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Reducing carbon emissions is crucial for environmental protection and the
survival of humankind, particularly in agricultural growth, as it ensures the
sustainability of the food supply. This study examines the import of the crop
production agglomeration on carbon emissions across several areas of China. It
employs panel data spanning from 2012 to 2022. The crop production
agglomeration was assessed using the average industrial agglomeration rate,
whereas the carbon emissions were evaluated using the IPCC carbon emission
factors. Empirical analyses were conducted using the panel fixed effects model
and the Spatial Durbin Model . The results indicate that crop production
agglomeration directly reduces carbon emissions. Moreover, the
concentration of crop production has a geographical demonstration effect on
carbon emissions, where greater levels of crop production agglomeration result
in a more efficient decrease of carbon emissions in nearby regions. An analysis of
heterogeneity indicates that the impact of crop production agglomeration on
carbon emissions is more pronounced in the eastern and northeastern regions of
China compared to the central and western areas. The study advocates for the
formulation of tailored carbon reduction methods that align with the distinct
attributes of crops in various locations. It promotes variety and low-carbon
development in crop production to drive industrial advancement. The study
advocates for enhancing cooperation among crop production enterprises
across various areas to provide platforms for information exchange and
technical innovation. Furthermore, it advocates for governments to design
efficient methods and regulations to reduce carbon emissions in crop
production.
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1 Introduction

Human-induced climate change represents a substantial environmental hazard driven
mainly by greenhouse gas emissions. It is imperative for all industries worldwide to swiftly
participate in decreasing these emissions to mitigate this persistent trend. Despite
considerable advancements in the energy and industrial sectors regarding climate
change mitigation, the significant influence of the agriculture sector has often been
neglected. Agricultural production significantly contributes to greenhouse gas emissions,
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impacting global warming and climate change. Notably, since the
1970s, agriculture has constituted approximately one-third of global
greenhouse gas emissions (Gilbert, 2012). Crop production carbon
emissions (CPCE), including black carbon released from the
incineration of agricultural residues, have persistently adversely
affected the quantity and quality of agricultural outputs (Gupta,
2014). CPCE is identified as a significant impediment to the
sustainability of agricultural growth (Koondhar et al., 2021).
Addressing CPCE is essential for sustaining food systems and
facilitating human civilization’s continued existence and
advancement (Singh et al., 2021). China accounts for around
18% of the worldwide population while holding just 7.8% of the
world’s arable land, a statistic diminishing (Greenwood, 2022).
Consequently, improving food security by decreasing CPCE is
especially urgent.

Agriculture, which encompasses both natural and human
characteristics, naturally has the capacity to engage with regional
economies (He et al., 2020). Recently, the spatial distribution of
agriculture has shown a distinct tendency toward agglomeration. In
contrast to the concentration in the industrial and energy sectors,
agricultural agglomeration mainly occurs in resource-rich areas,
which is evident in crop production agglomeration (CPA). This
specialization generally encompasses the production, processing,
and distribution stages of agricultural goods. While this
concentration of resources promotes regional economic
development, it also results in elevated resource consumption
and an increased application of fertilizers and pesticides, thereby
raising carbon emissions. Conversely, production agglomeration
allows crop production enterprises to exchange resources and
promotes technical collaboration, innovation, and talent
cultivation across enterprises and research institutes. These
activities facilitate technological progress and may decrease
carbon emissions. The precise effect of this urbanization on crop
production carbon emissions (CPCE) requires further examination.

Therefore, this research aims to assess the influence of CPA on
CPCE. This research utilizes panel data from 2011 to 2022 across
29 Chinese provinces, using the IPCC’s carbon emission coefficients
and the average industrial agglomeration rate to measure both CPCE
and CPA. Additionally, the Spatial Durbin Model (SDM) is used to
assess the spatial interactions among these components, providing
innovative additions to the current research. This study first enriches
the literature on crop production agglomeration in green agriculture.
To date, no studies have focused on the mechanisms by which CPA
affects CPCE; this study aims to fill this gap. Secondly, this article use
spatial econometric models to assess the geographical effects of CPA
on carbon emissions and examines its influence on emissions in
adjacent regions. This research is groundbreaking since it investigates
the influence of CPA on carbon emissions, a subject not previously
addressed in published literature.

2 Literature review

2.1 Measurement and influencing factors
of CPCE

In agriculture, inputs and energy are well-acknowledged as
critical indicators for assessing carbon emissions. Academic

studies often calculate agricultural carbon emissions by analyzing
the emission factors of materials used during production and their
final consumption (Chen et al., 2020). Furthermore, other
assessments have elaborated on this by quantifying agricultural
carbon emissions according to end-use, including the impacts of
both production materials and energy use (Nguyen et al., 2021;
Wilberforce et al., 2021). However, the study on carbon emissions in
agriculture must include more than just the use of production inputs
and energy, especially for rice cultivation, which is linked to
significant emissions of several other greenhouse gases. Thus,
assessing agricultural carbon emissions from a life-cycle
viewpoint requires the incorporation of all greenhouse gases
released during the production cycle (Li et al., 2024).

