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Digital infrastructure, as a core component of new infrastructure, plays a powerful
engine role in driving urban development. It not only profoundly shapes the
future landscape of cities but also plays an irreplaceable role in accelerating the
dual transition of industries toward digitization and greening. This process not
only promotes the deep integration and synergistic development of urban
digitization and greening but also cleverly builds a bridge for the dual benefits
of pollution reduction and carbon reduction, laying a solid foundation for
achieving an environmentally friendly and resource-saving society. This study
adopt a multifaceted approach to explore the impact of digital infrastructure on
the synergistic management of urban pollution abatement and carbon
reductions. The coefficient for this effect was statistically significant at a 1%
significance level (0.1056), demonstrating its capacity to support reductions in
both pollution and carbon emissions, with regional variations observed.
Furthermore, examining factor flows reveals that digital infrastructure
promotes enhanced labor, capital, and innovation flows. Notably, the impact
of digital infrastructure on these sectors exhibited coefficients of 57.5616, 0.0097,
and 0.0189 respectively. These findings point to a significant nexus between
digital infrastructure and sustainable urban development. A nonlinear U-shaped
relationship was observed between digital infrastructure and the joint effect of
both pollution mitigation and carbon reduction. This study concludes with policy
recommendations aiming to optimize the utilization of digital infrastructure for
achieving sustainable urban development goals.
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1 Introduction

Air pollution and carbon emissions, recognized as pivotal contributors to global
warming (Allen et al., 2009; Amann et al., 2013), present substantial challenges to the
attainment of sustainable development goals (SDGs). Therefore, reducing air pollution and
mitigating carbon emissions holds a universal imperative for global progress.

China’s extensive economic development model has fueled a continuous increase in
carbon emissions (Zheng H. et al., 2023), while simultaneously grappling with elevated
levels of air pollution compared to other nations. Notably, over 40% of Chinese cities are
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projected to exceed the international average PM2.5 concentration
by 2021 (Hu et al., 2022), impacting both public health and
economic wellbeing. Based on this, the Chinese government has
implemented a series of measures to reduce pollution and carbon
emissions, such as promoting clean energy and strengthening
environmental regulation. However, with the acceleration of
urbanization and rapid economic development, pollution and
carbon emission issues remain severe. Against this backdrop,
how to further innovate management methods and enhance the
effectiveness of pollution reduction and carbon emission reduction
has become an important topic in the management practices of
urban pollution and carbon reduction.

Digital infrastructure, as an emerging technological force, is
gradually demonstrating its potential in promoting green economic
transformation and reducing pollution and carbon emissions.
Driven by data innovation, built on communication networks,
and centered around data computing facilities, digital
infrastructure possesses the powerful ability to break down
barriers, optimize resource allocation, and facilitate industrial
advancement (Guo et al., 2023; Tranos, 2012).The burgeoning
field of digital infrastructure research is exploring the impact on
environmental quality (J. Hu et al., 2023; Zhuo et al., 2023). Digital
infrastructure plays a critical role in facilitating industrial
digitalization by enabling seamless integration with traditional
sectors, thereby fostering transformative changes within industrial
structures (Ren et al., 2021; Xue et al., 2022). This integration has the

potential to mitigate air pollutants and carbon emissions through
industrial transformation. However, certain studies raise concerns
regarding the possibility of increased energy consumption arising
from extensive digital infrastructure deployment (Ren et al., 2021;
Xue et al., 2022). However, there is still controversy regarding how
digital infrastructure affects air pollutants and carbon emissions,
necessitating deeper analysis and discussion. It is essential to clarify
the mechanisms by which digital infrastructure influences the
synergistic effects of pollution reduction and carbon reduction.

This study examines the impact of digital infrastructure on the
synergistic effects of pollution reduction and carbon reduction using
relevant data from 282 cities in China from 2011 to 2021. The
research objectives are as follows: first, to clarify the specific role of
digital infrastructure in current urban pollution and carbon
reduction management practices; second, to reveal how digital
infrastructure indirectly promotes pollution reduction and carbon
reduction by influencing the flow of factors; and finally, to explore
potential nonlinear effects of digital infrastructure on the synergistic
effects of pollution reduction and carbon reduction, as well as to
identify key influencing factors. It is hoped that this research will
provide scientific evidence and practical guidance for policymakers,
facilitating greater effectiveness in urban pollution and carbon
reduction efforts in China and globally.

The paper is structured as follows: the second section presents a
comprehensive review of relevant literature; the third section
employs mechanism analysis to elucidate causal relationships

FIGURE 1
Analysis framework.
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between variables; the fourth section details the methodology
employed in this study, emphasizing methodological rigor and
transparency; the fifth section synthesizes findings and offers an
in-depth discussion; and the concluding section provides actionable
recommendations for policy development and implementation. The
structure of this paper is shown in Figure 1.

2 Literature review

Economic and societal development has driven a substantial
increase in carbon emissions and air pollutants (He et al., 2011),
posing a severe threat to both the ecological environment and public
health (Chen D. et al., 2021). Existing research focuses on measuring
the level of coordinated management of carbon emissions and air
pollutants, as well as assessing the influencing factors and impacts.
For example, Henneman et al. (2016) utilized the GAINS model to
investigate the complex interactions between air pollution and
carbon emissions under various environmental scenarios. Liu
et al. (2024) used an improved Tapio Decoupling Principle and
Probit model to explore the factors affecting the synergistic effects of
urban pollution reduction and carbon emission mitigation, and
ultimately found that environmental regulation is the main
influencing factor. Fujimori et al. (2015) emphasized the
effectiveness of carbon trading in mitigating both air pollutants
and carbon emissions, leading to positive ecological outcomes. In
addition, some scholars have conducted research specifically on the
construction industry, aiming to explore the actual effects of
construction waste sorting on promoting pollution reduction and
carbon emission reduction (Liu et al., 2023), as well as the potential
impact of this measure on economic growth (Wang Z. et al., 2022;
Wang et al., 2024).

The burgeoning digital economy exerts a profound influence on
urban development, necessitating comprehensive analysis of its
multifaceted relationship with environmental sustainability.
Existing research has focused primarily on elucidating the nexus
between the digital economy and urban pollution reduction, as well
as the regulatory mechanisms governing carbon emissions.
Nonetheless, the scholarly discourse regarding the impact of
digital economic expansion on pollution reduction remains
fragmented. While some scholars espouse a positive outlook,
anticipating transformative potential for reducing air quality
issues, others advocate a cautious stance, citing concerns about
an “energy rebound effect”. Heddeghem et al. (2014) posit that
the digital economy’s growth may trigger increased energy
consumption, thereby exacerbating regional atmospheric
pollution levels. Che and Wang (2022), on the other hand,
leveraged PM2.5 data to assess haze pollution levels and
employed multiperiod DID modeling to demonstrate a positive
correlation between the digital economy and reduced haze
pollution levels. Further research into this complex dynamic is
critical for a nuanced understanding of the digital economy’s
contribution to environmental conservation.

