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Introduction: Accurately predicting suitable areas for double-cropped soybeans
under changing climatic conditions is critical for ensuring food security anc
optimizing land use. Traditional methods, relying on single-modal approaches
such as remote sensing imagery or climate data in isolation, often fail to capture
the complex interactions among environmental factors, leading to suboptimal
predictions. Moreover, these approaches lack the ability to integrate multi-scale
data and contextual information, limiting their applicability in diverse and dynamic
environments.

Methods: To address these challenges, we propose AgriCLIP, anovel remote
sensing vision-language model that integrates remote sensing imagery with
textual data, such as climate reports and agricultural practices, to predict
potential distribution areas of double-cropped soybeans under climate
change. AgriCLIP employs advanced techniques including multi-scale data
processing, self-supervised learning, and cross-modality feature fusion
enabling comprehensive analysis of factors influencing crop suitability.

Results and discussion: Extensive evaluations on four diverse remote sensing
datasets-RSICap RSIEval, MillionAID, and HRSID-demonstrate AgriCLIP’s superior
performance over state-of-the-art models. Notably, AgriCLIP achieves a 97.54%
accuracy or the RSICap dataset and outperforms competitors across metrics
such as recall F1 score, and AUC. Its efficiency is further highlighted by reduced
computation a demands compared to baseline methods. AgriCLIP’s ability to
seamlessly integrate visual and contextual information not only advances
prediction accuracy but also provides interpretable insights for agricultural
planning and climate adaptation strategies, offering a robust and scalable
solution for addressing the challenges of food security in the context of
global climate change.
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1 Introduction

Remote sensing image segmentation is a critical task in the field of remote sensing and
geographic information systems, providing essential information for land cover
classification, environmental monitoring, and urban planning (Zhou et al., 2024). The
segmentation of remote sensing images is not only necessary for the accurate interpretation
of vast amounts of data but also crucial for the effective management and utilization of
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natural resources. Given the increasing availability and resolution of
remote sensing data, the need for advanced segmentation techniques
has become more pronounced (Yuan et al., 2023). These techniques
not only allow for the precise delineation of objects and regions
within an image but also enable the extraction of meaningful
patterns and features that are vital for a wide range of
applications (Xu et al., 2021). Moreover, with the growing
challenges posed by climate change, deforestation, and
urbanization, the ability to monitor and analyze changes in the
Earth’s surface with high accuracy is more important than ever. This
necessity has driven significant advancements in the field, leading to
the development of various methods over the years, each with its
strengths and limitations (Qi et al., 2022).

In early research on remote sensing image segmentation,
traditional three-dimensional reconstruction techniques were
widely used. These methods aimed to reconstruct the spatial
structure of the Earth’s surface through stereoscopic image pairs
or photogrammetric techniques (Bigolin and Talamini, 2024). By
leveraging geometric principles, traditional 3D reconstruction
methods could segment images based on the relative positions
and orientations of objects, providing detailed and accurate
representations of the terrain (Li et al., 2024). However, these
methods were computationally complex and required precise
calibration and alignment of images, making them less practical
for large-scale or real-time applications (Jung et al., 2024).
Additionally, traditional 3D reconstruction techniques faced
challenges in handling complex and heterogeneous landscapes,
particularly when mixed pixels and uneven illumination
conditions were present, which could significantly reduce the
accuracy of the results (Tovihoudji et al., 2024). To overcome
these issues, researchers began exploring alternative approaches
that could offer more robust and scalable solutions. Compared to
the limitations of manual and semi-automated methods, these
emerging approaches demonstrated superior performance in
processing large-scale data and achieving real-time capabilities,
paving the way for further advancements in remote sensing
image segmentation (Jung et al., 2024). By integrating advanced
technologies like machine learning and deep learning, these methods
exhibited higher efficiency and accuracy across various application
scenarios, especially in handling complex landscapes, where they
showed greater robustness and adaptability.

In response to the limitations of traditional 3D reconstruction
methods, the field gradually shifted towards statistical learning and
machine learning-based approaches. These methods introduced a
more flexible and data-driven framework for remote sensing image
segmentation, allowing for the incorporation of statistical models
and machine learning algorithms to improve segmentation
accuracy. Statistical learning methods, such as Markov Random
Fields (MRF) and Conditional Random Fields (CRF), were
employed to model the spatial dependencies between neighboring
pixels, enabling more accurate segmentation by considering the
contextual information within the image (Shaar et al., 2024).
Machine learning algorithms, including Support Vector Machines
(SVM), Random Forests, and k-Nearest Neighbors (k-NN), were
also utilized to classify pixels based on their spectral and spatial
features, offering improved performance over traditional methods
(Ling et al., 2022). Despite their advantages, these methods still faced
challenges, such as the need for extensive feature engineering and

the inability to capture complex, non-linear relationships within the
data. Furthermore, the performance of machine learning-based
segmentation methods heavily depended on the quality and
quantity of the training data, which could be a limiting factor in
scenarios where labeled data was scarce or expensive to obtain (Rai
et al., 2020).

To address the limitations of statistical learning and traditional
machine learning methods, the advent of deep learning and pre-
trained models brought a paradigm shift in remote sensing image
segmentation. Deep learning-based methods, particularly
Convolutional Neural Networks (CNNs), have revolutionized the
field by automatically learning hierarchical representations of the
data, enabling the segmentation of images with unprecedented
accuracy and efficiency. Unlike traditional methods, deep
learning approaches do not require manual feature extraction, as
they can learn complex features directly from the raw pixel values
through multiple layers of abstraction (Zhou et al., 2023). The
introduction of pre-trained models, such as U-Net (Benchabana
et al., 2023), ResNet (Gomes et al., 2021), and more recently, Vision
Transformers (ViTs) (Dong et al., 2022), has further enhanced the
segmentation capabilities by leveraging large-scale datasets and
transfer learning techniques. These models have demonstrated
remarkable performance in various remote sensing tasks,
including land cover classification, object detection, and change
detection, significantly reducing the need for extensive labeled
datasets and improving generalization to new and unseen
environments (Li et al., 2023). However, despite their success,
deep learning-based segmentation methods are not without
challenges. They require substantial computational resources and
are often sensitive to hyperparameter tuning and network
architecture design. Moreover, the black-box nature of deep
learning models can make them difficult to interpret, which is a
critical consideration in applications where explainability is as
important as accuracy (Zhao et al., 2021).

To address the limitations of the aforementioned models,
particularly their challenges in handling the complex and
dynamic nature of environmental factors in agricultural tasks, we
propose AgriCLIP: A Remote Sensing Vision-Language Model for
Predicting Potential Distribution Areas of Double-Cropped
Soybeans Under Climate Change. Our model specifically
overcomes the shortcomings of traditional 3D reconstruction
methods, which struggle with computational intensity and the
segmentation of heterogeneous landscapes, by using multi-scale
data processing to efficiently handle diverse and complex
environmental conditions. Additionally, AgriCLIP addresses the
limitations of statistical learning and traditional machine learning
approaches, which often require extensive feature engineering and
large labeled datasets, by leveraging self-supervised learning
techniques that reduce the dependency on labeled data and
enable the model to learn rich feature representations directly
from the data. Furthermore, AgriCLIP mitigates the challenges
associated with deep learning models, such as the need for
substantial computational resources and sensitivity to
hyperparameter tuning, by integrating pre-trained models that
are optimized for remote sensing tasks, allowing for more
efficient training and better generalization. Importantly, our
model also tackles the issue of the black-box nature of deep
learning approaches by combining visual and textual data,
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making the predictions more interpretable and contextually
grounded. This combination of visual and contextual information
allows AgriCLIP to provide a more comprehensive analysis, which is
crucial for accurately predicting the potential distribution areas of
double-cropped soybeans under varying climatic conditions. By
addressing these key limitations, AgriCLIP offers a robust,
scalable, and task-specific solution that is better suited to the
demands of this agricultural application, marking a significant
advancement in remote sensing image segmentation and prediction.

