as shown
in Table 1.

From Table 1, the data used in the study is large in volume and
covers a wide range of samples. Additionally, there are no missing
values except for the mediating variables, the data shows good
concentration, and there are no significant differences in
dimensions, making it suitable for empirical analysis.

5.1.2 Correlation analysis
Before conducting empirical analysis, it is necessary to calculate

the correlation coefficients between the variables to ensure that the
analysis is meaningful. See Table 2.

The correlation coefficients of the core variables lnPhysical and
lnTransition with lnInnovation are −0.075 and −0.687, respectively,
both significant at the 1% level, indicating negative correlations
between physical risks, transition risks, and green technology

innovation. Such negative correlations will be further explored
through regression analysis.

5.1.3 Benchmark regression results
The benchmark regression models are run according to

Equations 1, 2, and the results are shown in Table 3.
From the above table, the coefficient of lnPhysical is −0.140,

which is significant at the 1% level, and the coefficient of
lnTransition is −0.211, also significant at the 1% level. Clearly,
both physical risks and transition risks have a significant negative
impact on green technology innovation. Physical risks undermine
the material environment needed for green technology innovation.
Transition risks may, to some extent, affect environmental policies
and the attractiveness of investments, thereby hindering green
technology innovation. As for the further economic mechanisms,
they will be analyzed in the next section. Finally, Hypothesis 1 has
also been validated, indicating that climate risks have a negative
impact on green technology innovation.

5.2 Mediation effects analysis

5.2.1 Mediation effects of physical risks
According to Equations 3, 4, the mediating effects model of

physical risk is run, and the results are shown in Table 4.
In Table 4, the impact coefficient of lnPhysical on MktPotential

is −0.048, which is significant at the 10% level. The impact
coefficients of MktPotential and lnPhysical on lnInnovation are
0.102 and −0.118, respectively, both significant at the 10% level. This
validates the mechanism analysis in Section 4.1.3, which indicates
that physical risks have a negative impact on production, damaging
infrastructure and altering the cost-benefit ratio, thereby
suppressing market potential. The decline in market potential
adversely affects the profit incentives for research and
development, which is detrimental to green technology
innovation. Clearly, physical risks adversely affect green
technology innovation by reducing market potential.

5.2.2 Mediation effects of transition risks
Similarly, based on Equations 5, 6, the mediating effects model

of transition risks is run, and the results are shown in Table 5.

TABLE 1 Descriptive statistics.

Variables Obs Mean Std. Dev Min Max

lnInnovation 4,035 4.757 1.755 0.693 10.301

ln Physical 4,035 4.616 0.171 3.850 5.198

lnTransition 4,035 1.188 0.587 0.029 3.282

lnGovExpenditure 4,035 8.878 0.669 6.853 11.603

lnGDPper 4,035 10.659 0.644 4.595 13.056

Tertiary 4,035 0.415 0.102 0.118 0.839

Tech 4,035 0.003 0.003 0.000 0.063

MktPotential 3,035 0.327 0.395 0.000 3.426

lnFDI 3,674 5.438 1.808 0.077 10.099
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From the above table, the effect of lnTransition on lnFDI
is −0.798, which is significant at the 1% level. The effects of lnFDI
and lnTransition on lnInnovation are 0.032 and −0.247,
respectively, both significant at the 1% level. This is also
consistent with the discussion in Section 4.1.3, which states that

as foreign investors typically incorporate transition risks into their
long-term investment decisions and prefer to invest in regions with
lower transition risks, an increase in transition risks will reduce
FDI. However, according to the “Pollution Halo” hypothesis, there
is a positive correlation between FDI and green technology

TABLE 2 Correlation matrix.

Variables (1) (2) (3) (4) (5) (6) (7) (8) (9)

(1) lnInnovation 1.000

(2) ln Physical −0.075*** 1.000

(3) lnTransition −0.687*** 0.073*** 1.000

(4) lnGovExpenditure 0.594*** 0.004 −0.319*** 1.000

(5) lnGDPper 0.720*** −0.002 −0.575*** 0.799*** 1.000

(6) Tertiary 0.582*** 0.061*** −0.252*** 0.562*** 0.421*** 1.000

(7) Tech 0.459*** 0.006 −0.202*** 0.451*** 0.370*** 0.359*** 1.000

(8) MktPotential 0.800*** −0.290*** −0.595*** 0.427*** 0.546*** 0.484*** 0.407*** 1.000

(9) lnFDI 0.664*** −0.110*** −0.562*** 0.299*** 0.503*** 0.301*** 0.369*** 0.619*** 1.000

*p < 0.1, **p < 0.05, ***p < 0.01.