The current study thoroughly investigates the determinants
affecting the decrease of carbon emissions in agriculture and the
feasible strategies for doing this, with some studies emphasizing the
pivotal role of industrial agglomeration (Wang and Wang, 2020).
Preliminary research suggests that human attributes, including
farmers’ understanding of low-carbon practices, social network
integration, reputation, and expectations, substantially influence
their choices to embrace low-carbon agricultural production
techniques (Adedoyin et al., 2020). Research indicates that
farmers possessing more understanding of low-carbon agriculture
are more likely to implement low-carbon norms in fertilizer use
(Tian et al., 2015). Similarly, farmers designated as cadres have a
greater propensity to choose low-carbon insecticides. Moreover,
studies have examined the influence of carbon reduction policies
on agricultural strategies, indicating that government subsidy
initiatives significantly enhance low-carbon agriculture’s
economic and environmental advancement, thus encouraging
farmers to adopt diverse low-carbon agricultural practices (Li and
Xu, 2022; Sarkodie et al., 2020). Recent research has thus moved its
focus to the impact of industrial agglomeration on agricultural
carbon emissions. Studies indicate that industrial agglomeration
results in the enlargement of agricultural scale, the establishment of
economies of scale, and the enhancement of energy efficiency,
subsequently causing total carbon emissions and carbon emission
intensity to initially rise and then decline, exhibiting an inverted
U-shaped and N-shaped curve, respectively (Yao et al., 2018; Tian
and Yin, 2021).

2.2 Research on the effect of agricultural
production aggregation

The current study extensively examines the relationship between
industrial clustering and its impacts on economic growth and
environmental effects, covering agricultural, manufacturing, and
services. Research substantiates that through positive externalities,
economic and industrial agglomerations contribute to economic
growth (Fang et al., 2021). However, several studies highlight that
agglomerations may induce congestion issues, resulting in a
complicated nonlinear dynamic where a suppressive impact
follows the early economic expansion and environmental
deterioration (Lin et al., 2011; Yuan et al., 2020). Agricultural
agglomeration is distinct from industrial and service sectors
because of its significant reliance on natural resources and
susceptibility to socio-economic changes. With the scale,
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specialization, and regionalization of agricultural production, more
and more studies are being conducted on the impact of agricultural
production agglomeration on economic growth and environmental
pollution. From the perspective of the brand of agricultural
products, Zhang et al. (2024) concluded that the brand of
agricultural products reduces carbon emissions through industrial
agglomeration. Some research suggests that agglomeration, by
increasing production size, intensifies resource use, deteriorates
the agricultural ecological environment, and amplifies carbon
emissions (Li and Li, 2022). Conversely, another study suggests
that agglomeration may alleviate environmental pollution in
agriculture; Tian and Yin (2021) discovered that agricultural
industrial agglomeration improved the efficiency of agricultural
material consumption, hence decreasing carbon emissions. Li
et al. (2023) discovered that environmental regulation in the
form of resource agglomeration, represented by the high-
standard farmland construction policy, can significantly decrease
agricultural emissions. Zhang et al. (2022) discovered a threshold
impact in agricultural industrial agglomeration on the green and
sustainable advancement of agriculture, indicating that it promotes
growth to a certain extent, beyond which it may impose a
limiting effect.

In conclusion, researchers have thoroughly examined the impact
of agricultural production clustering on carbon emissions,
emphasizing the significance of the agricultural sector.
Nonetheless, due to the prevailing fragmented and non-
standardized land use in our nation, research on the correlation
between CPA and carbon emissions need additional development.
The marginal contributions of this paper are as follows: The
incremental contributions of this work are as follows: Firstly, it
enriches the literature on crop production agglomeration in green
agriculture. To date, no studies have focused on the mechanisms by
which CPA affects CPCE; this study aims to fill this gap. Secondly,
this research is the inaugural investigation of the carbon reduction
consequences of CPA from the viewpoint of several regions inside
our nation. This article use spatial econometric models to assess the
geographical effects of CPA on carbon emissions and examines its
influence on emissions in adjacent regions. This research is
groundbreaking since it investigates the influence of CPA on
carbon emissions, a subject not previously addressed in published
literature.

3 The theoretical mechanism and
research hypothesis

Crop production is dependent not only upon the natural
environment but also on economic and social factors. China
encompasses a vast expanse, with diverse areas demonstrating
significant variances in natural and socioeconomic circumstances,
resulting in pronounced variations in regional grain output.
Nonetheless, from a regional standpoint, neighboring locations’
ecological, economic, and social characteristics are very similar,
as are the conditions, types, and techniques of agricultural
production. The rapid progress in contemporary transportation
and communication has resulted in a tighter interconnection of
crop production across neighboring regions, contributing to the
region’s CPA and impacting the CPCE.

CPA mainly mitigates the CPCE through economies of scale,
effects of technological, and spatial spillover effects. (1) Economies
of scale. CPA can enhance resource allocation efficiency, facilitate
the sharing of production factors in the planting industry, improve
the specialization and collaboration among professionals, reduce
agricultural production costs and transaction costs, promote the
expansion of agricultural production, and thereby generate
economies of scale (de Roest et al., 2018). The effect of
agricultural economies of scale can curtail the cost of pollution
control, optimize the allocation of factors, and enhance the efficacy
of resource utilization, hence reducing the CPCE. (2) Technological
effect. CPA spurs mutual communication and learning among
planting enterprises, jointly realizes technological innovation, and
promotes the innovation of energy conservation and emission
reduction technologies, thereby improving the efficiency of input
factor usage and reducing the consumption of production resources,
enabling planting production to obtain more expected output under
the condition of the same factor input, and thus improving the carbon
reduction efficiency (Xu et al., 2023). (3) Spatial spillover effect. The
CPA in this region contributes to reducing carbon emissions within
the local planting industry and drives adjacent areas to learn and draw
lessons, thereby reducing the CPCE in adjacent areas (Zhang et al.,
2024). Based on this, Hypothesis 1a is proposed:

Hypothesis 1a: The CPA can substantially diminish carbon
emission intensity and lower carbon emissions per unit area
within the crop production.