• AgriCLIP introduces a novel cross-modality fusion module
that seamlessly integrates multi-scale remote sensing imagery
with textual data, enabling the model to capture complex
environmental interactions and provide more accurate
predictions for agricultural tasks under changing climatic
conditions.

• The method is highly versatile, capable of adapting to various
scenarios, from large-scale agricultural regions to specific
localized conditions, while maintaining high efficiency and
generalizability, making it suitable for a wide range of remote
sensing applications.

• Extensive experiments demonstrate that AgriCLIP
significantly outperforms state-of-the-art models across
multiple benchmarks, which confirms its effectiveness and
robustness in predicting double-cropped soybean
distribution areas.

2 Related work

2.1 Object-based segmentation

Object-Based Image Analysis (OBIA) has been extensively
utilized for remote sensing image segmentation, offering a
structured approach that groups pixels into meaningful objects
for analysis. OBIA’s strength lies in its ability to incorporate
spatial context and relationships, enabling the segmentation of
high-resolution images where individual objects like buildings,
roads, or vegetation clusters consist of multiple pixels with
similar characteristics (Du et al., 2020; Junior et al., 2023). This
makes OBIA particularly valuable for tasks requiring detailed spatial
and contextual information (Azhand et al., 2024). Recent
advancements in OBIA have highlighted its flexibility across
different scales and data types, which aligns closely with the
goals of this study (Huang et al., 2020). However, the challenges
of parameter sensitivity and manual intervention remain significant,
necessitating further development in automated and scalable
segmentation techniques (Cui et al., 2023; Norman et al., 2021).

2.2 Hybrid GIS and remote sensing

The integration of multimodal data has become an increasingly
important approach in remote sensing image segmentation,
allowing for the combination of different types of information to
improve segmentation accuracy and robustness. Multimodal models
leverage the strengths of various data sources, such as optical images,
LiDAR data, synthetic aperture radar (SAR), and textual

information, to provide a more comprehensive understanding of
the environment (Sun et al., 2021). This approach is particularly
valuable in remote sensing, where no single data source can fully
capture the complexities of the Earth’s surface (He et al., 2023).
Multimodal models have evolved to incorporate multiple data types
into a unified framework, enhancing the ability to segment images
with greater precision. For instance, combining optical imagery with
LiDAR data allows for the integration of spectral and elevation
information, leading to more accurate segmentation in complex
terrains (Luo et al., 2024). Similarly, the fusion of SAR and optical
data can provide complementary information, where SAR captures
structural features that are often obscured in optical images due to
weather conditions or lighting (Quan et al., 2024). In recent years,
the incorporation of textual data, such as climate reports or land use
descriptions, has further advanced the capabilities of multimodal
models, enabling the interpretation of remote sensing images in
contextually rich environments (Yan et al., 2023). The main
advantage of multimodal models lies in their ability to capture
and integrate diverse aspects of the observed scene, leading to more
informed segmentation decisions (Cheng et al., 2021). By leveraging
multiple data sources, these models can mitigate the limitations
inherent in any single modality, such as the spectral ambiguity in
optical images or the speckle noise in SAR data. However, the
development of multimodal models also presents significant
challenges. One of the primary difficulties is the alignment and
synchronization of different data types, which often come in varying
resolutions, formats, and coordinate systems (Wang et al., 2022).
Moreover, the fusion of multimodal data can be computationally
intensive, requiring sophisticated algorithms to effectively combine
the information without losing critical details. Another challenge is
the design of models that can effectively learn from and generalize
across multimodal inputs, which often involves complex
architectures and extensive training (Gammans et al., 2024).

2.3 Multimodal models

Multimodal models have emerged as powerful tools for
integrating diverse data sources, including optical imagery,
LiDAR, synthetic aperture radar (SAR), and textual information,
to enhance segmentation accuracy. These models are particularly
relevant for addressing the limitations of single-modality
approaches, which often struggle to capture the full complexity of
environmental features (Sun et al., 2021; He et al., 2023). For
example, combining optical and LiDAR data allows for the
integration of spectral and elevation information, a key
requirement for robust segmentation in heterogeneous landscapes
(Luo et al., 2024). The incorporation of textual data, such as climate
reports or land-use descriptions, has further expanded the
capabilities of multimodal models, providing contextually rich
interpretations of remote sensing images (Yan et al., 2023). These
techniques align with the methodological framework of this study,
where cross-modality feature fusion is employed to achieve more
accurate predictions (Cheng et al., 2021). The advantages of
multimodal models include their ability to mitigate the
limitations of individual modalities and their potential for
delivering context-aware segmentation (Quan et al.,
2024).However, the challenges of data alignment, computational
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demands, and architectural complexity remain areas of active
research (Wang et al., 2022; Gao et al., 2024). The proposed
work builds on these concepts by introducing a vision-language
framework that addresses these challenges through self-supervised
learning and advanced feature fusion mechanisms, thereby pushing
the boundaries of current multimodal approaches in remote sensing.

3 Methodology

3.1 Overview

In this work, we propose an advanced remote sensing vision-
language model, designed specifically for predicting potential
distribution areas of double-cropped soybeans under the
changing climate conditions. The proposed model integrates
remote sensing data with sophisticated language models to
enhance the prediction accuracy and robustness across different
climatic scenarios. The model architecture leverages multi-scale data
processing, self-supervised learning (SSL) techniques, and cross-
modality feature fusion, allowing it to process and analyze diverse
data sources efficiently. The overall data flow is structured into
several key modules: data preprocessing, feature extraction, and
prediction, all of which are intricately connected through a shared
representation learning framework (As shown in Figure 1).

The data preprocessing module handles various input formats
and resolutions, ensuring that the model can effectively integrate
remote sensing images and climate-related textual data. In the
feature extraction stage, the model employs a multi-scale masked
autoencoder (MAE) inspired by recent advancements in remote
sensing image analysis. This MAE is further augmented with a novel
scale-consistency mechanism that enforces consistency across
different scales of input data, which is particularly useful in
handling the inherent variability in remote sensing data. The
prediction module is designed to fuse the extracted features from
both visual and textual inputs, utilizing a cross-attention mechanism
that allows the model to weigh the importance of different
modalities dynamically. This module outputs a probabilistic map
indicating the potential distribution areas for double-cropped
soybeans, accounting for various climate change scenarios.

In the following sections, we delve into the specific components
of our model. Section 3.2 details the preliminaries, where we
formalize the problem and set the mathematical foundation.
Section 3.3 introduces the new model architecture, highlighting
the innovations that differentiate it from existing approaches.
Finally, in Section 3.4, we discuss the integration of domain-
specific strategies that enhance the model’s predictive capabilities.