TABLE 3 Estimation of benchmark regression models.

Variables Physical risks model Transition risks model

Coefficient p-value Coefficient p-value

ln Physical −0.140*** (0.049) 0.005

lnTransition −0.211*** (0.081) 0.009

lnGovExpenditure 0.037 (0.084) 0.656 0.018 (0.080) 0.822

lnGDPper 0.370*** (0.070) 0.000 0.282*** (0.061) 0.000

Tertiary −0.529 (0.345) 0.126 −0.432 (0.356) 0.226

Tech 31.808*** (10.113) 0.002 31.027*** (9.891) 0.002

Constant 1.258 (0.979) 0.200 1.934** (0.970) 0.047

N 4,035 4,035

Adjusted R2 0.955 0.955

Standard errors in parentheses *p < 0.1, **p < 0.05, ***p < 0.01.

TABLE 4 Mediation analysis for physical risks.

Variables Dependent variable: MktPotential Dependent variable: lnInnovation

MktPoential 0.102*

ln Physical −0.048* −0.118*

lnGovExpenditure −0.065 0.040

lnGDPper 0.044 0.426***

Tertiary 0.025 −0.171

Tech 15.225* 27.747***

Constant 0.612 0.171

*p < 0.1, **p < 0.05, ***p < 0.01.
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innovation, so the decline in FDI leads to a reduction in green
technology innovation. It can be concluded that transition risks
inhibit green technology innovation by suppressing foreign direct
investment.

5.3 Spatial effects analysis

5.3.1 Spatial correlation tests
The presence of significant spatial correlation among variables is

a prerequisite for establishing spatial econometric models.
Therefore, based on Equations 8, 9, a global Moran’s I test and
calculation of Moran’s index for each year are conducted on the core
variables to verify spatial correlation. See Tables 6, 7.

From the two tables above, both the global and year-specific tests
show that the spatial correlation of the three core variables,
lnInnovation, lnPhysical, and lnTransition, is significant at the
1% level. This indicates an obvious spatial correlation. Next, the
Moran scatter plots of the variable lnInnovation for the years 2008,

TABLE 5 Mediation analysis for transition risks.

Variables Dependent variable: lnFDI Dependent variable: lnInnovation

lnFDI 0.032***

ln Transition −0.798*** −0.247***

lnGovExpenditure 0.570*** −0.005

lnGDPper 0.612*** 0.362***

Tertiary 1.443* −0.107

Tech 35.625*** 30.113***

Constant −5.887** 1.076

*p < 0.1, **p < 0.05, ***p < 0.01.

TABLE 6 Global Moran’s I test.

Variables I E(I) SD(I) Z p-value

lnInnovation 0.500*** 0.000 0.010 49.120 0.000

lnPhysical 0.785*** 0.000 0.010 77.084 0.000

ln Transition 0.355*** 0.000 0.010 34.854 0.000

*p < 0.1, **p < 0.05, ***p < 0.01.

TABLE 7 Moran’s I indexes for each year.