The digital economy presents a nuanced landscape for carbon
reduction, with Bai et al. (2023) emphasizing its capacity to curtail
emissions through industrial transformation and upgrading.
However, their work highlights the potential for such progress to
trigger a relocation of heavy industries to underdeveloped regions,

thereby exacerbating localized carbon emissions in those areas. Li
and Wang (2022), in contrast, investigated the spatial spillover
effects of the digital economy on carbon emissions, revealing an
inverted U-shaped pattern in their findings. This complexity
underscores the need for deeper investigation into this
phenomenon. Further research delves into the intricate interplay
between the digital economy and pollution reduction strategies. Hu
(2023), employing a DID method within a quasi-natural
experimental setup in the Big Data Comprehensive Experimental
Zone, examined this dynamic. Their findings revealed that
advancements in the digital economy effectively mitigate
environmental pollution and carbon emissions while highlighting
technological innovation and energy efficiency as pivotal drivers of
these positive impacts.

Research into the impact of digital infrastructure on urban air
pollution and carbon emissions has yielded a complex picture (Tang
and Yang, 2023). While Qiao et al. (2021) found that improving
energy efficiency through traditional infrastructure upgrades can
lead to decreased air pollution, Zou and Pan (2023) emphasize the
role of digital infrastructure in mitigating this issue, attributing its
positive impact to green innovations. Studies by Zhang P. et al.
(2022) further highlight the potential for digital infrastructure to
enhance air quality through industrial structure upgrades and
technological advancements, particularly within Chinese
provinces. However, some scholars caution that digital
infrastructure can exacerbate air pollutant emissions. Notably,
increased ICT development in specific South American countries
has been linked to exacerbated air pollution levels, highlighting the
need for careful consideration (Avom et al., 2020; Cheng et al.,
2019). Based on an analysis of comprehensive data from
83 countries worldwide, Che et al. (2024) concluded that the
development of digital infrastructure has significantly driven the
increase in national carbon emissions by promoting capital
aggregation and increasing the consumption of fossil energy.

The deployment of digital infrastructure in the context of carbon
reduction is multifaceted and subject to ongoing investigation. Dong
et al. (2022) employed a double difference model to analyze this
relationship, revealing that technological innovation, industrial
structure upgrades, optimized factor allocation, and fostering
industrial concentration are key drivers of carbon reductions
facilitated by digital infrastructure. However, the spatial spillover
effects of digital infrastructure on carbon emissions have also been
scrutinized, with scholars observing distinct regional variations (Liu
andWan, 2023; Sun and Kim, 2021). Notably, a subset of researchers
posit that the relationship between digital infrastructure and carbon
emission reduction is not straightforward. Hu et al. (2023) employed
threshold and quantile models to delve into this dynamic,
uncovering an increasing marginal effect of digital infrastructure
on carbon emissions reduction, suggesting potential benefits for
cities with advanced low-carbon practices, but perhaps hindering
efforts in those lagging behind. Conversely, Sadorsky (2012)
conducted a dynamic panel data study focusing on the influence
of ICT growth on electricity demand, revealing that its impact
surpasses income levels, potentially indicating a negative impact
on carbon reduction efforts by expansion of digital infrastructure.
Wang and Zhong (2023), further explored this point, identifying an
energy-intensive distribution scenario resulting from digital
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infrastructure expansion, which ultimately leads to diminished
energy efficiency and subsequently heightened carbon emissions.

Despite a wealth of research endeavoring to elucidate the
implications of the digital economy for environmental pollution
and carbon emissions, the existing body of literature is notably
sparse with respect to the specific influence of digital infrastructure
on these critical issues. The majority of extant studies have
concentrated on the direct effects of the digital economy on
environmental indicators, often overlooking the complex,
synergistic interplay between digital infrastructure and the
mitigation of pollution. This gap in understanding stems from a
lack of comprehensive analysis of the intricate nonlinear dynamics
that govern the relationship between digital infrastructure and
environmental conservation, which are influenced by a myriad of
factors, including evolving energy demands and advancements in
energy efficiency technologies. Therefore, there is an urgent need for
further research to delve into the complex interplay between digital
infrastructure and carbon mitigation strategies. Such an
investigation is essential for a nuanced evaluation of the role
digital infrastructure plays in environmental conservation,
particularly through a thorough examination of its nonlinear
dynamics. An integrated analysis of the governance of pollution
and carbon reduction will be instrumental in achieving a more
accurate assessment of the contribution of digital infrastructure to
sustainable urban development.

3 Mechanism analysis

Digital infrastructure, a cornerstone of the contemporary
infrastructure paradigm, plays a crucial role in modernizing daily
life through the integration of information technology. Unlike
traditional infrastructure reliant on physical components like iron
and concrete, digital infrastructure offers inherent eco-friendly
advantages, consuming significantly less energy than its
counterpart (Lan and Zhu, 2023). This results in reduced
ecological footprints within urban environments. Moreover,
digital infrastructure fosters cleaner industrial practices by
enabling residents to embrace more sustainable lifestyles. Smart
home technologies empower individuals to exert precise control
over their energy consumption, while intelligent air conditioning
systems adapt output based on temperature fluctuations tominimize
wastage (Favoretto et al., 2022; Ghosh et al., 2022). Similarly, smart
lighting systems intelligently adjust based on ambient light
conditions. The integration of digital infrastructure into daily
routines supports the decarbonization of household routines and
contributes to reduced energy usage, air pollution, as well as
environmental sustainability in various sectors. Specifically,
digital infrastructure promotes a notable enhancement in
manufacturing sector’s energy efficiency (Rathore et al., 2018;
Yong et al., 2020), achieved by leveraging big data and cloud
computing to optimize production processes, streamline
operations, and reduce unnecessary energy and carbon emissions.
Furthermore, digital infrastructure supports collaborative efforts
between industries, encourages resource recycling, waste
reduction, thereby decreasing pollutants and greenhouse gas
emissions. In transportation, where significant emissions are
prevalent, digital infrastructure provides crucial solutions for

reducing carbon footprints through smart transportation systems,
data-driven traffic forecasting, congestion prediction, and route
optimization (Chen et al., 2016; Guerrero-ibanez et al., 2015).
The adoption of new energy vehicles fueled by digital
infrastructure further mitigate pollution and carbon emissions in
transit operations (Li J. et al., 2024). These advancements underpin
the research hypothesis that:

H1: Digital infrastructure can accelerate the process of urban
pollution reduction and carbon reduction and realize the synergy
of pollution reduction and carbon reduction.