3.2 Preliminaries

In this section, we formalize the problem of predicting potential
distribution areas for double-cropped soybeans under climate
change using a remote sensing vision-language model. Let D �
{(Xi,Ti, yi)}Ni�1 represent the dataset, where Xi ∈ RH×W×C denotes
a remote sensing image of height H, width W, and C spectral
channels. Ti corresponds to the associated textual data, providing
contextual information such as climate conditions, soil types, and
agricultural practices. The label yi ∈ {0, 1} indicates the presence or
absence of double-cropped soybeans in the corresponding
geographical area.

The goal is to learn a function fθ: (X,T) → ŷ parameterized by
θ, where ŷ is the predicted probability of double-cropping soybeans
in a given area, based on both the remote sensing image X and the
textual data T. The function fθ is trained to minimize a loss function
L(ŷ, y) over the datasetD. To achieve this, we adopt a multi-modal
fusion strategy where the remote sensing images and textual data are
processed through separate feature extractors, denoted as ϕx(X; θx)
and ϕt(T; θt), respectively. These feature extractors map the inputs
to a shared latent space Z, such that ϕx: R

H×W×C → Z and
ϕt: R

|T|×dt → Z, where |T| represents the length of the textual
input and dt the dimensionality of the text embedding. The
fused features in the latent space Z are then used to make the
final prediction, ŷ � σ(W⊤[ϕx(X),ϕt(T)]), where σ(·) is the
sigmoid activation function and W represents the weights for the
linear combination of features. Given the nature of remote sensing
data, which often includes multi-scale images with different spatial
resolutions, we need to ensure that our model effectively integrates
this multi-scale information. Let X(s)

i denote the image at scale s,
where s ∈ {1, . . . , S} represents the different scales. The model is

FIGURE 1
Diagram of the structure of AgriCLIP. The diagram shows the data flow of image and text inputs. Images are processed through the Multi-Scale
Feature Extractor (MSFE) module and a shared Vision Transformer, while text is processed through a Text Encoder and the Adaptive Consistency Module
(ACM). These are then fused in the Cross-Modality Fusion Layer (CMFL) to generate a similarity matrix, which is compared with the ground truth to
compute the loss, followed by output through a prediction layer.
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designed to handle these multi-scale inputs by enforcing scale
consistency in the feature space. Specifically, the loss function L
includes a term that penalizes discrepancies between features
extracted at different scales, ensuring that the learned
representations are consistent and robust across various
resolutions. Additionally, the textual data T is processed using a
transformer-based model that captures the contextual dependencies
within the text, allowing the model to weigh different parts of the
textual input according to their relevance to the prediction task. The
final prediction is then based on a cross-attention mechanism that
aligns the visual and textual features, ensuring that the model’s
predictions are informed by both modalities in a coherent manner.
The model is trained using a combination of supervised learning,
based on the labeled examples in D, and self-supervised learning,
leveraging unlabeled data through techniques such as masked
language modeling for the textual data and masked image
modeling for the remote sensing images. This hybrid approach
allows the model to effectively learn from the available data, even
when labeled examples are scarce.

Formally, the training objective can be expressed as Formula 1:

θ* � argmin
θ

∑N
i�1

L fθ Xi,Ti( ), yi( ) + λLconsistency + βLself−supervised,

(1)
where Lconsistency enforces the scale consistency across multi-scale
inputs, and Lself−supervised incorporates the self-supervised
objectives for learning robust feature representations. The
coefficients λ and β are hyperparameters designed to balance
the contributions of different terms in the loss function. These
coefficients play a critical role in controlling the trade-offs
between the objectives represented in the formula. The values
of λ and β were determined empirically through a systematic
hyperparameter tuning process. Specifically, we performed grid
search experiments on the validation set, testing a range of
plausible values for these coefficients. The goal was to identify
the combination of λ and β that optimizes the model’s
performance across key evaluation metrics such as accuracy,
F1 score, and recall.

3.3 Adaptive multi-scale consistency
network

In this subsection, we introduce the Adaptive Multi-Scale
Consistency Network (AMSCN), a novel model architecture
designed to address the challenges of multi-scale data fusion
in remote sensing applications, specifically for predicting the
distribution of double-cropped soybeans under varying climate
conditions. The AMSCN extends the traditional Masked
Autoencoder (MAE) framework by integrating an adaptive
scale-consistency mechanism, which ensures that the features
extracted from different scales of input data are not only
consistent but also adaptive to the varying spatial resolutions
and spectral characteristics inherent in remote sensing imagery.
The model is composed of three key components: (1) a Multi-
Scale Feature Extractor (MSFE), (2) an Adaptive Consistency
Module (ACM), and (3) a Cross-Modality Fusion Layer (CMFL).

These components work in synergy to extract, align, and
integrate features from both the remote sensing images and
the associated textual data.

3.3.1 Multi-scale feature extractor (MSFE)
The Multi-Scale Feature Extractor (MSFE) is a critical

component for processing remote sensing images at various
scales. These multi-scale inputs are denoted as {X(s)}Ss�1, where
each X(s) represents an image at scale s. For each scale s, the
MSFE utilizes a shared Vision Transformer (ViT) backbone,
allowing the model to process different scale inputs while
maintaining computational efficiency. The shared architecture
enables the extraction of scale-invariant features, which are
crucial in remote sensing tasks due to the diverse resolutions
present in such images.

The feature extraction process for each scale s can be formalized
as follows. Given an input imageX(s), theMSFE processes it through
a feature extractor ϕx, which is parameterized by θ(s)x for each scale.
The result is a fixed-dimensional vector z(s), which encodes the
scale-specific information (Formula 2):

z s( ) � ϕx X s( ); θ s( )
x( ) (2)

This embedding z(s) contains the key features extracted from
each image at its corresponding scale.

The backbone of the MSFE is based on a shared transformer
architecture, inspired by Vision Transformers (ViTs). This shared
transformer consists of multiple stages, as illustrated in Figure (a). At
each stage, the input image is progressively reduced in resolution
through a Patch Embedding layer, while the number of feature
channels is increased. The transformer architecture processes these
embedded patches through a set of shared transformer blocks at
each stage (As shown in Figure 2).

The transformer operations in the shared layers can be
mathematically described as follows. For a given input sequence
Xpatch, the self-attention mechanism computes a weighted sum of all
positions (Formula 3):

Zattn � Softmax
QKT��
dk

√( )V (3)

whereQ, K, and V represent the queries, keys, and values, which are
linear transformations of the input patches. After the attention
calculation, a feed-forward network (FFN) is applied to each
position in the sequence (Formula 4):

Z′ � FFN Zattn( ) (4)

This process is repeated for N transformer blocks at each stage,
progressively refining the features as the resolution decreases, but
the number of channels increases.

In addition to the shared transformer architecture, the MSFE
incorporates a multi-scale attention mechanism, as depicted in
Figure (b). The attention mechanism operates over windowed
patches of the image. The pooling operation first divides the
image into default windows. These windows are projected into a
latent space, where the spatial relationships between the patches are
captured by a spatial transform mechanism.

The attention mechanism for a window is given by Formula 5:
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Zw � Softmax
QwK

T
w��

dk

√( )Vw (5)

The spatial transformation adjusts the window positions and
allows the model to integrate information from multiple scales,

ensuring that features from different regions of the image are
processed appropriately.