Year lnInnovation lnPhysical lnTransition

Moran’s I p-value Moran’s I p-value Moran’s I p-value

2008 0.287*** 0.000 0.849*** 0.000 0.368*** 0.000

2009 0.341*** 0.000 0.697*** 0.000 0.358*** 0.000

2010 0.336*** 0.000 0.651*** 0.000 0.354*** 0.000

2011 0.359*** 0.000 0.731*** 0.000 0.371*** 0.000

2012 0.348*** 0.000 0.627*** 0.000 0.364*** 0.000

2013 0.346*** 0.000 0.491*** 0.000 0.349*** 0.000

2014 0.356*** 0.000 0.796*** 0.000 0.375*** 0.000

2015 0.358*** 0.000 0.731*** 0.000 0.375*** 0.000

2016 0.391*** 0.000 0.544*** 0.000 0.399*** 0.000

2017 0.397*** 0.000 0.509*** 0.000 0.401*** 0.000

2018 0.423*** 0.000 0.607*** 0.000 0.403*** 0.000

2019 0.394*** 0.000 0.642*** 0.000 0.427*** 0.000

2020 0.410*** 0.000 0.583*** 0.000 0.431*** 0.000

2021 0.396*** 0.000 0.817*** 0.000 0.444*** 0.000

2022 0.378*** 0.000 0.569*** 0.000 0.352*** 0.000

*p < 0.1, **p < 0.05, ***p < 0.01.
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2013, 2018, and 2022 are plotted to observe the evolution of its
spatial clustering over time, as shown in Figure 1.

From Figure 1, it can be observed that over time, the spatial
distribution of lnInnovation has shifted from a loose distribution
across all four quadrants to being primarily concentrated in the first
and third quadrants, indicating “low-low” and “high-high”
clustering. This suggests that the degree of spatial clustering of
green technology innovation has gradually increased over time.
Policymakers should adopt targeted strategies for “low-low” and
“high-high” areas in green technology innovation. They can
establish incubators and provide support in “low-low” areas,
while promoting knowledge transfer and collaboration in “high-
high” areas to encourage balanced growth. These measures can help
accelerate the positive changes mentioned above. Next, the Spatial
Dubin Models will be used to further explore the relationships in
spatial dimensions.

5.3.2 Spatial model results
To select the appropriate spatial econometric model, tests

are conducted on lnInnovation, lnPhysical, lnTransition, and
the control variables. LM (Least Squares Mean Square) test, LR
(Likelihood Ratio) test, and Wald test are performed
(see Table 8).

The LM test shows that all hypothesis tests reject the null
hypothesis of “no spatial autocorrelation,” indicating significant
spatial autocorrelation. The LR test also rejects the null
hypothesis at the 1% significance level, suggesting that the Spatial
Dubin Models are the most appropriate choice. The Wald test
indicates that the spatial lag terms in the Spatial Dubin Models

are highly significant, making the analysis of spatial spillover effects
using the Spatial Dubin Models reasonable. Therefore, the model
estimations are based on Equations 10, 11 using fixed effects, and the
results are shown in Table 9.

From Table 9, the spatial lag coefficients (Spatial rho) of the two
models are 0.525 and 0.535, respectively, and are significant at the
1% level. This indicates that there is a significant spatial clustering
effect in the level of green technology innovation in cities, with a
notable positive spillover effect, meaning that a city’s green
technology innovation is easily influenced by various factors from
neighboring areas.

In terms of spatial spillover effects, the spatial spillover
coefficients for lnPhysical and lnTransition are −0.394 and 0.331,
respectively, both significant at the 1% level. This indicates that the
physical risks of one region negatively affect green technology
innovation in neighboring areas, while the transition risks of one
region positively influence green technology innovation in
neighboring areas. The reasons for these phenomena should be
consistent with the discussions in the “Theoretical Foundations and
Research Hypothesis” section. Specifically, physical risks tend to
have a broad impact, often damaging the innovation infrastructure
of multiple regions, thereby suppressing green technology
innovation in neighboring areas. In contrast, transition risks can
create negative externalities in the environment, which in turn
stimulate technological innovation in nearby regions. These also
confirm Hypothesis 2 and Hypothesis 3, which state that physical
risks generate negative spatial spillover effects, while transition risks
produce positive spatial spillover effects. Next, spatial effects
decomposition will be conducted.

FIGURE 1
Moran scatter Diagrams. (A)Moran scatter diagram in 2008 (B)Moran scatter diagram in 2013. (C)Moran scatter diagram in 2018 (D)Moran scatter
diagram in 2022.
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5.3.3 Spatial effects decomposition
To conduct an in-depth exploration of spatial spillover effects, a

decomposition of spatial effects is performed. Specifically, the
impact of independent variables on dependent variables within
the same region can be expressed as direct effect, while the
influence of independent variables from other regions on the
dependent variable in the current region is considered as indirect
effect. See Table 10.

