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This research analyzes the spatio-temporal evolution and driving factors of
agricultural land use carbon emissions (ALUCE) in China from 2013 to 2022,
utilizing LMDI and STIRPAT models. Key findings include: (1) Significant regional
disparities exist, with eastern provinces exhibiting high and increasing ALUCE
levels, while western provinces remain low and stable, necessitating targeted
regional strategies and technological support. (2) Total ALUCE in China decreased
by 8.6%, highlighting the need to optimize high carbon emission sources for
sustainable agriculture. (3) ALUCE inequality is stable yet slightly variable, driven
by inter-provincial differences, with spatial polarization evident. (4) Agricultural
production efficiency inhibits ALUCE, while output increases and labor scale
positively contribute. A novel environmental organizational framework is
proposed to reduce ALUCE, offering policy implications for developing
countries focused on regional strategies, technical support, and sustainable
practices.
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1 Introduction

The plantation industry is a core component of agriculture. It plays a crucial role in
maintaining ecological balance and ensuring national food and economic security (Suarez,
2024). Over time, with the development of agricultural mechanization and agrochemicals,
the economic efficiency of China’s plantation industry has increased significantly. However,
due to traditional development models, the major challenges faced by the farming industry
include high energy consumption, severe environmental pollution, and high emissions
(Chen et al., 2024). These problems not only damage ecosystem health but also gradually
reduce the quality of arable land resources, seriously hindering the sustainable development
of the plantation industry. In response, China introduced the “dual-carbon” strategy,
aiming for carbon peaking and carbon neutrality. The government has elevated green
development as a core concept, emphasizing a shift from high-speed growth to high-quality
development (Zhang et al., 2024). This strategic pivot highlights the need for a low-carbon
transformation within the agricultural sector, making the plantation industry a key focus of
sustainable development efforts. According to recent data, cropping activities account for
approximately 30%–40% of the total agricultural carbon emissions in China, with the use of
chemical fertilizers, energy consumption in irrigation, and changes in land use being
significant contributors (Xu et al., 2022; Liao and Zhou, 2023). This underscores the critical

OPEN ACCESS

EDITED BY

Sérgio António Neves Lousada,
University of Madeira, Portugal

REVIEWED BY

Changming Cheng,
Nanjing Forestry University, China
Jingjie Li,
Tianjin University of Commerce, China
Ming Li,
China Agricultural University, China
Xinjian Chen,
Guangxi University, China

*CORRESPONDENCE

Xiongtian Shi,
shixiongtian@stu.ynu.edu.cn

Zhenghao Zhou,
lcswdxlc@163.com

Zhengyong Yu,
yuzhengyong@stu.ynu.edu.cn

†These authors have contributed equally to
this work

RECEIVED 26 June 2024
ACCEPTED 14 March 2025
PUBLISHED 31 March 2025

CITATION

Shi X, Zhou Z and Yu Z (2025) Carbon emissions
from agricultural land use in China: spatio-
temporal dynamics and pathways to neutrality.
Front. Environ. Sci. 13:1455151.
doi: 10.3389/fenvs.2025.1455151

COPYRIGHT

©2025 Shi, Zhou and Yu. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Environmental Science frontiersin.org01

TYPE Original Research
PUBLISHED 31 March 2025
DOI 10.3389/fenvs.2025.1455151

https://www.frontiersin.org/articles/10.3389/fenvs.2025.1455151/full
https://www.frontiersin.org/articles/10.3389/fenvs.2025.1455151/full
https://www.frontiersin.org/articles/10.3389/fenvs.2025.1455151/full
https://www.frontiersin.org/articles/10.3389/fenvs.2025.1455151/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2025.1455151&domain=pdf&date_stamp=2025-03-31
mailto:shixiongtian@stu.ynu.edu.cn
mailto:shixiongtian@stu.ynu.edu.cn
mailto:lcswdxlc@163.com
mailto:lcswdxlc@163.com
mailto:yuzhengyong@stu.ynu.edu.cn
mailto:yuzhengyong@stu.ynu.edu.cn
https://doi.org/10.3389/fenvs.2025.1455151
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2025.1455151


role of the plantation industry in achieving carbon reduction goals
and promoting sustainable agricultural practices. Therefore,
addressing agricultural land use carbon emissions (ALUCE) is
crucial, as it plays a significant role in reducing overall carbon
emissions and advancing the low-carbon transition in the
agricultural sector.

