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Can the accelerated development of ecological civilization promote the
sustainable development of green innovation?This paper investigates the
effects of ecological civilization demonstration zones (ECDZs) on green
innovation resilience. Based on a sample of 237 prefecture-level cities across
31 provinces in China from 2011 to 2021, our double dual machine learning and
spatial difference-in-differences model indicates that ECDZs significantly
enhance urban green innovation resilience. Our findings also reveal a spatial
spillover effect of ECDZ—the development of ECDZs in one city significantly
improves the resilience of green innovation in neighboring cities. The spatial
spillover effect reaches its maximum in the fifth year. Our analysis of the
underlying mechanisms suggests that ECDZs promote urban green innovation
resilience through the advancement of digitalization, green consciousness, and
new quality productivity. We also conduct an analysis of heterogeneity based on
geographical locations and levels of policy support, and the results show that the
impact of ECDZs on urban green innovation resilience is mainly observed in
western, inland, and strongly policy-supported regions. The findings of this study
provide crucial insights and valuable guidance for developing national
environmental conservation policies and programs.
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1 Introduction

As the challenges of climate change and resource depletion become increasingly severe,
global environmental issues are becoming more urgent. Pursuing a path of sustainable
development has become crucial for ensuring the stable functioning of the global economy.
At present, China, the United States, India, the European Union, and Russia are the primary
contributors to global greenhouse gas emissions. China is the largest emitter, accounting for
around 28% of global emissions (Yan et al., 2024), followed by the United States
(approximately 15%), India (7%), and the European Union (6%). Despite worldwide
efforts to curb emissions, global greenhouse gas levels continue to rise. Actively
engaging in international climate change negotiations, fulfilling the commitments
outlined in the Paris Agreement, and reducing greenhouse gas emissions present
significant challenges for nations worldwide (Zheng et al., 2022). To achieve the
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“carbon reduction” goal of a sustainable future, countries worldwide
are actively strengthening the sustainable development of green
technology innovation (Hu and Xu, 2023). In this context, green
innovation resilience has become a key pillar of global sustainable
development. By enhancing the resilience of green innovation,
countries around the world can more effectively address
environmental changes, improve economic sustainability, and
drive breakthroughs and applications in green technology (Roper
and Tapinos, 2016). This not only helps mitigate the global climate
crisis but also promotes the optimization of economic structures,
enhances energy security, and improves social welfare. Green
innovation resilience also can stimulate international cooperation
and drive significant progress in addressing shared ecological
challenges (Jin and Chen, 2024). In summary, the research and
practice of green innovation resilience are essential not only for
achieving global sustainable development but also for building a
more harmonious and prosperous future.

According to Article six of the Paris Agreement, countries are
encouraged to adopt environmental policies, such as ecological
civilization demonstration zones (ECDZs), for national
development. ECDZs are a significant measure to develop
ecological civilization and achieve sustainable green
development. To notably enhance the ecological environment,
the Chinese government has strategically decided to actively
promote the development of green ecology. Consequently, since
their inception, China’s ECDZs have garnered considerable
attention both domestically and internationally due to their
impact on industrial structure, energy composition, and efforts
in energy conservation and emission reduction (Wang et al., 2021;
Lv et al., 2022; Jie et al., 2023). However, research on the influence
of ECDZs on green innovation resilience remains limited. With
issues like energy shortages, environmental pollution, and climate
change becoming increasingly prominent, studying green
innovation resilience from an environmental development
perspective is particularly crucial (Hu et al., 2020). Green
innovation itself usually focuses on the development and
application of new technologies, products or processes to
achieve environmental sustainability (Karimi Takalo et al.,
2021). Green innovation resilience focuses more on how
systems adapt and respond to environmental changes (such as
climate change, resource depletion, ecological degradation, etc.)
and external shocks over the long term. Green innovation
resilience requires not only technological innovations
themselves, but also the ability of these innovations to function
flexibly and stably in different social, economic, and ecological
contexts. Studying the resilience of green innovation can help build
more resilient ecosystems and ensure that green innovation
continues to work in the face of increasing global uncertainty
and complexity. Therefore, with the increasingly severe global
energy crisis, climate change and public health challenges, the
construction of ecological civilization, as the core strategy to
promote green development, plays a vital role. This study not
only provides theoretical support for enhancing the global green
innovation capacity and adaptability, but also promotes the
leapfrog development of technological innovation in
environmental protection, health and resilience, providing a
strong guarantee for the global society to achieve green
transformation and long-term prosperity.

In this research, we aim to address the following important
research questions:

RQ1: How does China’s ecological civilization influence green
innovation resilience?

RQ2: What are the mechanisms through which ecological
civilization influences green innovation resilience?

RQ3: Is there heterogeneity across different regions in the impact
of ecological civilization on green innovation resilience?

Answers to these questions not only contributes to China’s
future policy formulation in sustainable development but also
provides valuable insights and guidance for other countries
seeking to develop environmental policies to enhance global
green innovation resilience.

In the field of environmental policy, the establishment of ECDZs
represents the convergence of regional and environmental strategies.
Domestic and international academic research on ECDZs primarily
focuses on ecological protection and economic growth. Specifically,
the environmental impact of environmental policies encompasses
various factors, including effects on control of air pollution (Liu
et al., 2022), ecological resources (Thiers et al., 2018; Keenan et al.,
2019), economic growth (Xiao et al., 2022), low-carbon technologies
(Sun et al., 2023), and industrial structure (Fanti and Buccella, 2017;
Yu et al., 2017; Li M. et al., 2022). Regarding innovation, most
researchers confirm the positive impact of environmental policies on
technological innovation (Brunel, 2019; Yang et al., 2022; Qin et al.,
2021). However, some scholars hold different views on this issue
(Mahmoud and Rousselière, 2022). Nevertheless, there is a general
consensus that the establishment of ECDZs can significantly
enhance regional innovation. This consensus is supported by
various aspects of innovation, including eco-efficiency (Czyżewski
et al., 2020; Liang et al., 2018), technology clustering effects (Tao,
2018), the Innovation Development Index (Udeagha and Nicholas,
2023), and other relevant dimensions. Most existing literature
predominantly examines the relationship between the
establishment of ECDZs, environmental protection, and
technological innovation.

In economics, resilience should be regarded as a key concept
when studying the spatial economy’s response to fluctuations in
external environments (Reggiani et al., 2002). Currently, resilience
measurement is divided into two main approaches: comprehensive
index evaluation and single-indicator measurement (Lloyd et al.,
2013; Seymour et al., 2020). For measuring green innovation
resilience, single-indicator methods, such as evaluating the
sensitivity index of core indicators before and after an impact
(Martin, 2012; Yuan et al., 2022; Zhao et al., 2024), offer greater
comparability. Regarding core indicators of green innovation, most
scholars focus on green innovation efficiency or green total factor
productivity (Zhao et al., 2023). The comprehensive index
evaluation approach involves constructing a resilience index
system, which is commonly used to assess economic and
ecological resilience. The academic community currently
identifies four key aspects of resilience: “recovery capacity,”
“disturbance,” “systemic,” and “adaptive capacity.” Regarding the
measurement of urban resilience, some scholars have established an
urban resilience evaluation system based on the perspective of social
ecosystem (SES), integrating economy, environment, society and
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infrastructure into a unified research framework (Luo et al., 2022).
In addition, some scholars focus on the “resilience and recovery
potential”, “adaptation and flexibility potential” and “innovation
and upgrading potential” to construct the evaluation of economic
and ecological resilience (Liang et al., 2020; Huang et al., 2023).
Building on the research of these scholars, this paper defines green
innovation resilience as the ability to withstand risks and threats,
maintain ongoing green innovation, and restore, sustain, and
expand green innovation through continuous improvement
and progress.