For the lnPhysical variable, both the indirect effect and total
effect are significant at the 1% level, and both are negative, while the
direct effect is not significant. This indicates that the spatial spillover
effects of physical risks are primarily through the indirect effect,
meaning that the physical risks from neighboring areas spill over
into the current region, suppressing green technology innovation in
current region.

For the lnTransition variable, the coefficients for the direct
effect, indirect effect, and total effect are −0.125, 0.481, and

0.356, respectively, and are significant at least at the 10% level.
This indicates that the improvement in green technology innovation
in the current region is primarily driven by the transition risks from
other areas.

The above results further validate the discussion in the
“Theoretical Foundations and Research Hypothesis” section,
indicating that a region is sensitive to both physical risks and
transition risks from neighboring areas, thereby reaffirming
Hypothesis 2 and Hypothesis 3.

Then, regional heterogeneity analysis will also be conducted.

5.3.4 Regional heterogeneity analysis
Due to significant differences in resource endowments and

economic development across regions, it is necessary to explore the
regional differential impacts of climate risk on green technology
innovation. The sample of 269 cities is divided into eastern, central,
and western regions, and model estimations are conducted for each

TABLE 8 Spatial econometric model tests.

Spatial panel model tests Physical risks model Transition risks model

Value p-value Value p-value

LM Test Moran’s I 28.989*** 0.000 33.289*** 0.000

LM-lag 802.396*** 0.000 1,059.840*** 0.000

Robust-LM-lag 252.523*** 0.000 526.219*** 0.000

LM-error 742.196*** 0.000 654.301*** 0.000

Robust-LM-error 192.323*** 0.000 120.680*** 0.000

LR Test LR-SDM/SEM 339.398*** 0.000 179.594*** 0.000

LR-SDM/SAR 502.638*** 0.000 544.797*** 0.000

Wald Test Spatial-Lags 53.895*** 0.000 47.550*** 0.000

*p < 0.1, **p < 0.05, ***p < 0.01.

TABLE 9 Estimation results for Spatial Dubin Models.

Variables Physical risks model Transition risks model

Coefficient p-value Coefficient p-value

W*lnPhysical −0.394*** (0.097) 0.000

W*lnTransition 0.331*** (0.096) 0.001

W*lnGovExpenditure 0.025 (0.061) 0.682 0.047 (0.061) 0.444

W*lnGDPper −0.284*** (0.057) 0.000 −0.177** (0.073) 0.015

W*Tertiary 0.257 (0.231) 0.265 0.067 (0.237) 0.776

W*Tech −2.099 (5.370) 0.696 −1.980 (5.395) 0.714

Spatial rho 0.525*** (0.015) 0.000 0.535*** (0.015) 0.000

Sigma2 e 0.132*** (0.003) 0.000 0.132*** (0.003) 0.000

N 4,035 4,035

R2(within) 0.814 0.811

Standard errors in parentheses *p < 0.1, **p < 0.05, ***p < 0.01.

Frontiers in Environmental Science frontiersin.org10

Wu 10.3389/fenvs.2024.1510883

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1510883


region (Li and Qi, 2016; Nie et al., 2019). The model estimations
are also based on Equations 10, 11, with the results shown
in Table 11.

According to Table 11, first, the spatial lag term coefficients
(Spatial rho) for all six models are significant, indicating that the
analysis of regional heterogeneity is meaningful. Second, the
negative spatial spillover effects of lnPhysical are primarily
observed in the central region, while they are not significant in
the eastern and western regions. This indicates that the negative
spatial spillover effects of physical risks on green technology
innovation mainly manifests in the central region. Third, the
positive spillover effects of lnTransition are primarily evident in
the eastern and western regions, while they are not significant in the
central region. This indicates that the positive spatial spillover effects
of transition risks on green technology innovation mainly occur in
the eastern and western regions. Clearly, the models exhibit
significant regional heterogeneity.