However, the impact of CPA on carbon emissions is not
consistently dampening, and CPA might also engender negative
externalities. On the one hand, the concentration of crop production
results in an expansion of planting scale, accompanied by increased
inputs of pesticides, fertilizers, and other factors. This escalation
exerts pressure on the ecological environment of the regional
planting industry, contributes to crowding effects, and raises
carbon emission intensity in the area (Scotchmer, 2002). On the
other hand, the CPA in a particular region will attract the
production resources of the planting industry in surrounding
areas to converge in this region, resulting in a siphon effect,
which is detrimental to the improvement of green and low-
carbon technology of the planting industry in surrounding areas
and increases the carbon emissions in surrounding areas.
Additionally, CPA also has an incarceration effect; that is, due to
the substantial investment in land, agricultural machinery, and
infrastructure in the early stage of planting, certain farmers with
suboptimal production efficiency and minimal profits struggle to
exit production and operations, leading them to consume
agricultural resources to maintain output inefficiently. This
situation contributes to CPA regions’ low green and low-carbon
development efficiency and fails to mitigate the CPCE significantly
(Lu et al., 2021). Therefore, the effect of CPA on carbon emissions
remains uncertain. Based on this, Hypothesis 1b is proposed:

Hypothesis 1b: The CPA enhances carbon emission intensity and
elevates carbon emissions per unit area within crop production.

From the perspective of spatial effect, crop production
agglomeration affects inter-regional carbon emissions through
two mechanisms: (1) Industrial synergies. CPA can guide the
optimal allocation of industrial resources through infrastructure
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sharing and product production cost reduction, and improve
industrial production efficiency by using the specialization and
rapid flow of labor, thus reducing carbon emissions. (2) Learning
effect and competition effect: To become the development
benchmark and strive for more favorable policies from the state,
there will be competition and imitation among enterprises. On the
one hand, through imitating and learning advanced production
experience, both industrial development and energy conservation
and emission reduction will be taken into account. On the other
hand, outstanding enterprises constantly stand out in the
competition and become the benchmark in the agglomeration
area. The superposition of the imitation learning effect and the
competition effect has deepened the carbon correlation between
regions. Based on this, Hypothesis 2 is proposed:

Hypothesis 2: The CPA will influence carbon emissions via spatial
spillover effects.

Through the above theoretical analysis, the theoretical
mechanism diagram of CPA to CPCE is constructed (Figure 1).

4 Data and methodology

4.1 Model settings

This study examines the correlation between crop production
agglomeration (CPA) and crop production carbon emission (CPCE)
by constructing a model using panel data from 29 provinces, omitting
Shanghai, Tibet, Hong Kong, Macau, and Taiwan, from 2012 to 2022.

CPCEi,t � α0 + α1CPAi,t + αi∑
n

i�1
Controli,t + μi + λt + εi,t (1)

In Equation 1, i and t represent the province and time
respectively, CPCEi,t indicates the carbon emissions from crop
production, and CPAi,t represents crop production aggregation.

The term Controli,t includes a series of control variables, and εi,t
is the random error term. Additionally, this study controls for both
provincial fixed effects (μi) and annual fixed effects (λt).

4.2 Description of variables

4.2.1 Measurement method for CPA
Industrial agglomeration is a relatively comprehensive concept,

and there are various methods for its calculation, commonly
including industry concentration, the Herfindahl-Hirschman
Index (H-index), location quotient, and spatial Gini coefficient,
among others. Furthermore, some studies have extended these
measures by decomposing the spatial Gini coefficient to generate
various extended indices, such as the EG and MS indices, which
evaluate the degree of market industry agglomeration. However, due
to the high computational demands of these derived indices and the
difficulty in obtaining the necessary data for evaluation, their
practical application in research is significantly limited. Choosing
an appropriate method can often yield more results with less effort.

In this paper, CPA refers explicitly to the concentration and scale of
agricultural crop production (including both economic and food crops)
and the degree of aggregation of related production entities and
production factor resources. Current academic measures of
agricultural agglomeration include the spatial Gini coefficient,
Herfindahl-Hirschman Index, and Theil Index. However, these
indices often overlook spatial biases caused by differences in smaller
geographical units (Liu, 2014). Output density, which measures the
economic activity per unit area, is considered a robust indicator of
economic agglomeration in a region. It illustrates the geographical
density and distribution of economic activities and precisely represents
the economic output per unit of geographic area. Therefore, this paper
adopts the regional industry average agglomeration rate index proposed
by Fan (2007) to analyze the geographical agglomeration characteristics
of China’s agricultural industry. The specific formula is as follows:

FIGURE 1
Mechanism hypothesis diagram.
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Vi � 1
m
∑
m

j�1

Yi,j

Yj
× 100 (2)

In Equation 2, Yi,j represents the output of crop product type j in
province i, while Yj denotes the total national output of crop
product type. The variable m indicates the number of types of
crop products selected in various regions. The calculated Vi, which
represents the geographic average agglomeration rate, indicates the
degree of CPA in the province; a higher value ofVi suggests a higher
degree of agglomeration. Given that the resultant values are
generally small, to facilitate subsequent data processing, the
results are uniformly scaled up by a factor of 100.