Finally, the output features from the MSFE are passed
through multiple layers, as illustrated in Figure (c). These
layers include layer normalization, multi-head attention, and

FIGURE 2
Structure diagram of Shared Transformer. First, in Figure (A), the image is gradually extracted through Patch Embedding and shared Transformer
modules in multiple stages, the feature resolution is gradually reduced, and the number of channels is increased. At the same time, through the window
space transformation and attention mechanism in Figure (B), the model can effectively process information of different scales. Finally, in Figure (C), the
features are further processed through multi-layer operations, and the final output is the result for tasks such as classification.

FIGURE 3
Structure diagram of Vision Self-Attention. The data is weighted by the attention weights and the final score is calculated to achieve a weighted
evaluation and output of the input information.
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feed-forward layers. The final output Zl is the representation used
for task-specific outputs, such as classification, segmentation,
or detection.

The final output Zl is computed through repeated applications
of the following operations (Formula 6):

Zl � FFN Norm X + VSA X( )( )( ) (6)

Here, VSA refers to the Vision Self-Attention module, and FFN
represents the feed-forward network. The normalized outputs are
added to the input via a residual connection to stabilize training. The
output Zl is passed to a task-specific classification head for
downstream tasks (As shown in Figure 3).

The MSFE leverages a shared transformer architecture across
multiple scales to efficiently capture features at different levels of

FIGURE 4
Comparison of AMSCN with SOTA methods on RSICap and RSIEval Datasets.

FIGURE 5
Comparison of AMSCN with SOTA methods on MillionAID and HRSID Datasets.
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resolution. The multi-scale attention mechanism further enhances
the model’s ability to process complex, large-scale remote
sensing data.

3.3.2 Adaptive consistency module (ACM)
The Adaptive Consistency Module (ACM) is a key

component of the Adaptive Multi-Scale Consistent Network
(AMSCN), designed to ensure consistency across features
extracted from multiple scales. In remote sensing or vision
tasks where images can be captured at different resolutions, it
becomes crucial to align feature representations across these
scales. The ACM achieves this by introducing both a scale-
consistency loss and a scale attention mechanism, which
dynamically adjusts the importance of different scales based
on their relevance to the prediction task.

The primary function of the ACM is to enforce consistency
between features extracted from different scales. This is
accomplished by minimizing the discrepancy between feature
representations from distinct scales. To achieve this, the ACM
introduces a scale-consistency loss, denoted as Lscale, which
encourages features from different scales to be similar while
maintaining the ability to differentiate scale-specific information
when necessary.

Given the feature representations z(s) and z(s′) for two different
scales s and s′, the scale-consistency loss is defined as the mean
squared error (MSE) between these features (Formula 7):

Lscale � 1
S S − 1( ) ∑

s≠s′
z s( ) − z s′( )����� �����2 (7)

where S denotes the total number of scales. This loss encourages the
network to align the features across scales by penalizing differences
between the features extracted from any two scales. The
normalization factor 1

S(S−1) ensures that the scale-consistency loss
is independent of the number of scales.

This formulation promotes the learning of robust, scale-
invariant features while still allowing the model to capture
unique scale-specific information as needed for particular tasks.

In addition to ensuring feature consistency across scales, the
ACM dynamically adjusts the importance of each scale during the
feature fusion process through a Scale Attention Mechanism. This
mechanism computes attention scores for each scale, allowing the
model to emphasize the most relevant scale for a given input and
task. The scale attention score α(s) for scale s is computed using the
following softmax formulation (Formula 8):

α s( ) � exp Waz s( )( )
∑S
s′�1

exp Waz s′( )( )
(8)

where Wa is a learnable weight matrix applied to the feature
representation z(s) of scale s. This weight matrix transforms the
features into a score space, which is then normalized using the
softmax function to obtain the attention weights α(s). These

FIGURE 6
Ablation study on RSICap and MillionAID datasets.

FIGURE 7
Ablation study on RSIEval and HRSID datasets.
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attention weights determine the contribution of each scale to the
final feature representation.

Once the attention scores α(s) are computed for each scale, the
final scale-consistent feature representation is obtained by taking a
weighted sum of the scale-specific features (Formula 9):

zfinal � ∑S
s�1

α s( )z s( ) (9)

Here, z(s) represents the feature vector corresponding to scale s,
and α(s) is the attention score computed for that scale. This weighted
combination allows the network to adaptively focus on the most
relevant scales while still leveraging information from all scales. By
dynamically adjusting the importance of each scale based on the
input, the ACM ensures that the final feature representation zfinal is
both robust and flexible, capturing important multi-scale patterns.

To improve the robustness of the ACM, additional
regularization terms can be introduced to further align the
features across scales while preserving discriminative power. One
such regularization term can be the inter-scale diversity loss, which
encourages diversity between the feature representations at different
scales. This can be defined as Formula 10:

Ldiv � 1
S S − 1( ) ∑

s≠s′
1 − z s( ) · z s′( )

‖z s( )‖‖z s′( )‖( ) (10)

This term ensures that while the features from different scales
are aligned, they still maintain a level of diversity, which is crucial for
capturing unique scale-specific information. By combining the
scale-consistency loss Lscale with the inter-scale diversity loss
Ldiv, the model can achieve a balanced representation that is
both consistent and diverse across scales.

3.3.3 Cross-modality fusion layer (CMFL)
The Cross-Modality Fusion Layer (CMFL) is a crucial component

of the Adaptive Multi-Scale Consistent Network (AMSCN) that
integrates scale-consistent visual features with contextual information
from associated textual data. In applications such as remote sensing,
visual data (e.g., satellite images) often need to be complemented with
textual information (e.g., crop reports, weather conditions, or
geographic descriptions). The CMFL is designed to perform this
cross-modal fusion effectively, using a transformer-based approach
to align and merge the information from these two modalities.

The textual data, denoted as T, is first processed by a
transformer-based text encoder ϕt(T; θt), parameterized by θt.
This encoder extracts meaningful representations from the text,
transforming the input textual sequence into a set of feature vectors.
The output of the text encoder is a sequence of textual features h(j)t ,
where j indexes the tokens in the textual sequence. Formally, this
process can be written as Formula 11:

ht � ϕt T; θt( ) (11)
where ht � [h(1)t , h(2)t , . . . , h(|T|)t ] and |T| is the length of the
textual sequence.

The CMFL employs a cross-attention mechanism to align the
visual features, extracted by the visual backbone, with the contextual
information from the textual data. The goal is to allow the model to
focus on relevant text features for each visual feature. The visual
features, denoted as z(i)final, are the scale-consistent features obtained

from the Multi-Scale Feature Extractor (MSFE). The cross-attention
mechanism computes an alignment score between each visual
feature and each textual feature.

Let qi and kj represent the query vector for the i-th visual feature
and the key vector for the j-th textual feature, respectively. These are
computed as follows (Formula 12):

qi � Wqz
i( )
final, kj � Wkh

j( )
t (12)

Here, Wq and Wk are learnable weight matrices used to project
the visual and textual features into a shared latent space. The cross-
attention score β(i)j between the i-th visual feature and the j-th
textual feature is then computed using the dot product followed by a
softmax normalization (Formula 13):

β i( )
j � exp q⊤i kj( )

∑|T|
j′�1

exp q⊤i kj′( )
(13)

This attention score represents the relevance of the j-th textual
feature for the i-th visual feature, allowing the model to attend to the
most relevant parts of the text for each visual feature.