The findings suggest that regional characteristics play a crucial
role in how physical and transition risks impact green technology
innovation. In the central region, physical risks significantly hinder
green technology innovation of neighboring areas. This is because
the central region faces greater climate and physical risks compared
to the eastern and western regions, with a broader impact, the spatial
spillover effects are more significant (Ren et al., 2022; Wang et al.,

2022). Conversely, the positive spillover effects of transition risks in
the eastern and western regions can be attributed to more supportive
policies that foster innovation (Shen et al., 2020; Zhuo and Deng,
2020). Overall, the analysis highlights the importance of considering
regional differences when evaluating the impact of risks on
technological development.

5.3.5 Period heterogeneity analysis
Due to China’s rapid economic growth and the selected

sample spanning 15 years, during which China’s per capita
GDP increased from approximately 3,400 US dollars to around
12,700 US dollars, the economic situation, policy orientation, and
environmental pressures varied. Therefore, this study divides the
15 years into three segments of 5 years each and re-runs the
benchmark regressions to explore whether the impact of climate
risks on green technology innovation changes over time.
See Table 12.

For the lnPhysical variable, its impact on green technology
innovation is negative in all three periods, but it is only
significant in the first and third periods, while it is not significant
in the second period. This may be due to the randomness of physical
risks, as there were not many natural disasters during the second
period, leading to a non-significant coefficient. This result is
acceptable and further confirms the negative impact of physical

TABLE 10 Decomposition of spatial effects.

Variables Physical risks model Transition risks model

Direct effects Indirect effects Total effects Direct effects Indirect effects Total effects

lnPhysical 0.113 −0.592*** −0.479***

lnTransition −0.125** 0.481*** 0.356*

lnGovExpenditure 0.580*** 0.582*** 1.162*** 0.583*** 0.645*** 1.228***

lnGDPper 0.450*** −0.093 0.357*** 0.399*** 0.061 0.461***

Tertiary 1.533*** 1.892*** 3.425*** 1.511*** 1.585*** 3.095***

Tech 24.734*** 19.519* 44.253*** 25.479*** 21.298** 46.777***

*p < 0.1, **p < 0.05, ***p < 0.01.

TABLE 11 Estimation results for different regions.

Variables Physical risks model Transition risks model

Eastern region Central region Western region Eastern region Central region Western region

W*lnPhysical −0.010 −0.702*** −0.078

W*lnTransition 0.560*** −0.077 0.769***

Control Variables YES YES YES YES YES YES

Spatial rho 0.513*** 0.505*** 0.449*** 0.526*** 0.529*** 0.437***

Sigma2 e 0.092*** 0.120*** 0.186*** 0.091*** 0.121*** 0.183***

N 1,095 1845 1,095 1,095 1845 1,095

R2(within) 0.865 0.823 0.780 0.864 0.814 0.789

*p < 0.1, **p < 0.05, ***p < 0.01.
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risks on green technology innovation. However, for the lnTransition
variable, unlike the significant negative coefficients in the first and
second periods, the coefficient in the third period is significantly
positive. Obviously, during the period from 2018 to 2022, transition
risks stimulated green technology innovation rather than suppressed
it. This also validates Hypothesis 4, which states that the impact of
transition risks on green technology innovation changes over
different time periods. Specifically, the empirical analysis above
shows an inverted U-shaped trend similar to EKC.

Next, robustness checks will be conducted to examine the
robustness level of the study.

6 Robustness tests

6.1 Remove samples

A robustness check is conducted by removing some samples.
The sample of 269 cities includes four municipalities that are directly
under the management of central government—Beijing, Shanghai,

Tianjin, and Chongqing. Although these are cities, they have
provincial administrative levels, larger populations, higher GDPs,
and broader regions, which may impact the overall models.
Therefore, these four cities are removed, and the Spatial Dubin
Models are re-estimated, with the results shown in Table 13.

Comparing Tables 9, 13, the coefficients and significance levels
of all variables have not changed substantially, indicating that the
models are relatively robust.

6.2 System generalized method of moments
estimation

To address the potential endogeneity issues in the spatial
econometric models, the system generalized method of
moments (GMM) estimation is employed to re-estimate the
models, using generated lagged variables as instrumental
variables to handle the endogeneity problem. The results of
estimating the Spatial Dubin Models using the system GMM
method are shown in Table 14.