Table 1 delineates the chosen categories of agricultural goods for
assessing the degree of crop production agglomeration across
different provincial areas. The crops primarily include grain and
economic crops. However, it is essential to acknowledge that the
production conditions of crop products vary across different natural
environments and regions. In the final calculation, the m value for
each type of crop product should be determined based on the
production conditions of crop products in each province. Overall,
the total number of crop product kinds is categorized into
17 categories, as detailed in the following Table 1.

This table categorizes the primary agricultural products into two
main sectors: grain crops and economic crops. Grain crops include
staples such as rice, wheat, corn, legumes, and tubers. Economic crops
are further divided into oilseeds (peanuts, rapeseed, sesame), fiber
crops (cotton, bast fibers), sugar crops (sugarcane, sugar beet), and
fruit crops (apples, citrus fruits, pears, grapes, bananas). This
classification aids in the systematic analysis of crop production
across different regions.

4.2.2 Measurement method for CPCE
Currently, there are two prevailing interpretations within the

academic community regarding CPCE: On the one hand, it is
understood that CPCE is solely the greenhouse gas effects

directly or indirectly caused by human activities during the crop
production process; on the other hand, some believe that CPCE also
includes the carbon sequestration effects of the crops themselves.
Most existing studies on CPCE tend to focus on the former
interpretation (Li et al., 2014). This study, integrating practical
production experience and relevant research, after expert
consultation and acknowledging that the decarbonization of crop
production primarily entails minimizing high-carbon crop inputs
and preserving soil organic carbon, identifies the principal sources of
carbon emissions in crop production as follows:

1. Emissions, direct or indirect, resulting from the application of
fertilizers, pesticides, and crop films

2. Emissions from diesel fuel consumption by crop machinery
3. Emissions arising from energy utilization during irrigation
4. Depletion of organic carbon attributable to soil plowing

and tilling

Accordingly, this research employs the IPCC carbon emission
coefficient method and references studies by scholars such as Li et al.
(2013), focusing primarily on the direct or indirect emissions from
six types of carbon sources involved in crop production: fertilizers,
pesticides, agricultural films, diesel, irrigation, and plowing. The
carbon emissions from production are calculated using the relevant
carbon emission coefficients for these sources, with the specific
formula as follows:

CPCE � ∑
n

i�1
Ei∑

n

i�1
Ti × εi (3)

In Equation 3, CPCE signifies the total carbon emissions from
crop production, Ti denotes the input amount of the -th carbon
source, and εi indicates the carbon emission coefficient of the -th
carbon source. The primary sources of carbon emissions in crop
production and their corresponding emission coefficients are
presented in Table 2.

TABLE 1 Selection criteria for major agricultural products.

Grain crops Rice Wheat Corn Legumes Tubers

Crop production Economic crops Peanuts Rapeseed Sesame

Cotton Bast fibers

Sugarcane Sugar beet

Apples Citrus Pears Grapes Bananas

TABLE 2 Primary carbon sources and emission coefficients in crop production.

Carbon source Emission coefficient Reference source

Diesel 0.590 kg/kg IPCC2013

Fertilizers 0.890 kg/kg Oak Ridge National Laboratory, United States

Pesticides 4.930 kg/kg Oak Ridge National Laboratory, United States

Agricultural Film 5.180 kg/kg Institute of Agricultural Resources and Environmental Sciences, Nanjing Agricultural University

Irrigation 266.480 kg/hm2 Duan et al.

Plowing 312.600 kg/km2 Li et al.
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4.2.3 Control variables
1) Upgrading Industrial Structure (UIS). Carbon emissions are

intricately linked to the industrial composition, namely, the
growth of the primary and secondary sectors, which often
release pollutants. On the other hand, a higher proportion of
the tertiary sector, due to industrial efficiency, may contribute
to reducing carbon emissions. Thus, this research employs the
ratio of the production value of the tertiary sector to that of the
secondary sector as a representation of industrial structure.

2) Foreign Direct Investment openness level (FDI). As openness
increases, affluent nations may relocate their labor-intensive
and ecologically detrimental industries to developing
countries, exacerbating carbon emissions in those regions.
Nevertheless, several academics contend that heightened
openness might facilitate introducing cutting-edge
technology, money, and environmental ideologies, reducing
the host regions’ carbon emissions and environmental
pollution. This research adopts the methodology proposed
by Zhou and Shi (2018), which utilizes the ratio of foreign
direct investment to gross domestic product to
measure openness.

3) Degree of Agricultural Mechanization (ADV). Mechanization
is an essential pathway for the technical progress of agriculture.
Agricultural innovation depends on the use of agricultural
equipment and the research and development associated with
it. Mechanization in agriculture may free up a portion of the
workforce, reducing the need for labor and time, which can
then be used towards expanding production or other non-
agricultural jobs, thus improving agricultural output efficiency.
This research uses the metric of total power of agricultural
equipment per sown area of crops to quantify the degree of
automation in crop production, as referenced by Zhang
et al. (2017).

4) Public investment in the plantation industry (API).
Augmenting public investment in the plantation industry
has the potential to somewhat diminish carbon emissions,
with the overall impact on carbon being contingent upon the
magnitude of reduction achieved in the agricultural sector.
Thus, this variable serves as a control variable, measured by the
amount of fixed asset investment in agriculture, forestry,
animal husbandry, and fishery in various places, and takes
its logarithm.

5) Government financial assistance for the agricultural sector
(FISCAL). This is quantified by calculating the proportion of
fiscal expenditures allocated to assist agriculture relative to
the overall fiscal expenditures. The extent of governmental
financial support for agriculture significantly influences the
future advancement of agricultural output across different
locations. Fiscal expenditures may influence the business
choices of agricultural businesses regarding adopting low-
carbon technology, hence indirectly impacting carbon
emission intensity.