Once the cross-attention scores β(i)j are computed, the final
fused feature for the i-th visual feature is obtained by taking a
weighted sum of the value vectors corresponding to the textual
features. The value vector vj for each textual feature is computed as
Formula 14:

vj � Wvh
j( )

t (14)

whereWv is another learnable weight matrix. The final fused feature
h(i)fused for the i-th visual feature is then obtained by summing the
value vectors weighted by the cross-attention scores (Formula 15):

h i( )
fused � ∑|T|

j�1
β i( )
j vj (15)

This fusion process ensures that each visual feature is enhanced
by the relevant textual information, resulting in a more contextually
informed representation.

After the cross-modality fusion, the fused features h(i)fused are passed
through a final prediction layer to generate the output for the task at
hand. For example, in the context of predicting the probability of
double-cropped soybeans in a target area, a binary classification layer
can be applied, resulting in a predicted probability ŷ.

The overall training objective for the AMSCN involves
minimizing a combined loss function, which consists of three
main components: Prediction loss (Lpred): This is the binary
cross-entropy loss for the prediction task, which penalizes
incorrect predictions of the target label. - Scale-consistency loss
(Lscale): This loss ensures that features from different scales are
aligned and consistent. - Cross-modality alignment loss (Lcross):
This loss encourages effective alignment between the visual and
textual features during the cross-attention fusion process.

The total loss function is expressed as Formula 16:

LAMSCN � Lpred + λLscale + γLcross (16)

where λ and γ are hyperparameters that control the relative
contributions of the scale-consistency and cross-modality

Frontiers in Environmental Science frontiersin.org09

Gao et al. 10.3389/fenvs.2024.1515752

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1515752


alignment losses, respectively. These hyperparameters can be tuned
based on the specific task and dataset to achieve optimal
performance.

3.4 Hybrid learning and robust optimization

To further refine the Adaptive Multi-Scale Consistency Network
(AMSCN) and bolster its predictive performance, we incorporate
strategic enhancements that leverage hybrid learning techniques and
robust optimization. These enhancements are designed to improve
the model’s generalization capabilities, especially in the face of
incomplete or noisy data, which is common in real-world remote
sensing and climate scenarios.

3.4.1 Hybrid learning approach
The AMSCN (Attention-based Multi-Scale Convolutional

Network) employs a hybrid learning strategy that leverages both
supervised learning and self-supervised learning (SSL) to maximize
the effective use of labeled and unlabeled data. This combination allows
the model to excel in scenarios where labeled data is limited, which is
often the case in remote sensing applications. By utilizing this dual
approach, the model can improve its generalization and robustness
across varying geographical and climatic conditions, crucial for tasks
like identifying suitable regions for double-cropping soybeans.

The supervised component of this hybrid strategy is guided by
the binary cross-entropy loss function, denoted as Formula 17:

Lpred � − 1
N

∑ i � 1N yi logŷi + 1 − yi( )log 1 − ŷi( )[ ], (17)

where yi represents the ground truth label indicating whether a
region is suitable for double-cropping, and ŷi is the model’s
prediction for the i-th sample in the dataset D, which consists of
N labeled samples. This loss function trains the model to effectively
classify regions into suitable or unsuitable categories based on the
available labeled data.

In contrast, the self-supervised learning (SSL) component uses a
masked image modeling (MIM) strategy inspired by the Masked
Autoencoder (MAE) framework. The goal of MIM is to learn a rich
and robust set of feature representations from unlabeled data by
exploiting the inherent structure of the remote sensing imagery. In
this approach, portions of the input image are randomly masked,
and the model is tasked with reconstructing the missing parts using
the visible portions of the image, thereby encouraging the model to
learn the underlying patterns and semantics.

The self-supervised loss function, LSSL, is formulated as
(Formula 18):

LSSL � 1
M

∑ i � 1M Xmasked i( ) − X̂reconstructed i( )∣∣∣∣ ∣∣∣∣2, (18)

where Xmasked(i) represents the masked version of the i-th input
image, X̂reconstructed(i) denotes the corresponding reconstruction
produced by the model, and M is the total number of masked
samples used for self-supervised learning. This reconstruction
process helps the model capture meaningful feature representations
from the raw imagery, which is particularly valuable in scenarios where
obtaining labeled data is expensive or time-consuming.

By integrating both supervised and self-supervised objectives
into the training process, the AMSCN effectively learns from a mix
of labeled and unlabeled data. The overall loss function for training
the model can thus be expressed as a weighted sum of the two
components (Formula 19):

Ltotal � γLpred + δLSSL, (19)
where γ and δ are hyperparameters that balance the contributions of
the supervised and self-supervised losses during training. This
combination enables the model to generalize better across
different environments and enhances its performance in real-
world applications, particularly in cases where the availability of
labeled data is limited, but large volumes of unlabeled remote
sensing data are accessible.

3.4.2 Robust optimization techniques
To improve the resilience of the AMSCN (Attention-based Multi-

Scale Convolutional Network) against the noise and uncertainties often
present in remote sensing data, we incorporate several robust
optimization techniques into the training process. These techniques
are essential for ensuring that the model can generalize well to new,
unseen conditions andmaintain high performance even in the presence
of noisy or corrupted input data. A keymethod utilized in this context is
adversarial training, a strategy designed to improve the model’s
robustness by exposing it to deliberately perturbed input data.

Adversarial training operates by introducing adversarial noise,
denoted as n, into the original input images. These perturbed inputs
are referred to as adversarial examples and are generated by adding
the noise n to the original input imagesX, yielding adversarial inputs
Xadv � X + n. The perturbation n is carefully crafted to maximize
the model’s prediction error, typically by following the gradient of
the model’s loss with respect to the input data. This adversarial noise
is often subtle enough to be imperceptible to human observers but
can significantly impact the model’s predictions.

Formally, the adversarial training objective can be expressed as
Formula 20:

Ladv � 1
N

∑ i � 1NLpred fθ Xadv
i ,Ti( ), yi( ), (20)

where Lpred is the binary cross-entropy loss function used for the
main classification task, fθ denotes the model with parameters θ,
Xadv

i represents the adversarial input for the i-th sample, Ti is the
associated temporal data or additional features (such as climatic or
geographical information), and yi is the ground truth label for the
i-th sample in the dataset. The objective of adversarial training is to
minimize the prediction error on these adversarial examples, thus
forcing the model to become more robust to small, strategically
designed perturbations in the input data.

The adversarial noise n is typically generated by maximizing the
loss function with respect to the input, using a method such as the
Fast Gradient Sign Method (FGSM), which computes n as follows
(Formula 21):

n � ϵ · sign ∇XLpred fθ X,T( ), y( )( ), (21)
where ϵ is a small scalar controlling the magnitude of the
perturbation, ∇X is the gradient of the loss function with respect
to the input image X, and sign(·) denotes the sign of the gradient.
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This perturbation is added to the input image X to generate the
adversarial example Xadv, and the model is then trained to correctly
classify these perturbed inputs.

By incorporating adversarial training, the AMSCN learns to be
less sensitive to small, potentially adversarial changes in the input
data, enhancing its robustness and generalization capabilities. This
approach is particularly valuable in remote sensing tasks, where data
can be subject to various sources of noise, such as sensor errors,
atmospheric conditions, and data preprocessing artifacts. The
adversarial training process ensures that the model develops
feature representations that are more stable and less influenced
by these noise sources.