Digital infrastructure has revolutionized the dynamics of
production factors, transcending geographical barriers to facilitate
a self-sustaining and efficient circulation of resources within a more
robust market ecosystem. This transformation is driven by digital
infrastructure’s ability to break down physical limitations and foster
interconnectedness (Ndubuisi et al., 2021).This expansion
dramatically broadens information dissemination, mitigating
informational disparities within the workforce (Hu et al., 2023),
thereby streamlining workforce integration into suitable roles and
enhancing labor mobility. Furthermore, digital infrastructure
enhances knowledge access through online platforms,
empowering individuals to acquire essential skills for diverse
occupational contexts (Raab et al., 2001), ultimately elevating
overall workforce education levels and fostering greater versatility
(Tang and Zhao, 2023). This enhanced skill acquisition further
promotes labor market fluidity. Digital infrastructure’s impact is not
limited to labor; it also drives capital mobility at unprecedented
speeds. Digital trading platforms facilitate swift mutual
understanding between trading entities (He et al., 2020),
accelerating the financing process and optimizing capital
utilization. These innovations stimulate financial markets through
novel financial products, derived from digital integration (Stein,
2002). Consequently, the flow of capital is facilitated significantly.
Furthermore, enhancing digital infrastructure fosters financial
innovation, which involves integrating digital technologies to
create new financial products (Li et al., 2022). This expansion in
investment options for investors leads to increased market activity
and further accelerates the movement of capital. Third, digital
infrastructure facilitates the movement of factors that drive
creativity. By leveraging internet platform connectivity and
interaction capabilities, digital infrastructure enables unrestricted
innovation factor exchange across geographical boundaries (Hu
et al., 2023). This dismantles traditional limitations imposed by
geographic locations, fostering greater knowledge spillover effects
(Wood et al., 2018), thereby accelerating the exchange of innovative
ideas between cities.

The enhanced mobility of production factors stands as a key
driver in accelerating the reduction of urban pollution and the
effective management of carbon emissions. This transformation is
mediated by several interconnected mechanisms, all contributing to
the broader goal of achieving environmental sustainability within
urban environments: First, labor mobility holds the potential to
significantly expedite efforts aimed at decreasing urban pollutants
and carbon emissions. By addressing labor supply and demand
imbalances, labor mobility promotes a more efficient allocation of
human capital (Yashiv, 2007), ultimately leading to enhanced talent
availability in energy-intensive sectors. This increased capacity for
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specialized workforce development paves the way for a smoother
transition toward sustainable practices, thereby resulting in reduced
emissions of both carbon and other pollutants (Ouyang and Sun,
2015). Furthermore, labor mobility fosters environmental
conservation ethos by facilitating the transfer of skilled
individuals to smaller cities, stimulating regional industries and
driving innovation (Chen et al., 2021b; Wu et al., 2022). Second,
capital factor flows can act as a catalyst for mitigating urban
pollution and reducing carbon emissions. Capital flows can direct
capital toward green industries (Wang and Wang, 2021; Wei et al.,
2015), offering financial assistance for the eco-friendly
transformation of energy-consuming sectors. This process
facilitates the upgrading of urban industries and contributes to a
more coordinated approach to managing urban pollution and
carbon reduction (Hao et al., 2020; Wu and Chen, 2001).Cross-
border capital movement also introduces advanced production
management knowledge, ultimately boosting industrial labor
productivity while curtailing emissions, thereby meeting
environmental objectives (Wu and Chen, 2001).Third, the flow of
innovative elements accelerates clean energy technology adoption
within urban settings, a phenomenon known as the “Porter effect.”
This transformative force revitalizes urban energy frameworks and
increases the share of clean energy, ultimately enhancing the
cityscape’s overall environmental footprint (Malhotra et al., 2019;
Steffen et al., 2018). Moreover, this increased adoption of clean
energy technologies can trigger stronger governmental regulations
surrounding environmental protection, prompting enterprises to
implement stricter environmental policies. This, in turn, helps curb
urban carbon and pollutant emissions (Liao, 2018), demonstrating
the interconnected nature of innovation, policy, and environmental
sustainability. In light of these insights, a compelling
hypothesis emerges:

H2: Digital infrastructure promotes the synergistic effect of urban
pollution reduction and carbon reduction by accelerating the flow of
factors (labor, capital and innovation).

Digital infrastructure plays a pivotal role in addressing urban
pollution and carbon reduction efforts, exhibiting complex
nonlinear dynamics that render simplistic linear models
inadequate. The expansion of digital infrastructure historically
results in heightened energy consumption as the demand for
essential components such as data centers and communication
stations surges (Dayarathna et al., 2015; Sharma et al., 2020).
This increased demand can lead to significant environmental
resource depletion and ecological damage, potentially
exacerbating both urban pollution and carbon emissions (Dian
et al., 2023). However, advancements in digital infrastructure
innovation are driving a shift towards greener and more
sustainable practices. These innovations have significantly
enhanced the energy efficiency of IT equipment and
communication networks through the implementation of cutting-
edge energy-saving techniques, optimization strategies, and the
integration of renewable sources (Uddin et al., 2012). This
transition has positioned digital infrastructure as a key player in
achieving urban pollution and carbon reduction targets. Digital
infrastructure is evolving from a significant energy consumer to a
green and sustainable energy carrier (Wu et al., 2021), fueling the
sustainable development of cities. Through intelligent management,

digital infrastructure facilitates the rational allocation and economic
utilization of resources, reducing unnecessary energy consumption
and emissions. Furthermore, its extensive deployment underpins
urban environmental surveillance, pollution control, and eco-
friendly transportation, further advancing the objectives of urban
pollution reduction (Bibri, 2018). Based on these insights, the
following research hypothesis is proposed:

H3: The impact of digital infrastructure on the synergistic effect of
pollution reduction and carbon reduction in cities is nonlinear.

4 Research design

4.1 Variable definitions

The explained variable is the synergistic effect of pollution
reduction and carbon reduction (se).To elucidate the intricate
relationship between pollution reduction and carbon reduction
subsystems, a comprehensive index system for evaluating their
synergistic effects is developed in line with the methodology of
Yi et al. (2022). This system, detailed in Table 1, provides a
framework to quantify mutual influence between these two
subsystems. Given the lack of carbon emission data at the urban
level, this study references the research by Chen et al. (2020) and
uses nighttime light data along with provincial carbon emission data
to estimate the annual carbon dioxide emissions for cities (measured
in tons).Utilizing coupling coordination models (as exemplified by
Equations 1,2), the analysis delves into the intrinsic connections and
dynamic patterns of change between pollution reduction and carbon
reduction, shedding light on their interconnected nature.

C � XitYit

Xit + Yit( )2{ }1
2

(1)

se �
�������������
C × αX + βY( )√

(2)

where X is the pollution reduction index and Y is the carbon
reduction index, both of which are measured via the projection
tracing method. The value range of C is [0,1]. α and β are weight
values, both of which are set to 0.5. se is the system coupling
coordination degree of pollution reduction and carbon reduction.

Core Explanatory Variable: Digital infrastructure (inform).
Digital infrastructure refers to the foundational facilities that
support the digital operation and smart development of cities,
including but not limited to communication networks, data
centers, cloud computing platforms, and Internet of Things (IoT)
devices. Given the data accessibility at the city level, we utilize the
indicator system developed by Tang and Yang (2023), as presented
in Table 2. Additionally, we employ the projection pursuit model,
optimized using a genetic algorithm, to assess the extent of urban
digital infrastructure development. Regarding the construction level
of digital infrastructure, we rely on the research conducted by Wen
et al. (2022) to select the frequency of words related to digital
infrastructure in government work reports each year as a metric for
measuring the extent of digital infrastructure development.