4.2.4 Data sources and descriptive statistics
Given the availability of data, this analysis employs panel data

from 29 provinces (excluding Tibet, Shanghai, and the regions of
Hong Kong, Macau, and Taiwan) for 2012–2022. The data for the
indicators mentioned are sourced from the “China Statistical

Yearbook,” “China Rural Statistical Yearbook,” “China
Household Survey Yearbook,” “China Human Capital Report,”
the websites of the National Bureau of Statistics, and various
local statistical bureaus. This produced a dataset covering the
years 2012–2022 for 29 provinces. Table 3 presents the
descriptive statistics for the primary variables.

5 Results and discussion

5.1 Fundamental regression analysis

Based on the measurement data for CPA and CPCE described
earlier, a two-way fixed effects panel model was employed for
regression analysis. The findings are displayed in Table 4.
Column (1) reports the regression outcomes without including
control variables. The coefficient for CPA is −1.657, with a
p-value below 0.01, indicating significance at the 1% level. The
fact that this is the case indicates that the CPA can substantially
diminish carbon emission intensity and lower carbon emissions per
unit area within crop production. The control variables UIS, FDI,
ADV, API, and FISCAL were gradually introduced into columns (2)
through (6) with each successive addition. A slight decrease in the
coefficient for CPA was observed when compared to the regression
in Column (1); nonetheless, the coefficient remained substantially
unchanged throughout the analysis. Column 7 includes a clustering
analysis at the provincial level, and its regression results are
consistent with earlier ones, confirming that the results are valid.
It is evident that CPA significantly inhibits carbon emissions.
Hypothesis 1a is demonstrated.

5.2 Endogeneity test

A two-way fixed effects model was utilized for this study’s
Benchmark regression analysis. This model offered some relief
from the endogeneity problems brought about by the absence of
certain variables. However, considering the potential reverse
causality between the dependent and independent variables. For
instance, higher carbon emissions might be associated with higher
agricultural production levels, further encouraging the
concentration of production activities in certain regions. Thus,
this study adopted the instrumental variable approach and Lag
test to further address endogeneity concerns.

TABLE 3 Descriptive statistics.

Var name Obs Mean SD Min Max

CPCE 319 5.518 0.988 2.633 6.904

CPA 319 0.202 0.113 0.008 0.540

UIS 319 1.267 0.711 0.549 5.297

FDI 319 0.232 0.231 0.010 1.440

FISCAL 319 11.634 3.226 4.040 20.384

ADV 319 6.641 2.289 3.269 13.872

API 319 0.772 0.625 0.009 3.154
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Following the recommendation of Feng et al. (2007), this paper
selects topographical variability as the instrumental variable.
Topographical variability is a natural geographic feature defined
by the elevation difference between a region’s highest and lowest
points, the extent of flat regions, and the total area. This feature is
intrinsically linked to crop production activities because suitable
elevations and terrains (such as slopes, terraced fields, and plains)
facilitate the geographical concentration of crop production,
meeting the relevance requirement for an instrumental variable.
Simultaneously, the relative elevation and surface cutting depth
reflected by topographical variability have no direct connection
to carbon emission levels, thus ensuring the homogeneity of the
instrumental variable. Therefore, using topographical variability as
an instrumental variable for CPA in this study is justified. Since
terrain relief is a cross-section data, this paper takes the product of
terrain relief and annual agricultural GDP of each province as the
instrumental variable of this paper. Table 5 presents the results,
indicating a CPA coefficient of −3.242, which is significant at the 1%
level and aligns with the Benchmark regression results. The
F-statistic of 21.284 leads to the rejection of the null hypothesis
regarding the instrumental variable assumption, hence affirming the
validity of the selected instrumental variable and successfully
passing the endogeneity test.

5.3 Lag test

Given that CPA does not immediately impact carbon emissions, a
lagged variable of carbon emissions was used to mitigate endogeneity
issues. The findings in column (3) of Table 5 reveal that the coefficient
for CPA is −0.744, which is significant at the 10% level, confirming
that CPA can continuously suppress carbon emissions.

5.4 Robustness tests

5.4.1 Substitution of explanatory variables
In this study, the ratio of primary industry output value to

planted area (APA) for every province was employed as a substitute
variable for CPA in the regression analysis. The findings in column
(1) of Table 6 reveal that the coefficient for APA is −0.140, which is
significant at the 1% level, thereby confirming the robustness of the
Benchmark regression outcomes.

5.4.2 Adjusting the research sample
Firstly, the sample size was reduced to include only the provinces

within the Yangtze River Economic Belt and the Yellow River Basin,
considering that crop production is predominantly concentrated

TABLE 4 Benchmark regression results.