In summary, the existing literature extensively explores the impacts
of ECDZs on ecological protection and technological innovation from
various perspectives. The measurement of green innovation resilience
also provides different standards, laying a solid foundation for this
research and offering valuable insights. Nonetheless, previous studies
often overlook the impact of ECDZs on green innovation resilience.
This paper aims to address this gap by conducting a series of analyses to
explore and expand upon the mechanisms and heterogeneity involved,
to understand the strategies that link ECDZs with urban green
innovation resilience within the framework of environmental policy.
Based on these findings, we will further refine and improve research
models and methods. Ultimately, to enrich and expand the existing
body of research, this paper explores the environmental policy effects of
ECDZs from the perspective of green innovation resilience.

Contrary to earlier studies, the marginal contributions of this paper
can be categorized into four dimensions. (1) While most scholars have
focused on the impact of ECDZs construction on ecological
conservation and technological innovation, this paper uniquely
examines the direct and spillover effects of ECDZs from the
perspective of green innovation resilience. (2) Regarding the
measurement of green innovation resilience, this paper optimizes the
existing indicator system by comprehensively constructing a green
innovation resilience based on three aspects: resistance capacity,
sustainable capacity, and diffusion capability. Additionally, it
employs a combination weighting method to calculate the green
innovation resilience. (3) To avoid model bias and the challenges of
high-dimensional data common in traditional econometric approaches
(Chernozhukov et al., 2018), and to enhance the credibility of the
findings, this paper employs the double machine learning (DML)
approach. The method utilizes machine learning algorithms to make
predictions in a high-dimensional and non-parametric setting to assess
the effects of ECDZ policy impacts. (4)When analyzing the influencing
mechanism of ECDZs on green innovation resilience, we explore the
perspectives of digital technology embedding effect, environmental
focusing effect, and productivity enhancement effect. Accordingly,
we consider digitization, green consciousness, and new quality
productivity as mediating variables. This approach aims to reveal
how ECDZs influence urban green innovation resilience, providing
pathways that maximize support for environmental policy impacts. The
research structure of this paper is shown in Figure 1.

2 Theoretical analysis and hypotheses

ECDZs aims to explore new paths of sustainable development
through systematic ecological protection, efficient use of resources and
environmental governance. They serve as important experimental areas
for promoting sustainable development and environmental innovation

(Li et al., 2024). Green innovation resilience refers to the capacity to
sustain stable and sustainable development in green innovation despite
various environmental, economic, and social pressures and challenges
(Luo et al., 2021). According to Porter’s hypothesis, the green and low-
carbon demands of environmental policies raise production costs in
polluting industries, driving them to upgrade technologies and adopt
green innovation practices (Zheng et al., 2022). The influence of
ecological civilization demonstration zones on urban green
innovation resilience is primarily reflected in three key aspects. First
of all, based on the optimization effect of innovation resource allocation
(Zhang et al., 2022), the demonstration zone effectively gathers
innovation resources, such as talent, technology and capital. This
efficient allocation of resources makes the development and
application of green technology more rapid and effective, and
improves the resilience and adaptability of green innovation.
Secondly, the implementation of ECDZs also includes the
introduction and promotion of environmental protection
technologies, green products and services based on product
demonstration effects (Liu et al., 2024). This encourages enterprises
to prioritize environmentally friendly products in their production and
consumption processes, thereby increasing public awareness and
acceptance of green products. The product demonstration effect
stimulates enterprise innovation and market competition, and this
incentive effect makes more enterprises willing to invest resources in
green innovation, and enhances the resilience of green innovation.
Finally, based on the agglomeration effect, ecological civilization
demonstration zones promote the concentration of innovative
technologies and the competition in the green innovation market to
a certain extent (Wang et al., 2021). This agglomeration effect makes it
easier for knowledge and technology to spread and share among
different subjects, promoting the rapid development of green
technology and the diffusion of innovation. The spillover effect of
knowledge and technology improves the adaptability of green
innovation, which can help enterprises and research institutions
acquire and apply cutting-edge technologies more quickly in the face
of new environmental challenges, and promote the continuous
upgrading of green innovation results. Based on the above analysis,
Hypothesis 1 is proposed:

Hypothesis 1: The construction of ECDZs can significantly
enhance urban green innovation resilience.

The positive spillover effect refers to the way in which the
construction of ECDZs disseminates internal green innovation
capabilities and development experiences to surrounding areas
through various channels, such as knowledge spillover, resource
allocation, and technology diffusion, thereby enhancing the green
innovation resilience of neighboring cities. This positive spillover
effect can strengthen the overall environmental adaptability and
sustainable development capacity of the region, providing technical
support, resource sharing, and policy demonstration effects for the
green transformation of adjacent areas (Yu and Wang, 2021). In the
context of the “dual carbon” goals, strong government support for green
environmental projects and increased attention from investors in green
initiatives serve as robust guarantees for the realization of these effects.
The green development experience, environmental protection
technology, and sustainable development concepts accumulated in
the ECDZs can be transmitted to neighboring cities through the
flow of talent, information exchange, and cooperative projects,
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resulting in a “knowledge spillover effect”. This effect promotes the
formation of green innovation networks between the demonstration
zone and neighboring cities. Such networked cooperation facilitates the
complementarity of strengths among cities, accelerates the
dissemination and application of knowledge, and thereby enhances
the green development resilience of the entire region. In addition, the
establishment of ECDZs has attracted substantial ecological resources,
funds, and talents, which contribute to the reorganization and
optimization of green innovation in neighboring cities, creating a
“resource allocation effect”. This effect promotes the efficient use
and sharing of resources between the demonstration zones and
surrounding areas, fostering a synergistic development effect within
the region. Finally, the green technologies and industrial models
developed in the ECDZs can generate a “technology diffusion effect”
in neighboring cities through market mechanisms and policy support.
This diffusion not only elevates the technological capabilities of
neighboring cities in green industries, but also enhances their
capacity to manage green innovation risks and drive sustainable
development (Zhang et al., 2022). In summary, ECDZs drive
regional green innovation resilience and sustainable development
through knowledge spillover, resource allocation, and technology
diffusion, forming an interconnected green innovation network that
supports the green transformation of neighboring cities and the broader
region. Hypothesis 2 is proposed:

Hypothesis 2: The construction of ECDZs can significantly
enhance the green innovation resilience of neighboring cities.

As significant experimental platforms for promoting green
development and constructing ecological civilization, ECDZs
exhibit a digital technology embedding effect. Digital
technology refers to the technological system involving the

processing, storage, transmission, and management of data
using computer, communication, software, and network
technologies (Volkoff et al., 2007). These demonstration zones
actively introduce and apply digital technologies to improve
environmental management, resource efficiency, and service
effectiveness. This includes the construction of intelligent
monitoring and control systems, the application of data
analysis and forecasting, and the establishment and utilization
of digital platforms aimed at optimizing the management and
protection of the ecological environment. In the process of
achieving deep integration with environmental development,
digital technologies enable the efficient and comprehensive use
of various innovative resources to maximize their effective value
(Wen et al., 2019). At the same time, the advance of digitalization
has facilitated the transformation of low-carbon industries and
technologies (Li et al., 2021). Technologies such as big data
analytics, the Internet of Things, and artificial intelligence
provide new platforms and tools for the research and
application of green technologies. With a data-driven
approach, environmental issues can be identified and
addressed more quickly, driving innovation in the areas of
clean energy, circular economy, emission reduction, and
energy conservation. Moreover, digitization is crucial for
improving the efficiency of urban management (Zhang and
Liu, 2022). Digital technologies enhance environmental
monitoring, resource utilization, and management efficiency in
the production process. Intelligent monitoring systems can
collect environmental data in real-time, accurately assess
resource utilization efficiency, and promote the sustainable
development of green innovation. Based on the above analysis,
Hypothesis 3a is proposed:

FIGURE 1
Research structure.

Frontiers in Environmental Science frontiersin.org04

Li et al. 10.3389/fenvs.2024.1514582

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1514582


Hypothesis 3a: The construction of ECDZs can promote urban
green innovation resilience by enhancing digitalization.