Control variables: Based on a synthesis of multiple studies (Lee
and Zhao, 2023; Tang and Yang, 2023), this paper controls for
relevant variables to explore the synergistic effects of urban pollution
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reduction and carbon emission reduction in depth.: Economic
development level(pgdp) is measured by per capita development,
which typically shows a positive correlation with urban pollution
reduction and carbon emission reduction outcomes. (Zhang H.
et al., 2022); urbanization rate(urb) is reflected by the proportion
of the resident urban population; the advancement of urbanization
helps improve resource use efficiency and achieve emission
reduction targets. Human capital(hum) is measured by the
number of higher education students per ten thousand people;
enhancing human capital can increase public environmental
awareness and promote sustainable development actions. (Fan
et al., 2024).The level of transportation infrastructure(trans) is

assessed by the ratio of urban road mileage to administrative
area; well-developed transportation infrastructure is a key factor
in enhancing urban energy efficiency (Zhang X. et al., 2023).
Industrial structure upgrading(is) is indicated by the proportion
of the tertiary industry in GDP, reflecting the development status of
urban services and the level of industrial advancement. Finally,
energy consumption intensity (energy) is benchmarked by energy
consumption per ten thousand GDP; its reduction directly reflects
the improvements in urban energy efficiency and the effectiveness of
pollution reduction and carbon emission reduction efforts.

The mediating factors include labor factor flows (lff), capital
factor flows (cff), and innovation factor flows (iff). The labor factor
flow (lff), capital factor flow (cff), and innovation factor flow (iff)
play vital and decisive roles in economic progress, serving as the
primary driving forces behind the promotion of sustainable urban
transformation. Hence, we utilize the Jones et al. (1986) model on
factor flow to develop separate calculation models for labor factor
flow, capital factor flow, and innovation factor flow. As exemplified
by Equations 3-5.

lffit � laborit/gdpit

∑i laborit/∑i gdpit

− labori,t−1/gdpi,t−1

∑i labori,t−1/∑i gdpi,t−1
(3)

cffit � capitalit/gdpit

∑i capitalit/∑i gdpit

− capitali,t−1/gdpi,t−1

∑i capitali,t−1/∑i gdpi,t−1
(4)

iffit � patentit/gdpit

∑i patentit/∑i gdpit

− patenti,t−1/gdpi,t−1

∑i patenti,t−1/∑i gdpi,t−1
(5)

In this context, laborit denotes the total number of individuals
who are currently employed inside the city. capitalit represents the

TABLE 1 Evaluation index system of the synergistic effect of urban pollution reduction and carbon reduction.

Target level Primary indicators Secondary indicators

Synergistic management degree of pollution reduction and carbon reduction Pollution reduction pm2.5

Industrial soot emissions

Growth rate of industrial soot

Intensity of industrial soot emissions

Carbon reduction Carbon emissions

Carbon Emission Growth Rate

Carbon Emission Intensity

TABLE 2 Digital infrastructure indicator system.

Target level Primary
indicators

Secondary indicators

Digital
infrastructure

Construction level The interaction between digital infrastructure mentions in government reports and the secondary sector’s value-added is
analyzed

Business Revenue Revenue from telecommunication services

Coverage Number of international internet users

Total mobile subscriber count at the year-end

TABLE 3 Descriptive statistics.

Variable Obs Mean Std. dev Min Max

se 2,820 0.8646 0.0591 0.4513 0.9686

inform 2,820 0.1395 0.1520 0.0022 1.2781

pgdp 2,820 5.5127 3.1274 0.0000 21.8118

urb 2,820 0.5694 0.1472 0.1815 1.0000

hum 2,820 0.0200 0.0254 0.0000 0.1398

trans 2,820 1.1211 0.5233 0.0702 2.7780

is 2,820 0.0435 0.0102 0.0115 0.0907

energy 2,820 7.9925 91.3584 0.0252 1,204.9430

lff 2,820 3.8294 12.8139 −184.6440 151.0165

cff 2,820 0.0037 0.1866 −4.5326 4.6165

iff 2,820 0.0002 0.0093 −0.1172 0.0792
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fixed amount of capital resources available in the city. patentit
signifies the total number of patents awarded, which is calculated by
summing the number of invention patents, utility model patents,
and design patents.

4.2 Econometric modeling

4.2.1 Benchmark regression modeling
This research aims to investigate the correlation between digital

infrastructure and the synergistic effect of urban pollution and
carbon emissions. To achieve this, an econometric model is
constructed as outlined below:

seit � α0 + α1informit + βcontrolsit + μi + λt + εit (6)

In this context, seit refers to the explained variable, specifically
the magnitude of the synergistic management degree of pollution
reduction and carbon reduction in city i during year t. Similarly,
informit refers to the core explanatory variable, namely, the level of
digital infrastructure in city i during year t μi represents the control
variables considered in this study, while λt represents an individual
fixed effect. Additionally, there is a time fixed effect denoted by εit,
which represents the random error term that varies across
individuals and time periods.

4.2.2 Mediating effect modeling
This paper examines the precise mechanism through which

digital infrastructure influences the synergistic effect of reducing
urban pollution and carbon emissions. It does so by analyzing the
flow of labor factors, capital factors, and innovation factors from
three different perspectives. According to Yi et al. (2022), the
following mediated effect model is established:

Mit � δ0 + δ1informit + γcontrols + μi + λt + εit (7)

The variableMit serves as the mediating factor. δ1 represents the
effect of digital infrastructure on the mediator variable, while the
remaining variables are consistent with Equation 6.

4.2.3 Machine learning modeling
To further investigate the nonlinear effects between digital

infrastructure and the collaborative effects of urban pollution
reduction and carbon emission reduction, this study first employs
a random forest model to explore the nonlinear relationship between
the two, and then uses the SHAP method to rank and interpret
the results.

4.2.3.1 Random forest model
The random forest model, as an efficient ensemble learning

method, consists of multiple decision trees. When constructing the
model, it first randomly selects samples and subsets of features from
the original dataset to build several decision trees, ensuring that each
tree is trained independently. Finally, during the prediction phase, it
uses a voting method for classification tasks and an averaging
method for regression tasks to combine the predictions of all the
decision trees, resulting in a final prediction that is accurate and
stable. As exemplified by Equation 8. In this study, we have
constructed such a random forest model to deeply explore the

complex nonlinear relationship between digital infrastructure and
the collaborative effects of urban pollution reduction and carbon
emission reduction:

seit � Φ informit, controlsit, μk, λt, εit( ) (8)
Φ(·) for fitting using a random forest model.

4.2.3.2 SHAP interpretation method
SHAP is a powerful method for interpreting machine learning

model predictions. It is based on the Shapley value from game
theory, which assigns an importance score to each feature,
quantifying its contribution to the model’s predictions. A key
concept within the SHAP framework is the SHAP decomposition
method, which allows us to break down the model’s predictions into
the contributions of individual features.