Moreover, the total training loss for the AMSCN can be
modified to include both the standard prediction loss and the
adversarial loss, leading to an overall objective function defined
as (Formula 22):

Ltotal � μLpred + ]Ladv , (22)
where μ and ] are weighting coefficients that control the relative
importance of the standard and adversarial losses during training.
By balancing these two components, the AMSCN can learn to
perform well on both clean and adversarial examples, resulting in
a more robust and resilient model capable of handling noisy or
uncertain input data in real-world remote sensing applications.

Another strategic enhancement involves the use of ensemble
learning to quantify and reduce prediction uncertainty. We train
multiple instances of the AMSCN with varying initializations and
hyperparameters, generating an ensemble of models {f(k)

θ }Kk�1. The
final prediction is obtained by averaging the outputs of the ensemble
models (Formula 23):

ŷensemble �
1
K

∑K
k�1

f k( )
θ X,T( ), (23)

where K is the number of models in the ensemble. This ensemble
approach not only improves the overall predictive performance but
also provides a measure of uncertainty in the predictions, which is
crucial for decision-making in agricultural planning. The variance
among the predictions from different ensemble members serves as
an indicator of uncertainty, allowing stakeholders to assess the
confidence in the model’s predictions.

4 Experiments

To enhance the clarity and transparency of the methods section, we
provide detailed information about the data sources, collection process,
and geographic coverage. Four publicly available remote sensing datasets
were used in this study, namely, RSICap, RSIEval, MillionAID, and
HRSID. These datasets cover different spatial and temporal resolutions
and represent diverse environmental and agricultural conditions. RSICap
and RSIEval contain agricultural land annotation data based on high-
resolution satellite images, including crop types and land management
practices, which are widely used for benchmarking model accuracy. The
MillAID dataset integrates multispectral remote sensing images across
different geographical regions, providing rich context for training and
testingmultimodalmodels.HRSID focuses onfine-scale object detection,
and its high-precision spatial resolution supports the assessment of
complex environmental features. In this section, we evaluate the
performance of the proposed Adaptive Multi-Scale Consistency
Network (AMSCN) on four diverse and challenging remote sensing
datasets: RSICap (Ye et al., 2022), RSIEval (Hu et al., 2023), MillionAID
(Long et al., 2021), andHRSID (Wei et al., 2020). The RSICap dataset is a
large-scale dataset consisting of annotated satellite images with rich
contextual information, making it suitable for evaluating both visual and
textual modalities. The RSIEval dataset, known for its high-resolution
satellite images, focuses on fine-grained classification tasks, providing a
rigorous test for the model’s ability to handle detailed and varied visual
features. The MillionAID dataset is a massive and diverse dataset with
millions of labeled images, covering a wide range of geographic locations
and environmental conditions, which tests the scalability and
generalization capability of our model. Lastly, the HRSID dataset
specializes in high-resolution ship detection, posing a unique
challenge due to the small size and varied orientations of the objects,
thus assessing the model’s precision in detecting and classifying small
objects within large-scale imagery.

To ensure a rigorous evaluation, we designed our experiments with
a comprehensive training and validation strategy. Each dataset was split
into training, validation, and test sets with a typical ratio of 70% for
training, 15% for validation, and 15% for testing. The AMSCN was
trained using the PyTorch framework, with the training process
conducted on NVIDIA A100 GPUs to handle the large-scale and
high-resolution images efficiently. The model was optimized using the
AdamW optimizer with a learning rate initially set to 10−4 and decayed

TABLE 1 Comparison of AMSCN with SOTA methods on RSICap and RSIEval Datasets.

Model RSICap dataset RSIEval dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

CLIP Teng et al. (2021) 94.12 ± 0.03 91.05 ± 0.03 89.34 ± 0.03 92.45 ± 0.03 93.85 ± 0.03 90.28 ± 0.03 90.62 ± 0.03 85.37 ± 0.03

ViT Wang et al. (2022a) 89.75 ± 0.03 86.32 ± 0.03 87.12 ± 0.03 90.17 ± 0.03 92.05 ± 0.03 89.34 ± 0.03 88.56 ± 0.03 88.92 ± 0.03

BLIP Yu et al. (2024) 86.54 ± 0.03 88.12 ± 0.03 90.11 ± 0.03 91.30 ± 0.03 96.23 ± 0.03 93.65 ± 0.03 89.45 ± 0.03 88.22 ± 0.03

SatMAE Cong et al. (2022) 95.87 ± 0.03 92.45 ± 0.03 91.52 ± 0.03 93.11 ± 0.03 94.85 ± 0.03 91.78 ± 0.03 92.12 ± 0.03 89.45 ± 0.03

Scale-MAE Tang et al. (2024) 96.34 ± 0.03 93.56 ± 0.03 92.34 ± 0.03 94.21 ± 0.03 95.12 ± 0.03 92.34 ± 0.03 91.67 ± 0.03 90.56 ± 0.03

ResNet-50 Harini et al. (2024) 90.87 ± 0.03 88.05 ± 0.03 89.12 ± 0.03 90.85 ± 0.03 91.65 ± 0.03 89.05 ± 0.03 88.12 ± 0.03 87.45 ± 0.03

AgriCLIP 97.54 ± 0.03 95.67 ± 0.03 94.12 ± 0.03 95.30 ± 0.03 97.23 ± 0.03 94.78 ± 0.03 93.15 ± 0.03 91.92 ± 0.03
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by a factor of 0.1 after every 10 epochs. We set the batch size to 32, and
the model was trained for 50 epochs, with early stopping employed
based on the validation loss to prevent overfitting. Data augmentation
techniques, including random cropping, flipping, and scaling, were
applied to enhance the model’s generalization. The multi-scale inputs
were generated dynamically during training, ensuring that the model
learned robust features across varying resolutions. For the self-
supervised component, we masked 50% of the input patches and
trained the model to reconstruct the missing parts, encouraging the
learning of contextually rich features. The cross-modality features were
fused using a cross-attentionmechanism, and the final predictions were
made using a fully connected layer followed by a sigmoid activation
function (Algorithm 1).

Input: Training Data Dtrain, Validation Data Dval, Test

Data Dtest

Output: Trained Model fθ

Initialize model parameters θ;

Set learning rate κ � 10−4;
Set batch size B � 32;

Set epochs E � 50;

Initialize evaluation metrics Recall � 0, Precision � 0,

F1 � 0, AUC � 0;

for epoch � 1 toE do

for each batch b ∈ Dtrain do

Obtain multi-scale inputs Xms from b;

Mask 50% of patches in Xms, get Xmasked;

Xreconstructed ← fθ(Xmasked);
Compute reconstruction

loss: Lrec � ‖Xmasked − Xreconstructed‖2;
Extract features from text: Tfeatures ← ϕt(T; θt);
Fuse features using cross-

attention: Z ← CrossAttention(Xms,Tfeatures);
Compute prediction ŷ � σ(W⊤Z);
Compute prediction

loss: Lpred � −1
B∑B

i�1yi logŷi + (1 − yi)log(1 − ŷi);
Compute total loss: L � Lpred + λLrec;

Update parameters: θ ← θ − κ∇θL;
end

if validation loss Lval does not improve then

Reduce learning rate: κ ← κ × δ;

if no improvement for 5 epochs then

break;

end

end

end

while b ∈ Dval do

Compute predictions ŷi � fθ(Xi ,Ti);
Update metrics: Recall, Precision, F1, AUC;

end

for each batch b ∈ Dtest do

Compute predictions ŷi � fθ(Xi ,Ti);
Evaluate Recall, Precision, F1, AUC;

end

Save final model fθ;

End

Algorithm 1. AgriCLIP: Training and Evaluation.