From the perspective of the environmental focusing effect,
green consciousness in demonstration zones can accelerate urban
greening. As pioneers in environmental protection and
sustainable development, ECDZs generally establish more
stringent and advanced standards in environmental
management. Their environmental policies and management
measures provide important references for other regions and
countries in formulating regulations, and they promote the
improvement of national and even global environmental
standards. Additionally, by strengthening green consciousness,
ECDZs can enhance their technological innovation capabilities
and become more competitive in the green market (Dennett and
Roy, 2015). By precisely aligning high-quality innovation
resources with green products, they accelerate the resilient
development of green innovation. Academics believe that
green consciousness plays a key role in driving green
innovation (Quan et al., 2019). Strict green consciousness
compels regions to improve production processes and
technologies, thereby reducing pollutant emissions and
resource consumption. To meet environmental standards,
regions must invest in the development of cleaner production,
energy conservation, and pollution control technologies, which
in turn promotes the improvement of green innovation
resilience. Based on the above analysis, Hypothesis 3b
is proposed:

Hypothesis 3b: The construction of ECDZs can promote urban
green innovation resilience by strengthening green consciousness.

In addition to digitalization and green consciousness, new
quality productivity is pivotal in influencing urban green
innovation resilience within ECDZs. Unlike traditional
production methods reliant on extensive resource inputs and
high consumption, new quality productivity achieves
breakthroughs through disruptive technologies, ensuring efficient
and high-quality output. In the digital era, it signifies greater
integration and novel implications, indicative of future
development directions (Wang et al., 2024). From the standpoint
of enhancing productivity, ECDZs can elevate productivity
standards while speeding up innovation processes. From the
effects of enhancing productivity, ECDZs can improve
productivity quality while accelerating innovation speed. The
establishment of these zones inevitably involves improvements in
infrastructure and advancements in information and
communication technology, significantly enriching channels for
information exchange. This enhancement facilitates the
refinement of production and transaction processes (Hendriks,
1999), enhances transparency in relevant information, broadens
the scope of information search, accelerates information
transmission speed, and effectively mitigates information
asymmetry issues. Consequently, these improvements enhance
the speed and quality of production and transaction activities
(Hardy, 1980). At the same time, the enhancement of new
quality productivity facilitates the emergence of efficient new
organizational structures (Yin, 2024). This optimization not only
improves internal production efficiency and resource utilization
within enterprises but also enhances collaboration with external

partners. Through refined division of labor and collaborative
operations, businesses can accelerate the research and
commercial application of green technologies more swiftly. This
transformation enables traditional industries to transition towards
high value-added, low-carbon green sectors, and injects new
momentum into the promotion of green innovation resilience.
Based on the above analysis, Hypothesis 3c is proposed:

Hypothesis 3c: The construction of ECDZs can promote urban
green innovation resilience by through enhancing new quality
productivity.

3 Research design

3.1 Model setting

3.1.1 Double machine learning model
Building on the work of Chernozhukov et al. (2018), this study

employs dual machine learning (DML) methods to empirically
analyze the effects of “ecological civilization demonstration
zones” (ECDZs) as quasi-natural experiments. Compared to
traditional multiple linear regression models, DML offers distinct
advantages in model estimation and variable selection. It effectively
handles nonlinear data, addresses model specification errors, and
overcomes the limitations of linear assumptions in traditional causal
inference models. Additionally, by integrating multiple machine
learning and regularization algorithms, DML automatically selects
key factors influencing green innovation, resulting in accurate
predictions. This approach helps mitigate estimation bias caused
by dimensionality issues, multicollinearity, and constraints of
primary control variables, while ensuring the accuracy of causal
inference in high-dimensional settings (Cao et al., 2024). Therefore,
this study uses the release date of the “ecological civilization”
demonstration city document as the impact point and applies
DML to analyze the effect of these zones on green innovation.
For specific models, refer to Equations 1, 2.

GIRi,t+1 � θ0ECDZsit + f0 Xit( ) + Uit, E Uit|Xit, ECDZsit � 0( )
(1)

ECDZsit � m0 Xit( ) + Vit, E Vit|Xit( ) � 0 (2)
In the equation: subscript i denotes the identifier for each city (i =

1,2, . . . ,237), subscript t denotes the identifier for each year (t =
2011,2014, . . . ,2021), GIRi,t+1 represents urban green innovation
resilience; ECDZsit is the policy dummy variable for the “ECDZs,”
where ECDZs = 1 if city i implements a policy pilot in year t, otherwise
ECDZs = 0. The coefficient and significance of θ0 are the main focus of
this study; a significant positive coefficient indicates that ECDZs
promote urban green innovation. Xit denotes the set of control
variables influencing green innovation, which are covariates affecting
the explained variable through a functional form estimated by machine
learning algorithms. Uit represents the error term, with a conditional
mean of 0. To avoid regularization bias arising from direct estimation of
Equation 1, we introduce an auxiliary Equation 2, where m0 is the
regression function of the policy dummy variable on the control
variables; Vit represents the error term with a conditional mean of
0. The specific steps are as follows: first, we use a machine learning
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model to estimate parameter m̂0 in Equation 2 for m0, thereby
obtaining the residual estimates Vit � ECDZsit − m̂0(Xit); next,
apply machine learning algorithms to estimate f0; finally, treat the
residuals as instrumental variables and regress Equation 1 to calculate
the unbiased estimates of the coefficients. Finally, we treat Vit as the
instrumental variable for ECDZsit, and incorporate it into Equation 1
for regression, thereby calculating the unbiased estimate of θ0.

3.1.2 Spatial difference-difference model
This paper analyzes the relationship between ECDZs and green

innovation resilience by constructing the spatial weight matrix of
geographical distance. The geographical distance here refers to the
reciprocal Euclidean distance between the center of mass of two
prefecture-level cities, that is, expressed by the inverse distance. As
shown in Equation 3.

W �

0
1
d12

1
d21

0

/
1
d1n

. . .
1
d2n

..

. ..
. ..

. ..
.

1
dn1

1
dn2

. . . 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

Where dij represents the distance between the center of mass of
region i and j.

To estimate the spatial spillover effect ECDZs construction on
the resilience of urban green innovation, this paper extends the
traditional model to a spatial Durbin model, incorporating both the
spatial lag and spatial error terms of the explanatory variables. The
resulting spatial difference model is as shown in Equation 4:

GIRit � γ0 + ρWij × GIRit + β1ECDZsit + β2Wij × ECDZsit
+ γ1Xit + γ2Wij × Xit + cityi + timei + eit

(4)

Where j represents each prefecture-level city unit, Wij is the
element in the spatial weight matrix, Wij × GIRit is the spatial lag
term of the explained variable,Wij × ECDZSit is the spatial lag term
of the pilot policy variable of “ecological civilization”, γ2Wij × Xit is
the spatial lag term of the control variable, ρ and β2 is the spatial
correlation coefficient. Spatial lag model and spatial error model can
be regarded as special forms of spatial durbin model. When
β2 � γ2 � 0, the model is a spatial lag model. When
ρ � β2 � γ2 � 0, the model is a spatial error model.

3.2 Variable selection

3.2.1 Dependent variable
The dependent variable is the green innovation resilience (GIR).

This paper constructs and optimizes the existing index system to
develop the green innovation resilience. Among them, resistance
refers to the organization’s ability to effectively identify, respond to
and mitigate the impact of risks in the face of external threats and
uncertainties, so as to ensure that green innovation activities are not
subjected to major impacts. Sustainability refers to the ability of an
organization to maintain the stability and growth of innovation
activities over a long period of time and ensure that its innovation

benefits can continue to be generated when it carries out green
innovation (Xie et al., 2019). Diffusion capacity refers to an
organization’s ability to promote its green innovation from
within to the broader market and society level (Long et al., 2019).

3.2.1.1 Indicator system
The index system consists of three dimensions: resistance

capacity, sustainable capacity, and diffusion capability. Resistance
capacity includes indicators such as R&D expenditure, number of
R&D personnel, green patent applications, and green patent grants.
Sustainable capacity includes R&D sustainability and green patent
sustainability. Following the methodology of He and Zhou (2017),
R&D sustainability is calculated by comparing R&D expenditure
and personnel for green patents across different periods. Similarly,
green patent sustainability is measured by the total continuity of
patent applications and grants. Diffusion capability includes
indicators such as forest coverage rate, per capita park green
area, and foreign direct investment.