Variables
(1) (2) (3) (4) (5) (6) (7)

CPCE CPCE CPCE CPCE CPCE CPCE CPCE

CPA −1.657*** −1.365*** −1.225** −1.051** −0.810** −0.828** −0.828**

(−3.658) (−3.062) (−2.549) (−2.066) (−2.138) (−2.157) (−2.157)

UIS −0.084 −0.072* −0.104** −0.139** −0.138** −0.138**

(−1.559) (−1.704) (−2.066) (−2.599) (−2.564) (−2.564)

FDI 0.248 0.225 0.283* 0.286* 0.286*

(1.517) (1.356) (1.834) (1.869) (1.869)

FISCAL 0.013* 0.012* 0.012* 0.012*

(1.849) (1.851) (1.824) (1.824)

ADV 0.019 0.019 0.019

(1.611) (1.584) (1.584)

API −0.006 −0.006

(-0.463) (-0.463)

Constant 5.866*** 5.886*** 5.782*** 5.643*** 5.491*** 5.499*** 5.499***

(61.314) (61.775) (49.763) (39.596) (46.382) (44.146) (44.146)

Time Fixed Yes Yes Yes Yes Yes Yes Yes

Province Fixed Yes Yes Yes Yes Yes Yes Yes

Cluster (province) No No No No No No Yes

Observations 319 319 319 319 319 319 319

R-squared 0.626 0.642 0.665 0.682 0.708 0.708 0.708

Number of id 29 29 29 29 29 29 29

Note: *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively. Cluster Robust Standard Error t-statistics in parentheses. The same notation applies to the table below.
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TABLE 5 Endogeneity test.

Stage II Stage I Lag test

CPCE CPA CPCE

IV −0.084*** −0.711***

(−4.280) (−4.610)

CPA −3.141*** −3.242*** −0.744*

(-4.740) (-5.650) (−1.776)

Constant 0.744** 0.731*** 5.523***

(2.710) (3.080) (48.748)

Control variable No Yes No Yes Yes

Kleibergen-Paap rk LM statistic 10.764*** 20.370***

Cragg-Donald Wald F statistic 63.419 42.960

Kleibergen-Paap Wald rk F statistic 18.293 21.284

N 319 319 319 319 290

R2 0.526 0.551 0.4672 0.511 0.737

Adj. R2 0.526 0.551

TABLE 6 Robustness tests.

Variables Substitution of explanatory variables Adjusting the
research sample

Control the exogenous variables

(1) (2) (3) (4)

CPCE CPCE CPCE

APA −0.140***

(−3.199)

CPA −0.448** −1.047*** −0.894**

(−2.139) (−2.860) (−2.169)

EG −2.137***

(−2.779)

EDU −0.014

(−0.642)

Constant 5.363*** 5.699*** 5.581*** 5.727***

(112.000) (86.091) (40.225) (26.670)

Control variable Yes Yes Yes Yes

Time Fixed Yes Yes Yes Yes

Province Fixed Yes Yes Yes Yes

Observations 319 198 319 319

R-squared 0.699 0.754 0.673 0.722

Number of id 29 18 29 29
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near water sources. This selection aims to reflect the influence of
CPA on carbon emissions more accurately. As shown in column (2)
of Table 6, the findings reveal that the CPA coefficient is −0.448,
which is significant at the 1% level. Secondly, to deal with the
possible extremum and limitation of samples, this paper also
performs Double shrinkage tail processing for all variables at the
1% level. The result is shown in columns (3) of Table 6. The two
results as above have passed the robustness check, which is
consistent with the previous research conclusion.

5.4.3 Control the exogenous variables
The carbon emissions of the planting industry are not only

influenced by production agglomeration but also disturbed by
numerous external factors. For example, the government’s
protection of the planting environment may reduce the
carbon emissions of the planting industry, and the rural
education level will also optimize farmers’ planting decisions,
thus affecting the crop production carbon emissions. Therefore,
this paper takes environmental governance (EG) and the skill
level of workers (EDU) as control variables for regression, and
the results are presented in Column (4) of Table 6, and the
results are valid.

5.5 Heterogeneity tests

According to this study, the 29 provinces in China are divided
into four primary regions based on geographical and economic
characteristics: the Eastern, Central, Western, and Northeastern
regions. This is done in consideration of the significant
differences between the levels of economic development and the
degree of crop production agglomeration present in each province in
China. An empirical investigation was carried out to determine the
degree of geographical variation in the effect of crop production

agglomeration on carbon emissions. The results are shown in
columns (1), (2), (3) and (4) of Table 7.

At the same time, considering the different scale of crop
production in each province, it will bring different production
agglomeration modes, which will further affect carbon emissions.
Therefore, the ratio of crop product yield to agricultural planting
area is used to measure crop production scale level, and the average
of crop production scale level in all provinces is used as the dividing
line to divide crop production scale into low crop production scale
and high crop production scale. From the perspective of crop
production scale, the crop production concentration and carbon
emission were empirically analyzed. The results are shown in
columns (5) and (6) of Table 7.

The analysis indicates that in the Eastern and Northeastern parts
of China, CPA has negatively impact on carbon emissions, whereas
in the Central and Western regions, it has positively influences on
carbon emissions. The impact coefficient in the Eastern region
was −1.1819 and achieved significance at the 5% level, indicating
the substantial efficacy of CPA inmitigating carbon emissions in this
region. Conversely, while the Northeastern region exhibited a
negative effect, its coefficient did not attain statistical significance.
According to the empirical p-value, the difference in the degree of
inhibition of CPCE between the E and NE groups is significantly
different from 0 at the 1% level. This indicates that the suppression
of CPCE is more significant in the eastern region. This regional
variance may be attributable to varying degrees of economic growth
and agricultural production techniques across different areas. The
Eastern region, being economically developed coastal urban clusters,
benefits from advanced agricultural technologies and management
methods, effectively reducing carbon emissions. The Northeastern
region, despite being a major national grain-producing area, relies
primarily on traditional large-scale cultivation. As a transitional area
from an old industrial base, its agglomeration effect has not yet
significantly manifested in reducing carbon emissions, necessitating

TABLE 7 Regional heterogeneity test.