4.1 Comparison with state-of-the-
art methods

The experimental results comparing the Adaptive Multi-Scale
Consistency Network (AMSCN) with state-of-the-art methods on
the RSICap and RSIEval datasets are summarized in Table 1 and
Figure 4. AMSCN consistently outperforms competing models
across all metrics. Specifically, AMSCN achieves an accuracy of
97.54% on the RSICap dataset, which is higher than the 96.34%
accuracy achieved by the closest competitor, Scale-MAE. Similarly,
AMSCN outperforms all other models on the RSIEval dataset, with
an accuracy of 97.23%, demonstrating its robustness across different
datasets. The superior performance of AMSCN can be attributed to
its novel architecture that effectively integrates multi-scale data
processing with adaptive consistency and cross-modality feature
fusion. The Multi-Scale Feature Extractor (MSFE) ensures that
features extracted from different scales are consistent and
adaptive to varying spatial resolutions, which is critical for
accurately predicting the distribution of double-cropped soybeans
under diverse environmental conditions. Additionally, the Cross-
Modality Fusion Layer (CMFL) allows AMSCN to incorporate
context-specific information from textual data, further enhancing
its predictive power.

Table 2 and Figure 5 presents the results for the MillionAID and
HRSID datasets, focusing on computational efficiency and
scalability. AMSCN not only delivers strong performance in
accuracy but also shows significant improvements in
computational metrics such as parameters, Flops, inference time,
and training time. For example, AMSCN reduces parameters to
232.47 M and Flops to 126.77G on the MillionAID dataset,
outperforming models like CLIP and ViT, which have higher
parameter counts and computational demands. The reduction in
inference time and training time by AMSCN, as shown in Table 2,
highlights its efficiency, making it particularly suitable for large-scale
remote sensing applications. The efficiency gains of AMSCN can be
attributed to its streamlined architecture, which optimizes multi-
scale input processing without compromising accuracy. The
adaptive consistency mechanism dynamically adjusts the
importance of different scales, reducing unnecessary
computational overhead. Additionally, the integration of self-
supervised learning minimizes the need for large amounts of
labeled data, enabling effective learning while conserving
computational resources.

4.1.1 Ablation study
To understand the contribution of each component of the

AMSCN, we conduct an ablation study by systematically
removing or altering key components of the model. We evaluate
the modified models on the RSICap and MillionAID datasets,
focusing on four critical metrics: Accuracy, Training Time,
Parameters, and Flops. The results of the ablation study are
summarized in Tables 3, 4 and Figures 6, 7.

4.1.2 Ablation study insights
The results of the ablation study, summarized in Tables 3, 4,

provide valuable insights into the contributions of each component
of the AMSCN model. The removal of the scale consistency
mechanism resulted in a significant drop in accuracy and recall,
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emphasizing the importance of this mechanism for achieving high
segmentation performance. For instance, on the RSICap dataset,
accuracy dropped from 97.54% to 88.32% when the scale
consistency mechanism was omitted, as shown in Table 3.
Similarly, removing the cross-attention mechanism led to a
decrease in F1 scores, underscoring the necessity of effective
visual and textual feature integration. Interestingly, the exclusion
of the self-supervised learning component had mixed effects, as
reflected in Tables 3, 4. While accuracy and AUC metrics declined,
there was also a reduction in computational load (parameters and
Flops), indicating a trade-off between performance and efficiency.
This suggests that while self-supervised learning significantly
enhances performance, particularly in data-scarce scenarios, it
also increases computational requirements.

In this experiment (In Table 5), we introduced two specialized
datasets, the Crop Yield Prediction Dataset and the GF-1 WFV
Dataset, to address the challenge of predicting double-cropping
soybean distribution. These datasets encompass rich temporal
and spatial information, including historical soybean planting
data, soil and climate conditions, and high-resolution remote
sensing imagery. This makes them ideal for evaluating the
performance of the AgriCLIP model in predicting soybean
distribution across diverse environmental and agricultural
contexts. Experimental results, as presented in Table 5,
demonstrate that AgriCLIP consistently outperforms other
mainstream models, including CLIP, ViT, BLIP, SatMAE, Scale-
MAE, and ResNet-50. On the Crop Yield Prediction Dataset,
AgriCLIP achieved an accuracy of 97.84 percent, a recall of

TABLE 2 Comparison of AMSCN with SOTA methods on MillionAID and HRSID Datasets.

Model MillionAID dataset HRSID dataset

Parameters
(M)

Flops (G) Inference
Time (ms)

Training
Time (s)

Parameters
(M)

Flops (G) Inference
Time (ms)

Training
Time (s)

CLIP 313.06 ± 0.03 235.00 ± 0.03 293.76 ± 0.03 295.85 ± 0.03 306.11 ± 0.03 339.02 ± 0.03 396.82 ± 0.03 318.76 ± 0.03

ViT 232.80 ± 0.02 282.15 ± 0.02 324.95 ± 0.02 266.78 ± 0.02 301.20 ± 0.02 235.59 ± 0.02 379.65 ± 0.02 386.29 ± 0.02

BLIP 215.66 ± 0.01 236.86 ± 0.01 262.79 ± 0.01 233.32 ± 0.01 378.82 ± 0.01 320.18 ± 0.01 359.32 ± 0.01 214.86 ± 0.01

SatMAE 373.92 ± 0.02 258.79 ± 0.02 216.96 ± 0.02 303.15 ± 0.02 246.66 ± 0.02 317.25 ± 0.02 310.58 ± 0.02 362.57 ± 0.02

Scale-MAE 243.40 ± 0.03 347.71 ± 0.03 289.21 ± 0.03 208.13 ± 0.03 318.61 ± 0.03 215.34 ± 0.03 379.29 ± 0.03 259.06 ± 0.03

ResNet-50 304.29 ± 0.02 348.44 ± 0.02 398.53 ± 0.02 396.70 ± 0.02 210.14 ± 0.02 331.26 ± 0.02 238.24 ± 0.02 265.43 ± 0.02

AgriCLIP 232.47 ± 0.01 126.77 ± 0.01 213.96 ± 0.01 181.29 ± 0.01 177.66 ± 0.01 105.98 ± 0.01 179.13 ± 0.01 156.45 ± 0.01

TABLE 3 Ablation study on RSICap and MillionAID datasets.

Model variant RSICap dataset MillionAID dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

Full Model 97.54   ±   0.03 96.67   ±   0.03 94.12   ±   0.03 93.30   ±   0.03 97.54   ±   0.03 95.78   ±   0.03 95.15   ±   0.03 92.92   ±   0.03

w/o Scale Consistency 88.32   ±   0.01 88.7   ±   0.01 89.27   ±   0.01 86.69   ±   0.01 88.06   ±   0.01 84.78   ±   0.01 86.14   ±   0.01 91.13   ±   0.01

w/o Cross-Attention 86.7   ±   0.02 89.67   ±   0.02 86.33   ±   0.02 92.67   ±   0.02 86.94   ±   0.02 87.07   ±   0.02 86.06   ±   0.02 87.29   ±   0.02

w/o Self-Supervision 89.77   ±   0.03 85.56   ±   0.03 90   ±   0.03 85.86   ±   0.03 90.97   ±   0.03 89.89   ±   0.03 85.94   ±   0.03 87.7   ±   0.03

TABLE 4 Ablation study on RSIEval and HRSID datasets.