3.2.1.2 The weight of indicators
This paper proposes an optimized combinatorial weighting

model to determine the weights of each index. First, subjective
and objective weighting methods are applied to calculate the
weights separately. These weights are then optimized and
combined based on the principle of minimizing deviation,
achieving a balance between subjective and objective weight
coefficients. The subjective weighting method employs the
Analytic Hierarchy Process (AHP), while the objective
weighting method utilizes the entropy method and the
coefficient of variation.

Firstly, standardizing the evaluation criteria.
Positive indicators, refer to Equation 5:

Pij � vij −min1≤ j≤ n Vij( )
max1≤ j≤ n vij( ) −min1≤ j≤ n vij( ) (5)

Negative indicators, refer to Equation 6:

Pij � max1≤ j≤ n Vij( ) − Vij

max1≤ j≤ n vij( ) −min1≤ j≤ n vij( ) (6)

Then, based on the weights obtained from AHP, Entropy
method, and Coefficient of Variation method, the weights are
optimized as follows. Step 1: Let the weight vector obtained from

the AHP is θ � (θ1, θ2, ..., θn)T, 0≤ θi ≤ 1 and ∑n
i�1
θi � 1. The weight

vector obtained from the entropy method is μ �
(μ1, μ2, ..., μn)T, 0≤ μi ≤ 1 and ∑n

i�1
μi � 1 And from the coefficient

of variation method is Y � (Y1, Y2, ..., Yn)T, 0≤Yi ≤ 1 and

∑n
i�1
Yi � 1. α, β and δ respectively represent the weighting

coefficients θ, μ and γ, forming the optimized weight vector model:

W � α × θ + β × μ + δ × γ (7)

α, β, and δ satisfy the following:

α≥ 0, β≥ 0, δ ≥ 0, α + β + δ � 1 (8)
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TABLE 1 Evaluation system for green innovation resilience.

Primary indicators Secondary indicators Tertiary indicators Weight

Green Innovation Resilience (GIR) Resistance capacity (0.636) R&D expenditure 0.15

number of R&D personnel 0.06

green patent applications 0.314

green patent grants 0.112

Sustainable capacity (0.204) R&D sustainability 0.108

green patent sustainability 0.096

Diffusion capability (0.160) forest coverage rate 0.081

per capita park green area 0.054

foreign direct investment 0.025

FIGURE 2
The changing pattern of green innovation resilience in 2012 (A), 2015 (B), 2018 (C) and 2021 (D).
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Step 2: Assuming only AHP and Entropy Method weights are
considered, with weight coefficients α′ and β′
respectively, as per Formula 6, the subjective
weighted attribute value of criterion xi under
indicator yi is α′Zijθij, and the objective weighted
attribute value is β′Zijθij. The difference between
these two is α′Zijθij − β′Zijθij. Therefore, the
deviation of criterion xi’s subjective and objective
evaluation values from decision information is:

di � ∑n
j�1

α′zijθij − β′zijuij( )2, 1≤ j≤m (9)

Obviously, the smaller the value of di, the closer the evaluation
object’s subjective and objective decision information under the
evaluation criteria. Therefore, based on the principle of minimizing
the deviation of subjective and objective decision information, we
establish the combined weight optimization model:

mina � ∑n
i�1
di � ∑m

i�1
∑n
j�1

α′zijθij − β′zijuij( )2
s.t.α′ + β′ � 1, α′≥ 0, β′≥ 0

⎧⎪⎪⎨⎪⎪⎩
⎫⎪⎪⎬⎪⎪⎭ (10)

After obtaining α′ and β′, derive the ratio of α to β based on
α′/β′/α/β. Similarly, obtain the α/δ and β/δ. Use Formula 8 to
determine the optimal combination of the three sets of weight
coefficients. Finally, substitute these three sets of weight
coefficients into Formula 7 to compute the combined weight W.
The specific evaluation framework and weights are as follows in
Table 1. The calculation results of green innovation resilience in
individual years are shown in Figure 2.

3.2.2 Explanatory variables
In this study, whether city i is a demonstration zone of ecological

civilization in t years is taken as a policy grouping dummy variable
(did), where did = treat*time. This paper is based on 100 pilot
demonstration zones for ecological civilization announced in
batches across the country in 2014–2015, including
47 prefecture-level cities, 4 provinces and 49 districts, counties,
special zones or river basins. Considering that there may be
differences in the policies of demonstration zones in different

provinces and cities, 47 prefecture-level cities corresponding to
districts and counties were excluded and selected as the
experimental group with corresponding treat = 1, and the
remaining 190 prefecture-level cities as the control group with
treat = 0. According to the establishment time of the pilot city,
the time dummy variable time is created. time = 1 after 2014 or 2015;
otherwise, time = 0.

3.2.3 Control variables
(1) Innovation talent agglomeration (agg). It is defined in this

study as the number of individuals engaged in six major
industries per ten thousand people as shown in Equation 11
(Zhang et al., 2021). This measurement is based on existing
literature, which typically includes metrics such as the
proportion of employed individuals with a bachelor’s
degree or higher, talent location entropy, and talent density.

agg � L1 + L2 + L3 + L4 + L5 + L6( ) × 10000
L

(11)

Here, agg denotes innovation talent agglomeration, L represents
the urban resident population, and L1 to L6 represent employees in
the financial software and information technology services industry,
education industry, cultural, sports, and entertainment industry,
scientific research and technical services industry, as well as leasing
and business services industry.

(2) Industrial agglomeration (coa). This study uses the adjusted
E-G index to measure the synergistic agglomeration between
manufacturing and service industries (Chen et al., 2016),
calculated as follows shown in Equation 12.

SAis � Lis/Li( )/ Ls/L( )
HAih � Lih/Li( )/ Lh/L( ){ } (12)

In the equation, SAis and HAih represent the location quotients
of productive service industries (s) and manufacturing industries (h)
in region i. Lis and HAih denote the regional employment in
productive service industries and high-tech industries,
respectively, while Ls and Lh represent national employment
totals in productive service industries and high-tech industries. Li
and L represent total employment in each region and nationwide.

TABLE 2 Descriptive statistical results.

Variable Full sample Treatment group Control group

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

GIR 0.0215 0.0279 0.0339 0.0345 0.0185 0.0252

did 0.1323 0.3389 0.6818 0.4662 0.0000 0.0000

agg 0.0236 0.0088 0.0269 0.0107 0.0228 0.0080

coa 10.0096 3.1649 9.9655 3.1782 10.0202 3.1624

hc 0.1768 0.0401 0.1652 0.0412 0.1796 0.0393

inno 0.2049 0.7349 0.3077 0.7198 0.1801 0.7365

sc 1.0465 0.5893 1.1170 0.5690 1.0295 0.5929

lnpgdp 10.7456 0.5647 10.8792 0.6058 10.7134 0.5497
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The synergistic agglomeration index for productive service
industries and manufacturing industries is constructed
accordingly in Equation 13.

coa � 1 − SA −HA| |/ SA +HA( )[ ] + SA +HA| | (13)

(3) Innovation index (inno). The innovation index is a
comprehensive indicator that measures a city’s
competitiveness in innovation, influencing urban GIR. We
utilize the Urban Innovation index of China’s Urban and
Industrial Innovation Power Report (Kou and Liu, 2017) as a
three-level index to measure the level of innovation. The
report aims at the difference in the number of patents of
different age groups in valid invention patents each year, by
calculating the average value of patents of each age group, and

combining the weighting at the city level, the final innovation
index is obtained.

(4) Economic development level (lnpgdp). The economic
development level significantly affects urban GIR (Hu
et al., 2020). It is measured using the natural logarithm of
per capita GDP.

(5) Industrial Structure (sc). Industrial structure denotes the
composition and interrelationships among various
industrial sectors. It is quantified by the logarithm of the
ratio of value added from secondary and tertiary
industries to GDP.

(6) Human Capital (hc). Human capital significantly impacts the
development capacity of urban GIR (He et al., 2023). It is
measured by the ratio of education expenditure to fiscal
expenditure.