The research on ALUCE has been extensively conducted,
covering multiple aspects including measurement methods,
spatiotemporal evolution, driving factors, and low-carbon
transition pathways. (1) Regarding the calculation method of
ALUCE, the carbon emission coefficient method has become the
primary tool for assessing ALUCE. This method estimates total
carbon emissions by calculating the carbon emissions associated
with each agricultural activity’s inputs and outputs. Although this
method is widely applied in assessing agricultural land carbon
emissions, it faces challenges in terms of accuracy and spatial-
temporal adaptability. Therefore, more precise carbon emission
measurement and modeling techniques need further development
to improve the accuracy and temporal resolution of the data
(Cederlöf, 2016; Xuan et al., 2023). (2) Concerning the
spatiotemporal evolution of ALUCE, different methods and
regional differences are crucial factors to consider. Carbon
emission trends show significant regional variation, which is
closely related to factors such as natural ecology, agricultural
resource distribution, and economic development levels. For
example, the eastern and southern regions, characterized by
intensive and efficient agricultural production, exhibit more
concentrated carbon emissions, while the western and northern
regions have lower emissions due to resource and climatic
constraints (Li et al., 2024; Liu and Lin, 2024). Furthermore,
analyzing the spatiotemporal evolution of ALUCE not only
requires attention to total carbon emissions but also necessitates
an in-depth examination of specific regional production structures
and policy backgrounds, providing essential regional references and
policy guidance for the low-carbon transition of agriculture. (3) The
driving factors of ALUCE are influenced by various elements,
including agricultural production efficiency, production structure,
agricultural output level, and agricultural labor scale. Specifically,
agricultural production efficiency is a key driving factor as it directly
reflects the resources and energy required per unit of output.
Improving production efficiency typically reduces resource waste
and carbon emissions, thus negatively correlating with ALUCE
(Wang et al., 2022). The production structure reflects the relative
contributions of different agricultural sectors, such as crop farming,
forestry, animal husbandry, and fisheries, each with varying sources
and intensities of carbon emissions. Significant regional differences
exist in agricultural production structures, with the eastern regions
generally characterized by intensive agriculture, while the western
regions rely more on traditional farming practices (Gnayem et al.,
2024). The agricultural output level is closely related to carbon
emissions, as regions with higher output may experience variations
in carbon emissions due to technological innovations or increased
resource inputs (Tian et al., 2024). Agricultural labor scale, which
reflects the number of individuals engaged in agricultural activities,
can indirectly influence carbon emissions by affecting production
methods and efficiency (Huang et al., 2024). The study of these
driving factors helps reveal the intrinsic relationship between
agricultural carbon emissions across regions and provides feasible

pathways for low-carbon agriculture. (4) The low-carbon transition
pathways for ALUCE involve improving agricultural production
efficiency, optimizing agricultural production structures, increasing
output levels, and rationally adjusting labor scales. First, improving
agricultural production efficiency helps reduce the resource
consumption per unit of output, thus reducing carbon emissions
(Wu et al., 2024). Second, optimizing agricultural production
structures by reducing high-carbon agricultural inputs and
increasing sustainable agricultural practices will significantly
lower carbon emissions. The increase in agricultural output levels
is often accompanied by technological innovations that enhance
carbon emission efficiency (Deng et al., 2024). Lastly, changes in
agricultural labor scale, particularly the transition from labor-
intensive to mechanized agriculture, can reduce labor demand
and indirectly lower carbon emissions. Through these
multidimensional transition pathways, the low-carbon
development of agricultural land use can be effectively promoted,
supporting the achievement of China’s dual-carbon goals.

The research on the spatiotemporal evolution of ALUCE has
made certain progress, but there are still several gaps. Firstly,
although existing studies have revealed differences in ALUCE
across regions, there is a lack of in-depth exploration of the
interaction between socioeconomic factors and carbon emissions.
Most studies focus on natural ecology, agricultural resource
distribution, and climatic conditions, while less attention has
been paid to how economic development, policy implementation,
and other factors influence the spatiotemporal evolution of ALUCE.
Secondly, although static analyses have identified spatial differences
in ALUCE across regions, there is limited understanding of its
dynamic temporal changes. Existing research has not fully
considered the role of agricultural technological development,
industrial structural adjustments, and other factors in the
spatiotemporal evolution of ALUCE. Lastly, while the spatial
distribution of ALUCE has been explored, the specific reasons for
low ALUCE provinces remain insufficiently analyzed. In particular,
the role of technological innovations and low-carbon agricultural
practices in low-emission areas needs further clarification.