TABLE 12 Estimation results for different periods.

Variables Physical risks model Transition risks model

2008–2012 2013–2017 2018–2022 2008–2012 2013–2017 2018–2022

lnPhysical −0.253*** −0.022 −0.855***

lnTransition −0.639*** −0.630*** 0.500***

Control Variables YES YES YES YES YES YES

N 1,345 1,345 1,345 1,345 1,345 1,345

Adjusted R2 0.573 0.565 0.211 0.578 0.571 0.121

*p < 0.1, **p < 0.05, ***p < 0.01.

TABLE 13 Estimation results after removing samples.

Variables Physical risks model Transition risks model

Coefficient p-value Coefficient p-value

W*lnPhysical −0.393*** (0.099) 0.000

W*lnTransition 0.302*** (0.099) 0.002

W*lnGovExpenditure 0.046 (0.061) 0.455 0.070 (0.061) 0.255

W*lnGDPper −0.285*** (0.058) 0.000 −0.198*** (0.073) 0.007

W*Tertiary 0.267 (0.234) 0.254 0.095 (0.241) 0.695

W*Tech −2.196 (5.403) 0.684 −2.246 (5.432) 0.679

Spatial rho 0.523*** (0.015) 0.000 0.534*** (0.015) 0.000

Sigma2 e 0.134*** (0.003) 0.000 0.134*** (0.003) 0.000

N 3,975 3,975

R2(within) 0.813 0.809

Standard errors in parentheses *p < 0.1, **p < 0.05, ***p < 0.01.
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The systemGMM requires two necessary conditions: no second-
order autocorrelation in the disturbance terms and jointly valid
instrumental variables, which correspond to AR(2) and Sargan test
p-values both being greater than 0.05 (Saygın and İskenderoğlu,
2022; Onaga et al., 2023). Therefore, both system GMM estimates
are valid, and according to the estimation results, lnPhysical and
lnTransition show significant negative and positive spatial spillover
effects, respectively, which is consistent with previous results,
indicating that the models are robust.

6.3 Winsorization

By applying winsorization, outliers in the data are prevented
from affecting estimations. The top 1% and bottom 1% of values are
replaced with the upper and lower quartiles, respectively. The
benchmark regressions are then re-run, and the results are
shown in Table 15.

Comparing Tables 3, 15, the coefficients and significance levels
of all variables have not changed substantially. Therefore, it can be
concluded that the models are not affected by outliers.

6.4 Placebo tests

Although three methods have been used to test the robustness
of the models, it is still not eliminating the influence of other
unobservable factors on green technology innovation. Therefore,
placebo tests are conducted. The basic logic of the tests is that only
changes in climate risks affect green technology innovation, not
other factors. Thus, the true values of climate risks are kept
constant, while the matching relationships between climate
risks and cities are randomly disrupted. The estimated
coefficients are then examined. If there are no significant
changes in the coefficients, it can be concluded that climate
risks indeed affect green technology innovation. After
1,000 random matchings, kernel density plots are obtained, as
shown in Figure 2.

From Figure 2, in 1,000 random samples, the coefficients of
lnPhysical and lnTransition remain stable, overall showing a normal
distribution without significant deviations. The models pass the
placebo tests.

In the next section, the research conclusions and implications
will be discussed based on the empirical results.

TABLE 14 Estimation results for system GMM.

Variables Physical risks model Transition risks model

W*lnPhysical −3.758*

W*lnTransition 3.026*

Constant 31.522*** −21.711**

LaggedDependent Variables YES YES

Instrumental Variables YES YES

AR(2) −1.71, p = 0.088 −1.27, p = 0.203

SarganTest 4.87, p = 0.978 24.47, p = 0.058

*p < 0.1, **p < 0.05, ***p < 0.01.

TABLE 15 Estimation results after winsorization.