TABLE 3 Results of VIF value calculation.

Variable agg Lnpgdp Inno coa sc hc did Mean VIF

VIF 1.91 1.58 1.55 1.51 1.45 1.22 1.08 1.47

1/VIF 0.522 0.631 0.64 0.66 0.69 0.82 0.92

TABLE 4 Benchmark regression results.

Variables (1) GIR (2) GIR (3) GIR

ECDZs 0.0090*** 0.0111*** 0.0130***

(0.0015) (0.0032) (0.0027)

Linear term Yes Yes Yes

Quadratic term No No Yes

Time fixed effects No Yes Yes

Urban fixed effects No Yes Yes

Observations 2,607 2,607 2,607

Notes: ***, **, and * indicate significance levels at 1%, 5%, and 10%, respectively. Values in parentheses are robust standard errors. Same below.

TABLE 5 Robustness checks.

Variables

(1) Instrumental
variable

(2) Sample period
2012-2021

(3) Province-time
interaction

(4) Excluding other policy
disturbances

GIR GIR GIR GIR

ECDZs 0.0672*** 0.0101*** 0.0096*** 0.0086***

(0.0175) (0.0033) (0.0032) (0.0026)

Linear term Yes Yes Yes Yes

Quadratic term Yes Yes Yes Yes

Time fixed effects Yes Yes Yes Yes

Urban fixed
effects

Yes Yes Yes Yes

Observations 2,607 2,370 2,607 2,607

Notes: ***, **, and * indicate significance levels at 1%, 5%, and 10%, respectively. Values in parentheses are robust standard errors.
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3.3 Data sources

This study treats the establishment of ECDZs as a quasi-natural
experiment, using data spanning 2011 to 2021 from 237 Chinese
cities. Cities that established ecological civilization demonstration
zones are categorized as the experimental group, while those that did
not are the control group. Data for calculating the green innovation
resilience, such as the number of green patent applications, are
obtained from the china national research data sharing platform
(CNRDS) and the green patent database. Additional data sources
include the China Urban Statistical Yearbook and the china
statistical yearbook. Missing data are addressed through
interpolation. The descriptive statistical results of each variable
are shown in Table 2.

4 Empirical results

4.1 Multicollinearity test

In order to further determine whether there is a multicollinearity
problem between the variables selected in this paper, in statistical
analysis, the variance inflation factor (VIF) is usually used to
evaluate the degree of multicollinearity between the independent
variables in the regression model. As can be seen from Table 3, the
highest VIF value is 1.91, the lowest is 1.04, and the mean value is
1.08, all of which are less than 10, that is, the model established in
this paper does not have the problem of multicollinearity.

4.2 Baseline regression

This study employs a sample split ratio of 1:4 and utilizes the
LASSO algorithm to predict and solve both the main and auxiliary
regressions. Table 2 presents the policy effects of “ecological
civilization” on green innovation resilience estimated using a dual
machine learning model. In Column (1) of Table 4, primary control
variables are adjusted across the entire sample period. Given
potential autocorrelation of disturbance terms in panel data
across individual and time dimensions, robust standard errors
and regression coefficients may exhibit significant biases. Column
(2) further incorporates time and city fixed effects. The results in
Column (2) of Table 4 reveal that the regression coefficient for the
ECDZs is significantly positive and passes statistical significance
tests, indicating that the construction of ECDZs promotes regional
green innovation resilience. Column (3) in Table 4 introduces
controls for quadratic terms of control variables. The direction
and significance of the “ecological civilization” policy remain
unchanged, providing initial evidence of the driving impact of
ECDZs on green innovation resilience and supporting Hypothesis 1.

4.3 Endogeneity test

In order to obtain the causal identification effect of ECDZs on
the resilience of green innovation, it is necessary to deal with the
possible endogenous problems: first, the result bias caused by
missing variables in the model. Although this paper controls a

series of important factors affecting the resilience of green
innovation at the city level on the basis of reference to existing
studies, it inevitably leads to omissions. Second, the problem of
reverse causality. The increased resilience of green innovation may
also in turn affect the selection of ECDZs. In this paper, the daily air
quality data of each city is obtained through the China Air Quality
online detection and analysis platform, and the daily air quality data
is sorted into annual statistical data to measure the average annual
air quality index of each city. The air quality index (AQI) is used as
an instrumental variable, which satisfies the hypothesis of externality
and correlation of the instrumental variables. Table 5 Column (1)
reports the regression results of the instrumental variables of ECDZs
affecting the resilience of green innovation. The results show that, on
the basis of alleviating the endogenous problems by using panel
instrumental variables, ECDZs still has a significant promoting
effect on GIR.

4.4 Robustness test

4.4.1 Event analysis method
To determine if the model results follow a consistent trend

before and after the intervention, this study uses the event
analysis method to perform pre- and post-tests on the impact
of ECDZs on green innovation resilience. Virtual variables d are
introduced to substitute for the policy implementation, before
and after its enactment. Specifically, d_3 denotes the 3 years
preceding policy implementation, d_2 indicates the 2 years prior,
and so on. The model is specifically constructed as follows shown
in Equation 14.

GIRi,t+1 � θ0d 3it ∕ d 2it ∕ d 1it ∕ d0it ∕ d1it ∕ d2it ∕ d3it + f0 xit( ) + Uit,

E Uit

∣∣∣∣Xit,d 3it ∕ d 2it ∕ d 1it ∕ d0it ∕ d1it ∕ d2it ∕ d3it( ) � 0

d 3it ∕ d 2it ∕ d 1it ∕ d0it ∕ d1it ∕ d2it ∕ d3it � m0

Xit( ) + Vit, E Vit|Xit( ) � 0

(14)
To determine whether the establishment of ECDZs has a pre-

and post-implementation effect on the promotion of green
innovation resilience, Figure 3 presents the time-varying
coefficients of variable d from Equation 1 with a 95% confidence
interval. It is evident that before the establishment, the coefficients of
variable d are moderate and not significant (from d_3 to d_1).
However, in the first to third years after the establishment of the
ECDZs (from d0 to d3), these zones significantly enhance green
innovation resilience in their respective cities. This suggests that the
positive effect of ECDZs on urban green innovation resilience can
persist for at least 3 years, showing a significant change in the trend
of green innovation resilience before and after the establishment.
Therefore, the impact of ECDZs on promoting green innovation
resilience is robust.

4.4.2 Adjustment of sample period
To further validate the reliability of the conclusions, this study

adjusts the research period by selecting sample data from 2012 to
2021 for regression analysis. The results, presented in Column (2) of
Table 5, indicate that the ECDZs continue to exhibit a significant
positive trend on the GIR.
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4.4.3 Considering province-time interaction
fixed effects

Provinces hold a crucial position in China’s administrative
structure. Since cities within the same province often share
similarities in policy environment, history, culture, and
geographical characteristics, this paper incorporates province-
time interaction fixed effects in the baseline regression to account
for temporal variations across provinces. The results in Column (3)
of Table 5 indicate that, even after considering the interaction
between cities within the same province, the impact of ECDZ on
GIR remains significantly positive at the 1% level, further confirming
the original conclusion.

4.4.4 Excluding other policy disturbances
This study addresses concerns regarding potential interference

from concurrent policies when assessing the impact of ECDZs on
GIR. To ensure accurate estimation of policy effects, the study
controls for similar policies implemented during the same period.
After 2015, alongside the launch of ECDZs, two significant
concurrent policies emerged: the establishment of “National New
Zones” (zone1) and the creation of “National Big Data
Comprehensive Experimental Zones” (zone2). As a result,
dummy variables for these policies, labeled zone1 and zone2, are
included in the regression analysis. The results in Column (4) of
Table 5 show that, even after accounting for these concurrent
policies, the policy effect of ECDZs remains both significant and
unchanged, highlighting the robustness of the study’s findings.