The core idea of the SHAP decomposition method is to express
the model output (i.e., the prediction) as a weighted sum of the
contributions from all features, plus a baseline value. The baseline
value represents the model’s predicted outcome when no features
are provided. The contribution of each feature (the SHAP value)
reflects its marginal impact on the model’s prediction. This
decomposition method enables us to intuitively understand how
each feature influences the model’s predictions.

Furthermore, to reveal the marginal effects of digital
infrastructure on the collaborative effects of pollution reduction
and carbon emission reduction, we can construct partial dependence
functions (x1, Φ̂(x1)). Φ̂(x1) denotes the partial function of the
dependent variable on x1, while also accounting for the influences of
other variables x1, xj2,/, xjp on the dependent variable that have
been eliminated via integration; then, the sample is utilized to
estimate the entire equation to yield Equation 9:

Φ̂ x1( ) � 1
n
∑n
j�1
f x1, xj2,/, xjp( ) (9)

4.3 Data source

This study investigates the impact of inform on se in China,
utilizing a dataset comprising 282 prefecture-level cities between
2012 and 2021. Primary data sources include the China Statistical
Yearbook and China Urban Statistical Yearbook. Carbon emissions
at the city level are estimated through assimilating DMSP and VIIRS
nighttime lighting data (Wu et al., 2022). PM2.5 data were sourced
from the Atmospheric Composition Analysis Group at Dalhousie
University, Canada. Missing data points are interpolated using
linear interpolation methods. Descriptive statistics of variables are
shown in Table 3.

5 Results and discussion

5.1 Benchmark regression analysis

To disentangle the specific impact of inform on se, we employed
stepwise regression analysis, incorporating control variables to
account for their influence. The results presented in Table 4
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demonstrate that core explanatory variables exhibit statistically
significant positive relationships at a 1% significance level.
Importantly, the inclusion of additional control variables yielded
no alterations in outcomes, suggesting the critical role of digital
infrastructure in fostering synergy between urban pollution
reduction and carbon abatement (Du et al., 2023). This finding
further supports the validity of hypothesis H1.

Control variable analysis reveals a strong synergistic relationship
between digital infrastructure and the reduction of pollution and
carbon emissions. Higher levels of economic development,
urbanization rates, transportation infrastructure, and industrial
structure upgrading all positively impact combined reductions in
pollutants and greenhouse gases. This synergy can be attributed to
the positive correlation between higher economic development,
technological progress, and strengthened environmental
standards, which drive enterprises towards adopting more
sustainable production practices, leading to decreased pollution.
Furthermore, urban sprawl is linked to resource efficiency, the
promotion of eco-friendly infrastructure, and the emergence of
environmentally focused facilities. In transportation,
advancements contribute to increased network efficiency, reduced
traffic congestion, and limited vehicular emissions. Meanwhile, the
transformation of industrial structures involves restructuring
heavily polluting industries towards cleaner production methods

and green innovations, resulting in reduced carbon emissions
(Mentel et al., 2022). In contrast, previous studies have shown
that human capital can positively influence environmental
outcomes when accompanied by sufficient technological expertise
and investment in education(Wang Q. et al., 2022). This suggests
that the negative impact observed in this analysis may stem from a
current mismatch between educational outcomes and industry
needs in China, leading to inefficiencies in carbon reduction
initiatives. Additionally, other research highlights that energy
intensity’s impact on emissions varies significantly across regions,
with some regions achieving better results through targeted energy-
saving technologies(Hosan et al., 2022). The negligible influence of
energy intensity in this study may indicate a broader systemic issue,
where cities fail to implement effective energy-saving strategies, as
suggested by the persistent high energy consumption rates in many
Chinese urban centers.

5.2 Robustness test

To confirm the trustworthiness of the benchmark regression
results, this research performs robustness tests in the
following manner:

TABLE 4 Benchmark regression results.

(1) (2) (3) (4) (5) (6) (7)

inform 0.1146*** 0.1114*** 0.1099*** 0.1112*** 0.1066*** 0.1056*** 0.1056***

(3.9660) (3.5241) (3.5805) (3.5511) (3.2502) (3.4408) (3.4398)

pgdp 0.0005 0.0006 0.0006 0.0007 0.0021** 0.0021**

(0.5126) (0.6040) (0.6749) (0.7960) (2.2023) (2.2026)

urb 0.0501* 0.0515* 0.0485* 0.0464* 0.0464*

(1.8770) (1.9513) (1.8505) (1.8357) (1.8354)

hum −0.2644 −0.2313 −0.2419 −0.2419

(-1.2876) (-1.1508) (-1.2957) (-1.2956)

trans 0.0203*** 0.0175*** 0.0175***

(2.7518) (2.6246) (2.6243)

is 1.1166*** 1.1164***

(4.7732) (4.7714)

energy 0.0000

(1.1081)

_cons 0.8325*** 0.8308*** 0.8052*** 0.8087*** 0.7889*** 0.7471*** 0.7471***

(257.0257) (222.5188) (56.9837) (54.2749) (51.5299) (39.4868) (39.4807)

city Yes yes yes yes yes yes yes

year Yes yes yes yes yes yes yes

N 2,820 2,820 2,820 2,820 2,820 2,820 2,820

R2 0.503 0.503 0.506 0.507 0.512 0.527 0.527

Note: Standard errors for robust clustering at the city level are in parentheses, * stands for significant at the 10% level, ** stands for significant at the 5% level, *** stands for significant at the 1%

level, and the same applies below.
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5.2.1 Endogeneity test
To investigate potential reciprocal relationships between the

advancement of digital infrastructure and integrated pollution and
carbon reduction management in urban areas, an endogeneity test is
conducted. Drawing upon Gao et al. (2022), post offices from
1984 are selected as instrumental variables for 2SLS estimation
alongside digital infrastructure level data from the preceding
year. This approach acknowledges the historical role of postal
services as crucial information exchange channels, reflecting a
precursor to modern digital infrastructure. Notably, the shift
towards contemporary communication technologies renders the
post office less relevant today. Moreover, 1984 falls outside the

study’s timeframe, ensuring its exogeneity and applicability for this
analysis. Considering cross-sectional data, an interaction term is
constructed by incorporating both the number of post offices in
1984 and national internet investment levels from the preceding
year. This approach aligns with the methodology of Nunn and Qian
(2014), further emphasizing the instrumental variable strategy. We
also utilize the digital infrastructure level from the previous year as
an additional instrumental variable to account for its dynamic
nature and impact on current-year development.

The regression results are presented in columns (1) and (2) of
Table 5. These findings demonstrate that coefficients of primary
explanatory factors maintain statistically significant positive

TABLE 5 Robustness test.