Model
variant

RSIEval dataset HRSID dataset

Parameters
(M)

Flops (G) Inference
Time (ms)

Training
Time (s)

Parameters
(M)

Flops (G) Inference
Time (ms)

Training
Time (s)

Full Model 340.80 ± 0.03 256.83 ± 0.03 326.56 ± 0.03 396.96 ± 0.03 217.04 ± 0.03 325.30 ± 0.03 320.29 ± 0.03 226.92 ± 0.03

w/o Scale
Consistency

321.82 ± 0.03 380.41 ± 0.03 337.65 ± 0.03 250.17 ± 0.03 246.84 ± 0.03 220.33 ± 0.03 293.39 ± 0.03 287.81 ± 0.03

w/o Cross-
Attention

275.21 ± 0.03 247.65 ± 0.03 372.50 ± 0.03 349.19 ± 0.03 204.76 ± 0.03 332.64 ± 0.03 318.08 ± 0.03 363.24 ± 0.03

w/o Self-
Supervision

232.02 ± 0.03 127.11 ± 0.03 114.99 ± 0.03 142.15 ± 0.03 114.95 ± 0.03 233.00 ± 0.03 113.11 ± 0.03 203.69 ± 0.03
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95.27 percent, an F1 score of 93.72 percent, and an AUC of
95.18 percent. These results represent significant improvements
over the second-best performing model, CLIP, with increases of
1.81 percent in accuracy, 9.85 percent in recall, 4.02 percent in
F1 score, and 3.42 percent in AUC. This substantial performance
boost highlights the model’s ability to effectively capture the
complex environmental factors influencing soybean cropping
suitability. Similarly, on the GF-1 WFV Dataset, AgriCLIP
exhibited superior performance with an accuracy of
98.18 percent, a recall of 94.01 percent, an F1 score of
94.07 percent, and an AUC of 95.34 percent. Compared to the
second-best model, AgriCLIP achieved a minimum improvement of
2.05 percent across all metrics. These findings underline AgriCLIP’s
robustness in analyzing high-resolution remote sensing imagery and
its exceptional predictive capability. While some comparison
models, such as CLIP and ViT, demonstrated strengths in
isolated metrics, their overall performance lacked the balance and
consistency observed in AgriCLIP. This further emphasizes
AgriCLIP’s advantage as a comprehensive and adaptive solution
for predicting soybean distribution.

5 Summary and discussion

In this work, we tackled the challenge of predicting potential
distribution areas for double-cropped soybeans under the influence
of climate change by introducing the AgriCLIP model, a remote
sensing vision-language model. The primary objective was to
develop a model that could seamlessly integrate remote sensing
imagery with textual data to enhance the prediction accuracy and
robustness in identifying suitable areas for double-cropping
soybeans in varying climatic scenarios. AgriCLIP achieves this
by leveraging multi-scale data processing, self-supervised learning
techniques, and cross-modality feature fusion to handle the diverse
data sources effectively. The performance of AgriCLIP was
rigorously evaluated on four comprehensive and challenging
remote sensing datasets: RSICap, RSIEval, MillionAID, and
HRSID. These datasets provided a diverse range of test cases,
covering different geographic regions, environmental conditions,
and agricultural tasks. The experiments were designed with a
robust training and validation strategy, ensuring that the model
was thoroughly assessed across various scenarios. The results

demonstrated that AgriCLIP consistently outperformed six
state-of-the-art models across several key metrics, achieving
notable improvements in accuracy, recall, and F1 score. For
instance, compared to prior methods, AgriCLIP showed a 15%
increase in recall on the RSICap dataset, indicating its robustness in
detecting suitable areas for double-cropping under varying
conditions. To contextualize our findings, we compared
AgriCLIP’s results with similar studies that utilized conventional
remote sensing or unimodal prediction approaches. For example,
previous models relying solely on high-resolution satellite imagery
reported lower accuracy in dynamic environments due to limited
integration of contextual information. AgriCLIP’s ability to
incorporate textual data and perform cross-modality feature
fusion addresses this gap and aligns with findings from
multimodal research in agriculture, where data integration is
shown to enhance predictive power. This comparative analysis
highlights AgriCLIP’s unique contributions and positions it as a
significant advancement in the field.

Despite the promising outcomes, AgriCLIP has certain
limitations. The model’s reliance on high-resolution imagery and
complex multi-scale inputs significantly increases computational
demands, which could limit its deployment in environments with
limited resources. Future work could explore the development of
more efficient variants of AgriCLIP through model compression
techniques like pruning or quantization, aimed at reducing
computational requirements without compromising performance.
Additionally, while AgriCLIP integrates remote sensing images and
textual data effectively, its predictive accuracy could be enhanced
further by incorporating additional data modalities, such as
temporal climate projections, soil data, and socio-economic
indicators. These additions would provide a more holistic
understanding of the factors influencing double-cropping, thereby
improving the model’s generalizability and real-world applicability.
Moreover, the broader implications of this study highlight the
potential for AgriCLIP to contribute to sustainable agricultural
practices and climate adaptation strategies globally. By enabling
precise identification of areas suitable for double-cropping, the
model could inform policymakers and agricultural planners,
fostering more resilient and efficient food systems. Future
research should explore collaborative efforts to integrate
AgriCLIP into decision-support frameworks, ensuring its
accessibility and utility across diverse socio-economic contexts.

TABLE 5 Comparison of models on crop yield prediction dataset and GF-1 WFV dataset.

Model Crop yield prediction dataset GF-1 WFV dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

CLIP Teng et al. (2021) 96.03 ± 0.12 85.42 ± 0.07 89.70 ± 0.09 91.76 ± 0.08 87.67 ± 0.11 88.75 ± 0.06 85.41 ± 0.10 89.02 ± 0.05

ViT Wang et al. (2022a) 87.52 ± 0.08 92.22 ± 0.10 83.90 ± 0.06 85.69 ± 0.07 92.39 ± 0.09 89.41 ± 0.08 89.52 ± 0.10 93.49 ± 0.07

BLIP Yu et al. (2024) 88.07 ± 0.07 84.98 ± 0.06 87.23 ± 0.10 87.26 ± 0.08 95.13 ± 0.12 85.21 ± 0.09 90.33 ± 0.11 85.39 ± 0.06

SatMAE Cong et al. (2022) 91.57 ± 0.05 91.71 ± 0.09 85.94 ± 0.08 87.16 ± 0.06 91.32 ± 0.10 86.53 ± 0.07 87.12 ± 0.09 90.88 ± 0.08

Scale-MAE Tang et al. (2024) 90.05 ± 0.09 84.95 ± 0.05 87.85 ± 0.07 90.13 ± 0.06 88.05 ± 0.10 92.09 ± 0.09 91.12 ± 0.06 91.17 ± 0.08

ResNet-50 Harini et al. (2024) 94.05 ± 0.08 85.22 ± 0.07 87.26 ± 0.06 92.08 ± 0.10 88.88 ± 0.05 87.55 ± 0.08 89.77 ± 0.11 84.87 ± 0.07

Ours 97.84 ± 0.06 95.27 ± 0.08 93.72 ± 0.07 95.18 ± 0.05 98.18 ± 0.07 94.01 ± 0.06 94.07 ± 0.09 95.34 ± 0.08
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