4.4.5 Resetting the DML model
To minimize potential bias in the dual machine learning model,

this study implemented several adjustments. Firstly, we modified the
sample splitting ratios. Following the method of CHERNOZHUK-
OV et al., the sample was randomly divided into 5 groups in the
baseline regression. For robustness testing, we adjusted the sample
partition ratio from 1:4 to 1:2 and 1:7. The results are presented in
Columns (1) and (2) of Table 6. Secondly, we replaced the machine
learning algorithms. To assess robustness, the random forest
algorithm was replaced with lasso regression and gradient
boosting. Additionally, a partial linear model based on dual

machine learning was constructed in the baseline regression,
using subjective model settings. To examine the influence of
these settings on the study’s conclusions, a more generalized dual
machine learning interaction model was employed. The adjustments
made in the primary and auxiliary regressions are outlined below
shown in Equation 15.

GIRi,t+1 � g ECDZsit, Xit( ) + Uit

ECDZsit � m Xit( ) + Vit
(15)

The estimated coefficients of the interactive model are shown in
Equation 16.

θ̂1 � E g ECDZsit � 1, Xit( ) − g ECDZsit � 0, Xit( )[ ] (16)

Columns (1) to (5) in Table 6 indicate that variations in sample
splitting ratios, machine learning algorithms, and model estimation
forms in the DML model do not impact the conclusion that ECDZs
promote GIR. These variations only slightly alter the magnitude of
policy effects, which sufficiently demonstrates the robustness of the
original conclusion.

4.5 Mechanism testing

This study confirms that ECDZs notably enhance urban GIR
through empirical analysis. It further investigates the specific
pathways through which ECDZs exert their influence. The
theoretical analysis presented earlier suggests that ECDZs impact
GIR through three primary pathways: digitalization, green
consciousness, and new quality productivity. To validate these
mechanisms, the medium effect two-step method is adopted
(Jiang, 2022).

4.5.1 Enhancing digitalization
To investigate the mediating role of digitalization (DIG), Using

Python, we calculated the natural logarithm of the frequency of the
term “digitalization” in Baidu search indexes from 2011 to 2021 as
an indicator of urban-level digitalization (Li X. et al., 2022). In
Table 7, Column (1) examines the impact of DIG, controlling for
time, urban fixed effects, and other variables in both linear and
quadratic terms. The regression coefficient for DIG is 0.2048,
indicating statistical significance. This suggests that ECDZs
enhance urban GIR through digitalization, implying that
digitalization partially mediates the effect of ECDZs on GIR.
Moreover, it underscores how the digital platforms of
demonstration zones provide a scientific basis and real-time
feedback for green innovation resilience, assisting innovators in
accurately identifying environmental issues and solutions, thereby
advancing the development and application of green innovation
resilience. Hypothesis H3a is supported.

4.5.2 Strengthening green consciousness
Next, Columns (2) in Table 7 present the tests examining the

mechanism of green consciousness (GC). This study utilizes Python
software to extract vocabulary related to the environment from
government work report texts (Chen and Chen, 2018). Specifically,
these terms include environmental protection, energy consumption,
conservation, pollution, discharge emission reduction, ecology, low-

FIGURE 3
Pre- and post-implementation test.
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carbon practices, green initiatives, air quality, sulfur dioxide,
chemical oxygen demand, carbon dioxide, PM2.5, and PM10.
Subsequently, the frequency of these relevant terms plus one is
logged as a proxy variable for environmental concern. The
regression coefficient for ER is statistically significant at the 1%
level, with a coefficient of 0.2120. This finding suggests that ECDZs
influence urban GIR partly through heightened green consciousness,
implying that green consciousness act as a mediating factor in the
relationship between ECDZs and GIR. Furthermore, this
underscores how demonstration zones can stimulate the
advancement and adoption of green technology innovations by
establishing environmental standards, emission limits, energy
efficiency requirements, and other measures. It supports
hypothesis H3b.

4.5.3 Enhancing new quality productivity
Finally, Column (2) in Table 7 presents the results of the

examination of the new quality productivity (NQP) mechanism
using the DDML method. In this paper, we use Python to segment
the government work reports and extract the frequencies of
46 keywords related to “new quality productivity.” The
log-transformed frequencies of these keywords are used to
measure new quality productivity. These keywords include new
quality productivity, artificial intelligence, technological innovation,

technological reform, scientific development, innovation
momentum, disruptive technology, breakthrough technology,
among others. Regression results show that the coefficient of
ECDZs’ impact on NQP is significant at the 1% level, with a
value of 0.2612. This indicates that ECDZs influence urban GIR
through enhancing new quality productivity, suggesting that new
quality productivity serves as a partial mediator in the impact of
ECDZs on GIR. Furthermore, this underscores that in
demonstration zones, the promotion of new quality productivity
encourages enterprises and research institutions to adopt
environmentally friendly, energy-saving, and low-carbon new
technologies and processes. These technologies not only enhance
production efficiency but also reduce resource consumption, driving
the development of green innovation resilience. Hypothesis H3c
is supported.

4.6 Heterogeneity analysis

4.6.1 Regional heterogeneity
Based on the Ministry of Transport’s “Announcement on the

Release of the National Major Port Directory,” this study categorizes
sample cities into coastal and inland for grouped regression analysis,
as presented in Columns (1) and (2) of Table 8. The findings show
that, compared to coastal cities, ECDZs have a significantly stronger
impact on promoting GIR in inland cities, with a coefficient of
0.0154. This underscores the role of ECDZs in leveraging the
“borderlessness” feature to reduce physical spatial constraints in
fostering green innovation resilience. However, the influence of
ECDZs on GIR in coastal cities is not statistically significant,
possibly due to the limited demonstration effect of successful
green technology innovations within the zones on nearby coastal
cities. This suggests that green technologies developed within
demonstration zones may face constraints in technological
adaptability, limiting their direct applicability to the specific
environmental and economic conditions of surrounding
coastal cities.

Furthermore, this study examines how ECDZs influence GIR
differently across the eastern, central, and western regions. The
analysis stratifies the sample accordingly, as detailed in Columns (3),

TABLE 6 Results of resetting the DML model.

Variables (1) Sample 1:2 (2) Sample 1:7 (3) Lassso regression (4) Gradient promotion (5) Interacitve model

GIR GIR GIR GIR GIR

ECDZs 0.0118*** 0.0095*** 0.0100*** 0.0092*** 0.0098***

(0.0024) (0.0026) (0.0012) (0.0011) (0.0004)

Linear term Yes Yes Yes Yes Yes

Quadratic term Yes Yes Yes Yes Yes

Time fixed effects Yes Yes Yes Yes Yes

Urban fixed effects Yes Yes Yes Yes Yes

Observations 2,607 2,607 2,607 2,607 2,607

Notes: ***, **, and * indicate significance levels at 1%, 5%, and 10%, respectively. Values in parentheses are robust standard errors.

TABLE 7 Empirical results of mediation effect.

Variables (1)DIG (2)GC (3)NQP

ECDZs 0.2048** 0.2120*** 0.2612***

(0.0878) (0.0594) (0.0675)

Linear term Yes Yes Yes

Quadratic term Yes Yes Yes

Time fixed effects Yes Yes Yes

Urban fixed effects Yes Yes Yes

Observations 2,607 2,607 2,607

Notes: ***, **, and * indicate significance levels at 1%, 5%, and 10%, respectively. Values in

parentheses are robust standard errors.
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(4), and (5) of Table 8. Compared to the eastern region, ECDZ policies
exhibit more significant effects in the central and western regions.
Specifically, in the western region, the coefficient for ECDZs is 0.0115 at
the 1% significance level, indicating a stronger promotion of GIR in
western cities. This disparity may stem from greater developmental
disparities and heightened pressures related to resources and
environmental constraints in the western region, as compared to the
more developed eastern regions. Therefore, governmental policies in the
western region are likely more targeted and supportive, thereby
facilitating the quicker adoption and implementation of green
innovation resilience initiatives.