(1) (2) (3) (4) (5) (6)

inform 1.4649** 0.1812*** 0.0834*** 0.1056*** 0.1079*** 0.0906***

(2.0691) (2.8392) (2.8200) (3.4219) (3.8716) (3.8831)

pgdp −0.0083 0.0022** 0.0021* 0.0021** 0.0016* 0.0012

(-1.4262) (2.0026) (1.9180) (2.1912) (1.8930) (1.2316)

urb 0.0219 0.0442 0.0158 0.0464* 0.0253 0.0448*

(0.5908) (1.4075) (0.5314) (1.8259) (1.3554) (1.9055)

hum −0.7170 −0.2963 −0.2335 −0.2419 −0.3087* −0.1288

(-1.0914) (-1.4827) (-1.2165) (-1.2889) (-1.9344) (-0.7141)

trans −0.0087 0.0171** 0.0128* 0.0175*** 0.0167*** 0.0182***

(-0.2271) (2.4173) (1.9419) (2.6107) (2.6216) (2.6978)

is 1.0309** 1.1500*** 0.9448*** 1.1164*** 1.0034*** 1.0759***

(2.4364) (4.6954) (4.2255) (4.7467) (4.7710) (4.8654)

energy −0.0000 0.0000 0.0000** 0.0000 −0.0330** −0.0000

(-1.2449) (1.5790) (2.5154) (1.1024) (-2.4020) (-0.8569)

appcp −0.0106***

(-3.7788)

bluesky 0.0218***

(5.0215)

unidentifiable tests 3.821 9.019

(0.0506) (0.0027)

weak instrumental variable tests 15.385 2,144.370

(8.96) (84.862)

_cons −0.6798 0.4376*** 0.7731*** 0.7484*** 0.7753*** 0.7522***

(-1.0876) (5.5065) (35.6894) (34.1756) (47.6759) (42.1249)

city yes yes yes yes city yes

year yes yes yes yes year yes

N 2,820 2,538 2,256 2,820 2,820 2,820

R2 0.507 0.885 0.519 0.890 0.909 0.556

Note: P values in parentheses for unidentifiable tests; 10% threshold for weak instrumental variable tests in parentheses for weak instrumental variable tests.
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correlations, highlighting the continued relevance of digital
infrastructure in facilitating coordinated pollution and carbon
reduction management. In addition to this, both instrumental
variables successfully passed the nonidentification test and weak
instrumental variable test, strengthening their validity and
emphasizing the significance of digital infrastructure for
mitigating urban pollution and carbon emissions.

5.2.2 Controlling for high-dimensional fixed effects
To account for potential unobservable province-level

characteristics, province fixed effects are incorporated into the
baseline regression model. This adjustment mitigates their
influence on the regression coefficients, as shown in column (3)
of Table 5. These results reveal notably positive regression
coefficients for key explanatory variables, suggesting that digital
infrastructure demonstrably fosters a synergistic effect in reducing
urban pollution and carbon emissions. This implies a substantial
impact of digital infrastructure on achieving these goals.

5.2.3 Bilateral tailoring process
This paper addresses the issue of distorted or biased regression

coefficients stemming from unrealistic extreme values. To achieve this,
we analyze bilateral shrinkage of the tail in the upper and lower 1%
quartiles as shown in Table 5 column (4). The results reveal consistently
positive regression coefficients for digital infrastructure that are
consistent with those obtained from a benchmark regression model.

5.2.4 Adjusting the sample interval
The implementation of the Broadband China pilot policy in

2013 directly correlates with digital infrastructure development, thus
rendering this study’s focus on the period between 2014 and
2021 particularly relevant. Column (5) of Table 5 reveals
significant positive impacts at the 1% level for key explanatory
variables, indicating reliable and strong conclusions derived from
the benchmark regression analysis.

5.2.5 Control of other policies
The influence of environmental policies such as the Action Plan

for Prevention and Control of Air Pollution (2013–2017) and the
Three-Year Action Plan for Winning the Battle for the Blue Sky, as
documented by Li L. et al. (2024) and Liu et al. (2021), exerts a
significant influence on collaborative pollution reduction and
carbon abatement efforts. To account for potential perturbations
caused by these policies on air pollutants and carbon emissions, this
study integrates both policies as dummy variables into the
benchmark regression (column 6 of Table 5). Remarkably, even
after incorporating policy shocks, primary explanatory variables
consistently demonstrate significant positive effects, affirming the
role of digital infrastructure in accelerating synergy between
pollution reduction and carbon abatement. This underscores its
crucial contribution to advancing collaborative urban
environmental enhancement efforts.

5.3 Heterogeneity analysis

The impact of digital infrastructure development varies across
cities, influencing their collaborative capabilities for pollution

reduction and carbon mitigation strategies. Geographic location,
city size, and available resources all contribute to these
distinct impacts.

5.3.1 Geographic location heterogeneity
To investigate the influence of inform on se, it is crucial to

account for regional variations. Studies conducted by Liang et al.
(2021) and Pu et al. (2020) have categorized the country into three
regions: East, Central-West, and North-South. Utilizing a
permutation test, this study assessed the variation in regression
coefficients across these groups. The findings are presented
in Table 6.

Statistical analysis reveals significant intergroup differences
between regions classified as Eastern, Central-Western, and
North-South. Regression coefficients for core explanatory
variables within the Eastern and Central-Western regions
demonstrate significantly positive values with the Eastern region
exhibiting a coefficient exceeding that of the Central-West region.
This indicates that in the eastern region, the role of digital
infrastructure in promoting pollution reduction and carbon
emission mitigation is more pronounced, which may not be
consistent with the conclusions of existing studies (Zhong et al.,
2024). This could be due to the more rapid development of digital
infrastructure in the eastern region (Ma and Lin, 2023), whichmakes
it easier to leverage the connectivity advantages of digital
infrastructure. This facilitates cross-regional cooperation and
resource sharing, and more effectively integrates resources,
thereby improving the efficiency of coordinated pollution
reduction and carbon emission mitigation efforts. Analysis
comparing the Northern and Southern regions reveals a
significant regression coefficient of 0.2077 for the Northern
region (passing the 1% significance test), aligning with research
by Zhang et al. (2023) who highlight the Northern region’s position
as a major heavy industrial base in China and its distinct air
pollution challenges due to severe winter climate conditions. This
emphasizes the need to bolster environmental governance and
infrastructure development, leveraging digital technology
effectively for monitoring and addressing environmental
challenges within the region.

5.3.2 Heterogeneity of city size
Considering that urban size may have an impact on the

pollution reduction and carbon emission effects of digital
infrastructure, this study explores the heterogeneity of urban size
from the perspective of population scale1. As shown in columns (1)
and (2) of Table 7, the differences in coefficients between the
aforementioned groups are highly significant. Notably, the
coefficient for large cities is notably smaller at 0.0728. This is in

1 According to the “Notice from the State Council on Adjusting the

Standards for Urban Size Classification,” based on the resident

population of municipal districts in 2015, cities with a population of

over one million are classified as large cities, those with a population

between 500,000 and one million are classified as medium-sized cities,

and those with a population of less than 500,000 are classified as

small cities
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line with the research of other scholar(Liao and Liu, 2024), which
may be due to the fact that larger cities require more resource
elements during the digital transformation process, resulting in poor
coverage of digital infrastructure(Lin and Ma, 2022). This
discrepancy could be attributed to the resource-intensive nature
of digital transformation within larger cities, leading to inadequate
digital infrastructure coverage and hindering its role in synergistic
pollution and carbon reduction processes. Furthermore, large cities’
broader regional scope necessitates increased coordination and
investment in resources for policy implementation, potentially
posing greater challenges compared to smaller cities(Yang, Yeh
and Wang, 2018).