Variables Physical risks model Transition risks model

Coefficient p-value Coefficient p-value

ln Physical −0.125** (0.050) 0.012

lnTransition −0.166** (0.083) 0.048

lnGovExpenditure 0.022 (0.091) 0.810 0.020 (0.091) 0.825

lnGDPper 0.418*** (0.078) 0.000 0.329*** (0.083) 0.000

Tertiary −0.414 (0.369) 0.262 −0.347 (0.372) 0.352

Tech 52.590*** (9.297) 0.000 51.881*** (9.215) 0.000

Constant 0.717 (1.074) 0.505 1.271 (1.170) 0.278

N 4,035 4,035

Adjusted R2 0.954 0.954

Standard errors in parentheses *p < 0.1, **p < 0.05, ***p < 0.01.
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7 Conclusion and discussions

The study is based on panel data from 269 cities in China from
2008 to 2022, comprehensively exploring the impact of climate risks
on green technology innovation. The main research conclusions are
as follows.

First, the two components of climate risks—physical risks and
transition risks—have a significant negative impact on green
technology innovation. Second, physical risks suppress green
technology innovation by reducing market potential, while
transition risks hinder green technology innovation by
decreasing foreign direct investment. Third, over time, green
technology innovation gradually exhibits a spatial clustering
pattern of “low-low” and “high-high.” Fourth, physical risks
generate negative spatial spillover effects, while transition risks
produce positive spatial spillover effects. Fifth, the spatial spillover
effects of physical risks are mainly evident in the central region,
while the spatial spillover effects of transition risks are primarily
observed in the eastern and western regions. Finally, transition
risks promoted green technology innovation in the period of
2018–2022, which is different from their suppressive effects in
other time periods.

These conclusions are all theoretical, and guiding practice based
on theory is the significance of research. Therefore, based on the
research findings, the following policy recommendations are
proposed to effectively address the challenges identified.

First, it is essential to develop comprehensive policies that tackle
both physical and transition risks simultaneously. This approach
should encourage green technology innovation and promote
sustainable development across all sectors. By integrating these
two aspects, a resilient framework that not only mitigates risks
but also fosters economic growth through environmentally friendly
practices can be created.

Second, to further stimulate green technology innovation,
policies should be designed to enhance market potential and
attract foreign investment. This could involve creating incentives
for businesses that invest in sustainable technologies, as well as

establishing partnerships with international firms to share
knowledge and resources. By improving the investment climate,
the advancement of green technologies can be indirectly promoted,
and their widespread adoption can also be ensured.

Third, it is crucial to address the negative spatial spillover effects
caused by physical risks. Policies should focus on eliminating these
risks within local areas while also considering the interconnectedness
with neighboring regions. This could involve collaborative efforts
between local governments to implement risk reduction strategies that
benefit both the local community and the wider region. By taking a
holistic approach, it can be ensured that improvements in one area do
not inadvertently create new risks in another.

Furthermore, policymakers must pay close attention to regional
heterogeneity when formulating strategies. Differentiated policies
should be developed based on the unique spatial clustering
characteristics of different regions. This means recognizing that
low-innovation areas may require targeted support to foster
development, while high-innovation areas might benefit from
policies that strengthen technology diffusion. More importantly,
to leverage the “low-low” and “high-high” clustering patterns of
green technology innovation, policymakers should implement
targeted strategies. For “low-low” areas, they can establish
innovation incubators, provide financial support, and enhance
education to build local capacity. In “high-high” areas, promoting
knowledge transfer and collaboration with lagging areas can
facilitate resource sharing. Creating networks between these
regions will foster balanced and inclusive growth in green
technology innovation.

Finally, policymakers should consider the heterogeneity across
time periods. As time progresses and the impact of transition risks
on green technology innovation shifts from hindrance to promotion,
it may be appropriate to downplay the harms caused by transition
risks and view them as one of the means to promote green
technology innovation.

This study also has its limitations. For example, the panel
data selected is a short panel, which may not fully reflect
trends over the time dimension. Future research on this topic

FIGURE 2
Kernel density plots. (A) Placebo Test for Physical Risks Model (B) Placebo Test for Transition Risks Model.
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could consider conducting time series analysis. Meanwhile,
due to data availability limitations, the selected 269 cities in
China do not encompass all 333 cities, resulting in some missing
data. Future research could consider filling in this missing data
before conducting the analysis. Finally, this study verified two
possible mediating effects, but there may be multiple mediating
variables through which climate risks impact green technology
innovation, warranting further exploration in future research.
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