4.6.2 Policy support heterogeneity
In addition, considering the diverse approaches taken by

different cities in promoting green development and
implementing low-carbon measures, there exist varying intensities
of policy support. Environmental policy support is notably stronger
in low-carbon pilot cities compared to non-pilot cities. We categorize
low-carbon pilot cities as having strong policy support and non-pilot
cities as having weak policy support, conducting grouped regression
analysis as shown in Columns (6) and (7) of Table 8. The regression
results indicate that ECDZs play a significantly larger role in
enhancing GIR in cities with strong policy support relative to
those with weak policy support. This is likely because the
ecological civilization concept promotes environmental protection
and sustainable development, with cities receiving strong policy
support often setting clear environmental goals and commitments,
such as legal regulations, emission reduction targets, environmental
tax incentives, and green financing. These measures provide explicit
direction and support for green innovation resilience. Furthermore,
cities with strong policy support typically make substantial
investments in funds and resources, thereby encouraging and
supporting enterprises and research institutions in innovating
within green technologies and environmental protection. This
approach can accelerate the implementation and market adoption
of green innovation resilience.

5 Spatial difference-difference model

5.1 Moran index test

Before conducting spatial econometric analysis, we examined
the spatial correlation of GIR among cities. Using an distance spatial
weight matrix, we computed the Moran’s I index for GIR (Zhong
et al., 2024), as shown in Table 9. The results indicate a significant
positive spatial clustering of GIR across Chinese cities from
2011 to 2021.

5.2 Model selection

To select the optimal empirical model, LM test, Wald test, and
LR test were conducted sequentially, using the geographical distance

TABLE 8 Heterogeneity test results for different regions.

Variables (1)
Coastal

(2)
Inland

(3) East (4)
Median

(5) West (6) Strong policy
support

(7) Weak policy
support

GIR GIR GIR GIR GIR GIR GIR

ECDZs −0.0026 0.0154*** 0.0032 0.0110*** 0.0115*** 0.0120* 0.0099***

(0.0081) (0.0025) (0.0075) (0.0009) (0.0023) (0.0062) (0.0014)

Constant −0.0012 0.0003 0.0007 0.0001 −0.0000 0.0006 0.0002

(0.0026) (0.0002) (0.0004) (0.0002) (0.0003) (0.0006) (0.0001)

Linear term Yes Yes Yes Yes Yes Yes Yes

Quadratic term Yes Yes Yes Yes Yes Yes Yes

Time fixed effects Yes Yes Yes Yes Yes Yes Yes

Urban fixed effects Yes Yes Yes Yes Yes Yes Yes

Observations 176 2,431 1,012 913 682 1,001 1,606

Notes: ***, **, and * indicate significance levels at 1%, 5%, and 10%, respectively. Values in parentheses are robust standard errors.

TABLE 9 Test results of Moran index.

Year Variables I E (I) Sd (I) z p

2011 GIR 0.076 −0.004 0.006 12.881 0

2012 GIR 0.074 −0.004 0.006 12.47 0

2013 GIR 0.074 −0.004 0.006 12.295 0

2014 GIR 0.066 −0.004 0.006 11.066 0

2015 GIR 0.067 −0.004 0.006 11.164 0

2016 GIR 0.063 −0.004 0.006 10.488 0

2017 GIR 0.052 −0.004 0.006 8.904 0

2018 GIR 0.051 −0.004 0.006 8.825 0

2019 GIR 0.046 −0.004 0.006 7.975 0

2020 GIR 0.035 −0.004 0.006 6.528 0

2021 GIR 0.07 −0.004 0.006 11.606 0
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matrix as the spatial weight matrix. The LM test primarily
determines whether the OLS model should incorporate spatial
factors. Table 10 demonstrates that all LM tests passed at a 1%
significance level. Additionally, the results from the robust LM test
suggest that the econometric model should include spatial factors,
validating the acceptance of SAR and SEMmodels. To further refine
model selection, Wald and LR tests were performed on the spatial
Durbin model (SDM) to assess whether the differential spatial
Durbin model should be used. The test results indicate that the
Chi-square value for the SDM model is significantly higher than
those for SAR and SEM, with a P-value of 0.000, implying that the
SDM model cannot be simplified into the SEM or SAR models.
Therefore, the SDM model is chosen as the best
measurement model.

5.3 Spatial difference-in-differences results

This paper adopts the fixed-effect SDM to explore the spatial
effects of environmental policies on the resilience of green
innovation. In the spatial econometric model, the regression
coefficient of explanatory variables cannot directly reflect the
degree of influence on the explained variables. Therefore, in
order to further analyze the spatial spillover effect, it is necessary
to decompose the estimated results of the SDM model, and then
obtain the overall effect of ECDZs on the resilience of green
innovation, and subdivide it into direct effects and indirect
effects. The regression results in Table 11 show that, after
controlling for factors affecting urban economic and
environmental compatibility, however, when the fixed effects of
city and year are included, the estimated coefficient of WECDZs is
statistically significant at the 1% level, with a value of 0.0595. This
indicates that ECDZs construction has a positive spillover effect on
the resilience of green innovation in neighboring cities. These
regression results support hypothesis H3 proposed in this paper,
showing that ECDZs significantly promote the resilience of green
innovation in neighboring cities. It is further demonstrated that the
construction of ECDZs not only has a positive impact on the pilot
cities themselves, but also promotes the resilience of green
innovation in neighboring cities through knowledge spillover,
resource allocation and technology diffusion. This shows that

ECDZs construction is able to cross administrative boundaries
and have a radiating effect on a wider regional scale. In addition
to policy effects, control variables also have expected outcomes. The
concentration of innovative talents (agg) can enhance the regional
technology research and development ability and the allocation

TABLE 10 Model selection results.

type Statistical value P-Value

LM test LM error 85.24 0.000

Robust LM error 53.36 0.000

LM lag 30.27 0.000

Robust LM lag 28.55 0.000

LR test Likelihood-rato test (Assumption:sar nested in sdm) 47.06 0.000

Likelihood-rato test (Assumption:sem nested in sdm) 2000.10 0.000

Wald test Wald Test for SEM 9.47 0.0236

Wald Test for SAR 24.85 0.000

Hausman chi2 (7) 417.01 0.000

TABLE 11 Results of spatial difference-in-differences regression.

Variables (1) GIR (2) GIR (3) GIR

Direct Indirect Total

ECDZs 0.0119*** 0.0398*** 0.0516***

(0.0010) (0.0119) (0.0121)

agg 0.2046*** −1.1245** −0.9199*

(0.0551) (0.5398) (0.5375)

coa 0.0005 0.0003 0.0009

(0.0005) (0.0009) (0.0010)

inno 0.0111*** 0.0002 0.0113**

(0.0007) (0.0048) (0.0047)

human 0.0182 −0.2058** −0.1876**

(0.0138) (0.0906) (0.0874)

sc 0.0027*** −0.0163*** −0.0135**

(0.0008) (0.0059) (0.0058)

lnpgdp 0.0027 0.0146* 0.0173**

(0.0017) (0.0078) (0.0069)

WECDZs 0.0595***

(0.0166)

rho 0.1995***

(0.0635)

Observations 2,607 2,607 2,607

R-squared 0.4020 0.4020 0.4020

Notes: ***, **, and * indicate significance levels at 1%, 5%, and 10%, respectively. Values in

parentheses are robust standard errors.
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efficiency of innovation resources, and has a positive and significant
impact on the improvement of green innovation resilience. Regions
with a higher innovation index (inno) tend to have a better ability to
translate green technologies and concepts into practical applications,
contributing to the formation and improvement of the green
industry chain. The optimization of industrial structure helps to
improve the overall resilience of green innovation. With the
upgrading of industrial structure (sc), capital, technology and
human resources in the region will flow more to green
technology-intensive industries. This reallocation of resources is
conducive to the further innovation and application of green
technology.

5.4 Parallel trend test of spatial difference-
in-differences model

To ensure the accuracy of the estimated results, the differential
model requires that both the treatment and control groups meet the
parallel trend assumption. This assumption posits that, in the
absence of ECDZs, the trends in green innovation resilience
should be similar over time in both pilot and non-pilot cities.
This hypothesis is tested using dynamic effect analysis in this
study. Specifically, 2014 is considered the base year, prior to the
implementation of the first set of pilot policies. The interaction
between the policy pilot area and the year, along with its spatial lag
term, is incorporated into the regression model as explanatory
variables. This approach aims to evaluate both the parallel trend
assumption and the dynamic effects of the policy in local and
surrounding areas. The specifications of the model are outlined
as follows.