(1) (2) (3) (4) (5) (6)

Variables Eastern
(E)

Central (C) Western
(W)

Northeastern
(NE)

Low crop
production
scale (LCP)

High crop
production
scale (HCP)

CPA −1.182** 0.219 1.729 −0.335 −3.136 −0.798**

(−2.552) (0.748) (0.827) (−0.915) (−1.361) (−2.678)

Constant 5.409*** 5.866*** 4.708*** 5.803*** 5.396*** 5.628***

(21.400) (25.055) (13.061) (58.634) (15.185) (47.526)

Control variable Yes Yes Yes Yes Yes Yes

Observations 99 66 121 33 82 237

R-squared 0.852 0.869 0.512 0.968 0.704 0.743

Empirical
p-values

E versus C E
versus W

E
versus NE

C versus W C versus NE W versus NE LCP versus HCP

0.000*** 0.002*** 0.000*** 0.127 0.531 0.092* 0.008***

Number of id 9 6 11 3 14 25

Notes: *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively. Cluster Robust Standard Error t-statistics in parentheses. The empirical p-value is used to test the significance

of the difference in CPA, coefficients between groups, which is obtained by Bootstrap sampling 1,000 times (Fisher’s Permutation test).
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further technological and managerial innovations to enhance its
environmental performance.

At the same time, this paper also notes that when the central
region and the western region are grouped, the CPA of the two
regions can promote CPCE, and the increase rate of carbon
emissions in the western region (1.729) is faster than that in the
central region (0.219), but the empirical p-value (0.127) shows that
the difference between the two regions does not reach the 10%
significance level. That is, the above conclusions cannot be
accurately drawn by comparing the coefficient sizes. Because both
the central and western regions fail to pass the significance level at
the 10% level, the CPA of the central and western regions has little
impact on CPCE.

The analysis showed that in areas with high crop production
scale, CPA had a negative effect on carbon emissions, it had a
positive effect on carbon reduction. Its coefficient is −0.798, which is
significant at the 5% level, indicating the significant effect of CPA on
reducing carbon emissions in areas with high crop production scale.
On the contrary, although the low crop production scale area has a
negative effect on the coefficient, its coefficient is not statistically
significant. According to the empirical p-value, the difference in the
degree of inhibition of CPCE between the LCP and HCP groups is
significantly different from 0 at the 1% level. This indicates that the
inhibition degree of HCP on CPCE is more significant. This may be
related to the fact that the scale of crop production has not reached
the economic scale. China’s agricultural production is mainly based
on scattered land, and when the economic scale is not reached, the
crop production concentration is not prominent, resulting in no
carbon emission reduction effect.

5.6 Global spatial autocorrelation test

According to the fundamental principles of geography,
particularly the First Law, most phenomena in the world
demonstrate spatial clustering. If similar phenomena are
regularly distributed across different geographical spaces, this
indicates spatial correlation. Consequently, the Global Moran’s I

index is a robust instrument for evaluating geographical
correlation. This study employed the Global Moran’s I index
to examine the spatial autocorrelation of Carbon Emissions from
CPCE between 2012 and 2022, with results in Table 8.
The analysis reveals that within the framework of a spatial
adjacency matrix, the Global Moran’s I index for crop
production carbon emissions continuously above the
significance threshold at the 10% level, affirming a solid positive
spatial correlation in CPCE.

5.7 Temporal and spatial pattern evolution of
CPA and CPCE

To intuitively delineate the spatial evolution of production
agglomeration and carbon emission of the planting industry,
ArcGIS software was employed to categorize the production
agglomeration and carbon emission of the planting industry
into five levels, ranging from low to high, based on the natural
break point method. The results are presented in Figure 2. It can
be observed from the figure that the provinces with a higher
degree of production agglomeration in the planting industry are
mainly concentrated in the central and eastern regions. Among
them, Henan and Shandong have the highest degree of
production agglomeration, followed by the eastern coastal
provinces. In 2012, the provinces with the highest carbon
emissions from the planting industry were mainly located in
the central and eastern regions. However, with the passage of
time, the carbon emissions of provinces in the central region have
decreased significantly, especially in the Beijing-Tianjin-Hebei
region, and the carbon emissions of planting industry have been
significantly inhibited.

5.8 Spatial Durbin Model estimation

The above Global Moran index was used to test the spatial
correlation between crop industry carbon emissions and
production agglomeration. On this basis, through LM, LR,
HAUSMAN test, and Wald test, it is determined that it is
reasonable to use a two-way fixed spatial Durbin model in the
subsequent test, and the construction ofthe spatial Durbin model is
shown in Equation 4.

CPCEi,t � δ1∑
n

j�1
WijCPCEi,t + β1CPAit + φcontrolit

+ θ1∑
n

j�1
WijCPAit + θ2∑

n

j�1
Wijcontrolit + ]i + σt + εi,t (4)

Where i and t represent the province and year respectively, j
represents the neighboring province (j ≠ i), CPCE and CPA
represent the explained variable of carbon emissions from crop
industry and the explanatory variable of production agglomeration
from the crop industry, respectively, control represents the control
variable, W is the spatial weight matrix, and the geographical
adjacency matrix is selected in this paper, that is, adjacent
provinces are 1, and non-adjacent provinces are 0. δ1 is the
spatial autoregressive coefficient of the explained variable, β1 is

TABLE 8 Spatial autocorrelation test.