5.3.3 Resource endowment heterogeneity
Given the significant differences in industrial structure, energy

consumption patterns, and environmental challenges between
resource-based and non-resource-based cities, we will categorize
the samples into these two types of cities to explore inmore detail the
differing roles of digital infrastructure in helping them achieve
pollution reduction and carbon emission targets. The results are
shown in columns (3) and (4) of Table 7. A significant positive

correlation is observed in the regression coefficients of primary
explanatory variables, evident across both resource-based and non-
resource-based cities. The disparity between these groups is highly
statistically significant. Digital infrastructure plays a crucial role in
enabling cities to achieve their pollution and carbon reduction
objectives, particularly for resource-based cities, where industries
heavily reliant on extractive and heavy energy sources dominate(Cai
and Lin, 2022). Consequently, environmental pollution and carbon
emissions become increasingly pronounced, highlighting the urgent
need for enhanced environmental governance measures. In resource-
based cities, digital infrastructure deployment can accelerate industrial
digital transformation, improve energy utilization efficiency, and
simultaneously mitigate carbon and pollutant emissions (Pan et al.,
2023), fostering a mutually beneficial outcome in achieving both
pollution and carbon reduction goals.

5.4 Mechanism analysis

To validate the hypothesis H2, regression analysis was
conducted using Equation 7, as presented in Table 8. The

TABLE 6 Geographic location heterogeneity test.

(1) (2) (3) (4)

East Central-West North South

inform 0.1904*** 0.0648*** 0.2077*** 0.0404***

(3.0693) (2.6365) (2.9996) (2.6442)

pgdp −0.0015 0.0043*** 0.0027* 0.0016*

(-0.8490) (3.9561) (1.7943) (1.6606)

urb 0.0952** 0.0113 0.0200 0.0522**

(2.2468) (0.4989) (0.5742) (2.5038)

hum −0.0551 −0.1930 −0.3614 −0.2787*

(-0.1439) (-0.8633) (-1.1720) (-1.8463)

trans 0.0223 0.0210*** 0.0592** 0.0090

(1.1785) (3.1259) (2.5801) (1.5284)

is 0.8275 1.2470*** 1.5843*** 0.5370***

(1.3984) (5.3421) (4.4640) (2.8181)

energy 0.0000*** −0.0001*** −0.0404*** 0.0000***

(3.1568) (-3.5270) (-2.7595) (4.3289)

experienced p value 0.007*** 0.002***

_cons 0.7070*** 0.7619*** 0.6845*** 0.8012***

(13.8055) (50.6600) (21.6762) (57.9569)

city yes yes yes yes

year yes yes yes yes

N 1,000 1820 1,290 1,530

R2 0.513 0.596 0.469 0.703

Note: Empirical p values are used to test for differences in coefficients between groups and are obtained by 1,000 bootstrap replicates, as follows.
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results clearly demonstrate a significantly positive correlation
between digital infrastructure and the flow of labor, capital, and
innovation factors. This suggests that digital infrastructure
fosters a synergistic effect by accelerating these factor flows,
ultimately contributing to cleaner air and reduced
carbon emissions.

Digital infrastructure facilitates efficient movement of all three
factors. For instance, the adoption of digital technologies enhances
transparency in labor markets, reduces labor mobility costs (Hua
and Zhang, 2024), and optimizes labor allocation. In relation to
capital flow, digital infrastructure offers enhanced trading
platforms and risk management tools within the capital market,
leading to improved liquidity and allocation efficiency (Dong et al.,
2022). Regarding innovation factors, digital infrastructure serves
as a strong catalyst for scientific and technological advancements
(Bygstad and Øvrelid, 2020), fostering efficient sharing and
integration of innovation resources and promoting urban
industrial structure upgrades. The acceleration of these factor
flows ultimately alters the city’s industrial structure by
optimizing resource allocation, enhancing production efficiency,

improving energy utilization efficiency, reducing energy waste, and
lowering pollutant emissions. Simultaneously, industrial
restructuring promotes environmentally friendly and sustainable
practices, further bolstering pollution reduction and carbon
mitigation efforts.

TABLE 7 Heterogeneity test of urban scale and resource endowments.

(1) (2) (3) (4)

Large Small-
medium

Resource Non-
resource

inform 0.0728*** 0.2829** 0.2437** 0.0836***

(2.7880) (2.2467) (2.0091) (3.1626)

pgdp 0.0004 0.0029** 0.0009 0.0024*

(0.2748) (2.0456) (0.5774) (1.8730)

urb 0.0501 0.0345 −0.0116 0.0986**

(1.2620) (1.2160) (-0.4886) (2.4328)

hum −0.2756 −0.1240 0.1782 −0.3166

(-1.1585) (-0.3696) (0.3632) (-1.4956)

trans 0.0039 0.0485*** 0.0389*** 0.0052

(0.5209) (3.4590) (3.7686) (0.6765)

is 0.8152*** 1.3977*** 1.0526*** 1.0800***

(2.8142) (3.8979) (2.7054) (4.0217)

energy −0.0287 −0.0000 −0.0001*** 0.0000**

(-0.9520) (-0.1730) (-3.4133) (2.4786)

experienced
p-value

0.000*** 0.001***

_cons 0.7684*** 0.7281*** 0.7613*** 0.7320***

(29.4566) (25.5191) (33.0673) (26.9225)

city yes yes yes yes

year yes yes yes yes

N 1,440 1,380 1,110 1710

R2 0.600 0.484 0.496 0.569

TABLE 8 Mechanism test results.

(1) (2) (3)

lff cff iff

inform 57.5616*** 0.0097* 0.0189**

(3.9654) (1.8449) (1.9942)

pgdp 2.0928*** −0.0004* −0.0008***

(4.5587) (-1.9415) (-3.2716)

urb −12.3511 −0.0016 0.0078

(-1.5974) (-0.3580) (1.6303)

hum −90.9089 0.0420 0.1453**

(-1.2832) (1.0068) (2.3653)

trans −1.2135 0.0048*** −0.0031

(-0.6788) (3.1111) (-1.0482)

is −3.3e+02*** 0.1607*** 0.1446***

(-2.8932) (3.6368) (3.4032)

energy 0.0008 0.0000 −0.0000*

(0.9585) (0.4028) (-1.8928)

_cons 6.1562 −0.0122*** −0.0068*

(1.3616) (-3.5843) (-1.6562)

city yes yes yes

year yes yes yes

N 2,820 2,820 2,820

R2 0.255 0.037 0.033

FIGURE 2
Variable importance.
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5.5 Nonlinear effect

This study employs a random forest model with regression trees
as the base learner to investigate the relationship between inform and
se, utilizing the minimum mean square error criterion (Li et al.,
2018). A biased dependence model is employed to elucidate the
marginal influence of digital infrastructure on this synergistic effect.
Figure 2 presents the ranking of importance for various feature
variables, revealing that the driving factors for the synergistic effect
of urban pollution reduction and carbon mitigation are, in order:
transportation infrastructure level, industrial structure level, digital
infrastructure level, energy consumption intensity, human capital,
urbanization rate, and per capita economic development level. To
analyze the manner in which digital infrastructure influences the
synergistic effect of urban pollution reduction and carbon
mitigation, this paper further employs a partial dependence plot
to illustrate the dependency relationship between digital
infrastructure and the synergistic effect of urban pollution
reduction and carbon mitigation.