GIRit � γ0 + ∑2021
t�2011

αtECDZsit + ∑2021
t�2011

βtW × ECDZsit + γXit + Cityi

+ Timei + eit

(17)
Where, ECDZs is the interaction term between the policy pilot

area and the year, WECDZs is the spatial lag term between the policy
pilot area and the year, αt represents the size of the local policy effect
in each year, βt represents the size of the neighboring policy effect in
each year, that is, the neighborhood effect of the policy in each year.

Figure 4 displays the estimated neighborhood effect of the pilot
policy with a 95% confidence interval. The test results for the
dynamic effect of neighboring policies show that the coefficient
of dummy variables before policy implementation was not
significant, indicating no notable difference in GIR between pilot
and non-pilot areas prior to the first batch of pilot policies, which
supports the parallel trend hypothesis. Starting from the second year
of policy implementation, the coefficient of policy dummy variable is
significantly positive at least at the level of 10%, indicating that the
implementation of the first and second batch of pilot policies
significantly promotes the resilience of green innovation in
neighboring places, and there is a certain “lag” in the policy
effect of ECDZs on neighboring places, which may be due to the
“cumulative effect” of green innovation resilience. Green innovation
resilience itself is a relatively complex dynamic process, often
requires a certain period of policy support and resource

investment to gradually form a significant effect. Capital
investment, technology introduction and institutional innovation
in the initial stage of policy implementation may take one to 2 years
to translate into actual green innovation results and have spillover
effects on neighboring regions. In the sixth year of the
implementation of the policy, the dummy variable coefficient was
not significant, indicating that the pilot policy only had a promoting
effect on the resilience of green innovation in the neighborhood in
the short term, and the effect of the policy gradually weakened with
the passing of time. This may be because with the gradual deepening
of the implementation of ecological civilization construction, the
policy’s support for green industries has increased after 2019, for
example, increasing subsidies and incentives for green energy (such
as solar energy, wind energy, electric vehicles, etc.), and promoting
the research and development and industrialization of green
technology, especially in energy conservation and emission
reduction, environmental protection equipment manufacturing.
In addition, in 2018, the reform of the Environmental Protection
Tax Law provided more direct economic incentives for the
construction of ecological civilization. Since then, China has
issued a series of green finance policies in 2019 to support green
industry development and green project financing, and further
promote the construction of a green innovation system. The
superposition of the mandatory and demonstration effects of
relevant environmental policies promotes the improvement of the
spatial spillover effects of ECDZs.

6 Conclusion and policy
recommendations

6.1 Conclusion

This study, based on panel data spanning 2011 to 2021 from
237 prefecture-level cities in China, employs double machine
learning model and spatial difference-in-differences model to
assess how establishing ECDZs impacts urban green innovation
resilience. The findings reveal that: firstly, ECDZs significantly boost
urban green innovation resilience, a result confirmed through
rigorous robustness tests. This underscores the effectiveness of

FIGURE 4
Parallel trend test of policy spatial effect.
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environmental policies in encouraging businesses and institutions to
adopt greener technologies and practices, thereby fostering green
innovation resilience. Secondly, The construction of ECDZs has a
spatial spillover effect on the green innovation resilience of
neighboring cities, and this neighborhood effect reaches its
maximum in the fifth year. Thirdly, the study examines how
ECDZs influence urban green innovation resilience through
several mechanisms: digital technology embedding,
environmental focus, and productivity enhancement effects
driven by environmental policies. Finally, the impact of ECDZs
varies across different geographical and policy contexts. While less
pronounced in eastern and coastal regions, it is notably stronger in
western and inland areas. Furthermore, under varying policy
supports, ECDZs prove more effective in promoting green
innovation resilience in low-carbon pilot cities compared to non-
pilot cities. This suggests that digitization, green consciousness, and
new quality productivity collectively serve as crucial intermediaries
in this process.

6.2 Policy recommendations

Urban green innovation resilience in China hinges on expediting
the establishment of ECDZs and cultivating a conducive
environment for green initiatives. As a testing ground for
environmentally friendly and low-carbon technologies, ECDZs
significantly promote urban green innovation resilience.
Therefore, the government can effectively promote green
innovation resilience by supporting the development of eco-
civilization demonstration cities. Cities that have established
ECDZs should further encourage businesses within these regions
to increase their environmental investments in green technology
research and development. The focus should be on nurturing
ECDZs to become leaders in urban green innovation resilience,
making them models and pioneers of demonstration cities.
Additionally, establishing a framework of cooperation and
synergy between the model city and its neighbors is essential to
promote collective green development throughout the region.

China’s various regions should establish closer cross-border
cooperation mechanisms. Specifically, governments can enhance
the resilience of green innovation by promoting cooperation
between ECDZs demonstration cities and neighboring cities to
form regional linkage effects of green technology transfer and
innovation. The results of this study show that the construction
of ECDZs has a significant positive spillover effect on the resilience
of green innovation in neighboring cities. Therefore, policymakers
should pay special attention to the spillover effects of such policies,
and give full play to the exemplary and leading role of “ecological
civilization” demonstration cities. Specifically, local governments
can promote the joint development of ECDZs cities and neighboring
cities in the field of green technology by establishing closer cross-
border cooperation mechanisms. Demonstration cities are
encouraged to share their successful experience and technological
achievements with neighboring cities, jointly carry out major
scientific and technological research projects, and jointly enhance
their ability to cope with green innovation challenges in the region.
In addition, the government can also promote cross-regional
industrial chain collaboration, promote the complementary

advantages and resource sharing between different cities, and
form a cluster effect of green industries in the region. By
developing and implementing a more strategic and collaborative
top-level design, local governments can ensure that green
technology innovation can achieve universal and sustainable
development on a wider scale, and promote the overall
improvement of regional green innovation resilience.

Strengthening digitalization, enhancing green consciousness,
and fostering new quality productivity can enhance the green
technology environment in ECDZs, thereby boosting green
innovation resilience capacity. Digitization plays a crucial role in
improving management and service levels within ECDZs.
Technologies such as big data, artificial intelligence, and the
Internet of Things enable real-time monitoring, analysis, and
management of the environment, leading to improved resource
efficiency, optimized production processes, and reduced pollution
emissions. Additionally, it is crucial for demonstration zones to
enforce strict environmental laws, regulations, and standards,
overseeing and regulating the environmental practices of
enterprises and organizations to ensure the sustainable
development of the ecosystem. Furthermore, new quality
productivity, driven by principles of technological innovation and
sustainable development, supports green industries such as new
energy, energy conservation, environmental protection, and
biopharmaceuticals, thereby promoting new economic growth
opportunities. Therefore, the development of ECDZs requires
comprehensive utilization of digital tools, rigorous enforcement
of green consciousness, and the cultivation and promotion of
new quality productivity. These measures are essential to achieve
the dual goals of ecological environmental protection and high-
quality economic development, effectively demonstrating the
coordinated progress of technological innovation and
environmental protection.

The environmental policy impact of ECDZs on urban green
innovation resilience is different, and regions should make full
use of their comparative advantages. With the goal of fostering
the stable and sustainable capacity of green innovation resilience,
they should seriously consider the common and unique
characteristics of urban development. The western and central
regions should prioritize promoting the construction and
upgrading of new infrastructure, while simultaneously
increasing support for high-tech green industries. These
regions should seize national policy opportunities, prioritize
support, accelerate environmental innovation, and gradually
narrow the developmental gap with eastern and central
regions. At the same time, mainland cities should fully utilize
the benefits of national high-tech zone policies to uphold and
elevate high standards in green innovation resilience. For regions
with weaker green innovation resilience, especially coastal and
non-low-carbon pilot cities, strong policy support is crucial for
addressing areas where the environmental impact of ECDZs is
less significant.
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