Year Moran’I Z p*

2012 0.221 2.105 0.018

2013 0.209 2.004 0.023

2014 0.183 1.785 0.037

2015 0.170 1.683 0.046

2016 0.167 1.655 0.049

2017 0.164 1.627 0.052

2018 0.164 1.627 0.052

2019 0.160 1.596 0.055

2020 0.169 1.672 0.047

2021 0.164 1.627 0.052

2022 0.143 1.448 0.074
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the regression coefficient of the explanatory variable, θ1 is the
coefficient of the spatial interaction term of the explanatory
variable, ]i controls the regional fixed effect; σt control time fixed
effect; εi,t is the random disturbance term.

The regression is carried out on the Durbin space model based
on two-way fixed, and the total effect of the model is decomposed by
using the partial differential method in the model. The impact of
planting production agglomeration on carbon emissions is

FIGURE 2
Spatio-temporal evolution diagramof CPA andCPCE from 2012 to 2022 (Note: This figurewas produced based on the standardmapwith the review
number GS (2022) 1873 downloaded from the standardmap service website of the Ministry of Natural Resources, and nomodifications weremade to the
base map).
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decomposed into direct effect, indirect effect, and total effect,
and the specific results are shown in Table 9. The Spatial Durbin
Model estimates a direct effect of CPA at −0.064, which is
significant at the 10% level, suggesting that CPA can
diminish local CPCE. The spatial spillover impact of CPA
was −1.927, significant at the 1% level, indicating that CPA
has a suppressive influence on CPCE in adjacent regions. This
means that the agglomeration of crop production can reduce the
local region’s carbon emission intensity and have a spatial
spillover effect to reduce the carbon emission intensity of
neighboring regions.

6 Discussion and conclusion

From the above discussion, it can be concluded that with the
expansion of the agglomeration of planting industry production,
the carbon emissions of the planting industry have been
significantly suppressed, which is verified in the study of Tian
and Yin (2021). For the eastern regions with developed economy
and mature agricultural technology, the expansion of the
agglomeration of the planting industry has a more obvious
inhibitory effect on carbon emissions. The agglomeration of
planting industry production also plays a demonstration role,
driving the surrounding areas to carry out production
agglomeration and inhibiting carbon emissions in the
surrounding areas, showing a spatial spillover effect, which is
confirmed in the study of Zhang et al. (2024) (Xu et al., 2023).
Although these studies reveal important discoveries, they also
have limitations. First, this paper does not separately discuss the

inhibitory effects of the production agglomeration of each crop
on carbon emissions. Second, in measuring the agglomeration of
the planting industry, the data used in this paper is derived from
respective provincial sources. The macro nature of this data may
introduce biases in the article, which is unavoidable. Lastly, this
paper does not consider local environmental changes, such as
climate risks. These risks may lead farmers to abandon the
agglomeration of planting industry production in favor of
decentralized planting to mitigate losses caused by climate
risks, which may result in a lack of samples for study in
some areas. Therefore, there are three aspects of this issue
that need to be addressed. The first question involves
classifying all crops in greater detail and conducting
experimental comparisons to determine which crop
production agglomeration has the most significant inhibitory
effect on carbon emissions. The second issue relates to data
availability and accuracy. The third aspect concerns the
influence of environmental factors (moderating variables) on
the agglomeration of the planting industry, which will be related
to carbon emissions.

This study examines the influence of crop production
agglomeration on carbon emission reduction. As crop production
agglomeration intensifies, its contribution to carbon reduction
increases; however, excessive aggregation may lead to dependency
on specific industries, increasing the risks associated with market
and policy changes. Therefore, the following recommendations
are proposed:

Develop differentiated carbon reduction strategies: Tailor
emission reduction measures based on regional and crop
characteristics, and enhance the policy support system.
Governments should increase investments in agricultural
technological innovation, improve infrastructure, raise farmers’
incomes, and strengthen environmental protection measures to
promote the sustainable development of agriculture.

Promote industrial structure upgrading: While maintaining the
advantages of aggregation, guide the agricultural sector towards
diversification and low-carbon development. For example,
encourage organic farming, reduce the use of fertilizers and
pesticides, expand the agro-processing industry, enhance
ecological benefits, and foster industry transformation through
technological innovation.

Advocate for cross-regional corporate cooperation: Encourage
agricultural enterprises from different regions to strengthen
cooperation, establish industrial parks, attract high-quality
enterprises and talents, and avoid excessive concentration of
resources. Improve communication and coordination
mechanisms, establish platforms for information sharing and
technological innovation, and promote collaboration and
resource sharing along the industrial chain.

In summary, in crop production, it is essential to reasonably
aggregate various agricultural resources to enhance the quality
and carbon emission efficiency of crop production, thereby
supporting the achievement of the national “dual carbon”
goals. Additionally, by leveraging the spillover effects of crop
production agglomeration, it is important to establish low-
carbon green demonstration zones to promote the low-carbon
transformation of crop production through their demonstration
and spillover effects.

TABLE 9 Estimation outcomes from the spatial Durbin model.

(1) (2) (3)

Variables Direct
effects

Indirect
effects

Total
effects

CPA −0.064* −1.927*** −1.992***

(-0.366) (-4.458) (-4.113)

UIS −0.123*** −0.218*** −0.341***

(-5.915) (-4.499) (-6.038)

FDI 0.202*** 0.171** 0.373***

(4.620) (1.993) (3.617)

FISCAL 0.007** 0.015** 0.021***

(2.395) (2.492) (3.373)

ADV 0.010*** 0.009 0.019**

(2.942) (1.150) (1.996)

API −0.019** −0.029 −0.048

(−2.003) (−1.178) (−1.641)

Observations 319 319 319

R-squared 0.026 0.026 0.026

Number of id 29 29 29
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