Figure 3 displays a diagram illustrating these relationships.
Specifically, the synergistic impact of digital infrastructure on
urban pollution reduction and carbon mitigation exhibits a
distinct U-shaped relationship. This discrepancy can be attributed
to the stage of development in urban digital infrastructure: early
stages may not effectively contribute to enhanced synergistic effects
in both pollution and carbon reduction. However, once digital
infrastructure reaches a certain degree of maturity, it facilitates
the adoption of sustainable practices across various sectors,
accelerating progress towards cleaner air and reduced emissions.

In contrast, other studies have indicated a more linear
relationship between digital infrastructure and environmental
outcomes (Tao et al., 2023; Zheng et al., 2023c).These studies
suggest that even at early stages of digital infrastructure
development, there can be immediate benefits in terms of
efficiency improvements and better data management for
pollution control. The differences in findings may arise from
varying contextual factors, such as the specific technological tools
implemented or the regulatory environments of different regions.
For instance, regions that prioritize smart technologies and have
supportive policies may experience immediate improvements, while
others may lag due to insufficient investment or planning.

6 Conclusions and suggestions

6.1 Conclusions

This study employs a multi-faceted approach to analyze panel
data from 282 Chinese cities, employing a two-way fixed-effect
model, a mediated-effects model, and a machine learning model for
comprehensive assessment. The objective is to investigate the
influence of digital infrastructure on coordinated urban pollution
and carbon emissions reduction, quantifying its impact through an
evaluation of urban digital infrastructure levels.

The study reveals:

(1) The study provides a deeper understanding of how digital
infrastructure plays a pivotal role in amplifying the efficacy of
urban pollution and carbon emissions reduction initiatives,
leading to their synergistic governance. By examining
geographical disparities, urban dimensions, and resource
endowments, it is evident that regions in the east, northern
cities, and smaller or resource-dependent municipalities
witness a more pronounced beneficial effect. This suggests
that the spatial distribution and characteristics of cities
significantly influence the capacity of digital infrastructure
to drive environmental improvements.

(2) The research underscores the transformative impact of digital
infrastructure in harmonizing urban pollution and emission
reduction efforts. It does so by enabling the smooth
circulation of labor, capital, and innovative elements,
which are crucial for optimizing resource distribution. This
optimization is instrumental in steering the economy towards
a greener trajectory. As a result, there is a notable
enhancement in energy efficiency, a reduction in
emissions, and a subsequent decline in environmental
pollution levels, highlighting the critical role of digital
infrastructure in advancing sustainable urban development.

(3) Employing a random forest model, the study reveals the
complex, non-linear dynamics between digital
infrastructure and the concurrent management of pollution
and carbon emissions. It is observed that during the initial
stages of digital infrastructure expansion, high energy
consumption may counteract environmental efforts.
However, as the infrastructure evolves, it becomes a
catalyst for industry-wide digital transformation, which is
essential for environmental conservation and emission
reduction. This transition underscores the importance of
maturation in digital infrastructure as a key factor in
aligning pollution and carbonmitigation strategies effectively.

This study deepens the integration of digital economy and
sustainable development theories, clarifying how digital
infrastructure accelerates urban pollution reduction and carbon
reduction processes in a nonlinear manner by facilitating the
flow of labor, capital, and innovation factors. More importantly,
this research provides policymakers with a theoretical foundation
for precise policy implementation, aiding them in making more
informed decisions while promoting regional differentiated
development, optimizing resource allocation, and seeking a
balance between digital infrastructure construction and

FIGURE 3
Bias dependence diagram.
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environmental protection goals. This not only aligns closely with the
national strategy of actively promoting “new infrastructure” and
achieving “dual carbon” goals but also offers practical strategies and
pathways for achieving a green transformation of the economy
and society.

6.2 Recommendations for countermeasures

Based on these findings, the paper recommends several strategic
approaches to maximize the impact of digital infrastructure on
urban pollution and carbon emissions mitigation:

(1) Policymakers will use differentiated strategies based on New
Infrastructure Plan and carbon peaking/neutrality targets to
promote digital infrastructure development for emission
reduction. Areas with strong economies and tech
capabilities (east and north) should focus on optimizing
existing infrastructure to maximize emission reductions
potential. Smaller cities and resource-rich areas can
leverage regional development policies to increase digital
infrastructure investment, enabling green transitions in
traditional industries through technology. Finally,
promoting interregional digital infrastructure connectivity
aligned with initiatives like the Belt and Road Initiative
will facilitate resource sharing and collaborative governance
for stronger emissions reduction effect.

(2) To enhance the green economy, governments will promote
green industries and low-carbon fields through the strategy on
developing a quality workforce. This includes providing job
training and information to help workers develop green skills.
Additionally, policies like green finance encourage capital
investment in green projects. Digital innovation platforms
will also be created to attract new talent and innovation
resources for emissions reduction and accelerate the city’s
green transformation.

(3) During digital infrastructure development, prioritize
environmental management and oversight throughout
construction to control energy consumption and emissions.
Post-completion, encourage industries to leverage digital
technologies for green transformation (energy efficiency,
reducing carbon and pollution) and maximize the impact
of this infrastructure on emission reduction and coordinated
governance. Leveraging big data and AI technology can
establish a dynamic evaluation mechanism for timely
policy adjustments, enabling more precise and effective
management.

6.3 Research outlook

This study examines how digital infrastructure impacts
pollution and carbon reduction efforts, contributing to a dual-
carbon strategy. However, further optimizations are necessary:

(1) While this research focuses on Chinese cities, future studies
should broaden to include diverse nations and regions
worldwide. Comparative analyses across these distinct

contexts will reveal the varying influences of digital
infrastructure on climate change mitigation strategies. Such
insights can yield actionable guidelines for global
climate efforts.

(2) The impact of digital infrastructure is particularly potent
when integrated into crucial sectors like manufacturing
and transportation. Deeper research should focus on
assessing the specific effects of this integration on the
collaborative management of pollution and emissions
reduction. A thorough analysis can highlight the vital role
of digital infrastructure in pollution and carbon mitigation,
providing a more robust foundation for policy development
and implementation.
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