Based on the above analysis, the innovations of this paper are as
follows: First, this study introduces a novel combination of the
LMDI (Logarithmic Mean Divisia Index) and STIRPAT models
(Stochastic Impacts by Regression on Population, Affluence, and
Technology), leveraging their complementary strengths to provide a
comprehensive, multi-dimensional analysis of the driving factors
behind ALUCE and its spatio-temporal evolution. By combining the
LMDI’s ability to decompose emission changes and the STIRPAT
model’s focus on socioeconomic variables, this research offers a
more nuanced and holistic understanding than previous studies,
which often focused on a single perspective. The combination of
these models allows for a deeper exploration of micro-level
agricultural practices and how they contribute to regional
differences in ALUCE, filling a critical gap in the existing
literature. Second, the research uncovers significant regional
disparities in ALUCE between eastern and western China. It
provides a detailed analysis of how agricultural practices, such as
crop selection, irrigation techniques, and technology adoption,
impact emissions. Additionally, it examines how socio-economic
conditions influence these practices. This analysis emphasizes the
need for region-specific policies that are tailored to the unique
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agricultural and socio-economic conditions of each region. Third,
empirical findings show that agricultural production efficiency
strongly inhibits ALUCE. This provides solid evidence supporting
policies that improve agricultural efficiency through technological
innovations and better resource management, which can help
reduce emissions. Finally, the study introduces an innovative
Environmental Organizational Framework, grounded in the γ-
multiple helix model, which integrates stakeholder collaboration
and dynamic adaptation. This framework bridges the gap between
theory and practice, offering actionable strategies for sustainable
agricultural development, particularly in developing countries, and
presents a multi-layered approach that aligns with both immediate
emission reduction needs and long-term carbon neutrality goals.
The integration of micro-level agricultural practices and regional
disparities into this framework further enhances its relevance and
practical applicability.

2 Research design

2.1 Overview of the research area

This research focuses on China’s ALUCE in the plantation sector,
spanning diverse climates and topographies from the northeast to the
tropical south. The study covers 30 provinces, including economically
developed coastal areas, agricultural hubs in the central region,
resource-rich western areas, and the vast northeastern plains.
These regions, with varying agricultural practices and emissions,
provide insights into ALUCE dynamics under different climatic
and economic conditions, offering strategies for low-carbon
development applicable to China and similar countries.

ALUCE distribution for 2013, 2018, and 2022 was mapped
using ArcGIS (Figures 1–3), with darker colors indicating higher
emissions. Provinces like Henan, Shandong, Jiangsu, and Anhui
consistently showed high ALUCE due to large-scale production,
mechanization, and heavy fertilizer use. Despite emission
reduction efforts, ALUCE continued to rise. In contrast,
western provinces like Qinghai and Gansu maintained lower
ALUCE due to smaller agricultural scales and natural
constraints. Moderate ALUCE provinces such as Hubei, Hunan,
Zhejiang, and Sichuan showed fluctuations driven by agricultural
technologies and policy measures.

The trends reveal a differentiated pattern: eastern provinces have
higher and increasing emissions, while western and central regions
remain more stable. This highlights the need for region-specific
strategies, technological support, and policy guidance to reduce
ALUCE and promote sustainable agricultural development.

2.2 Research methodology

2.2.1 Dagum Gini coefficient method
The Dagum Gini coefficient is an advanced measure of

inequality that extends the traditional Gini coefficient by
incorporating a decomposition approach, with specific definitions
provided in the Appendix 1. This coefficient not only captures the
overall inequality but also distinguishes between intra-group and
inter-group inequality. In the context of ALUCE, Dagum Gini
coefficient helps to identify whether disparities in carbon
emissions are primarily driven by differences within individual
provinces or between different regions, providing a clearer
understanding of the sources of inequality. Referring to Hu and

FIGURE 1
ALUCE in 2013.
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Deng (2023), the Dagum Gini coefficient and its decomposition are
calculated using the following:

G � ∑k
i�1 ∑k

m�1 ∑ni
j�1 ∑nm

r�1 yij − ymr

∣∣∣∣ ∣∣∣∣
2n2μ

Gii �
∑ni

j�1 ∑ni
r�1 yij − yir

∣∣∣∣ ∣∣∣∣
2n2i μi

Gim � ∑ni
j�1 ∑nm

r�1 yij − ymr

∣∣∣∣ ∣∣∣∣
ninm μi + μm( ) , μm#/#μi#/#μk

G � Gw + Gnb + Gl, Ggb � Gnb + Gl, Gw � ∑k
i�1

Giipisi

Gnb � ∑k
i�2

∑i−1
m�1

Gim pism + pmsi( )Dim

Gl � ∑k
i�2

∑i−1
m�1

Gim pism + pmsi( ) 1 −Dim( )

Dim � dim − pim

dim + pim
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(1)

where G denotes the overall Gini coefficient of ALUCE, and yij
denotes ALUCE in the jth province of the ith region, k is the number
of regions, n is the number of provinces, and μ is the average value of
ALUCE in each region, and Gii is the Gini coefficient of the ith
region, and Gim is the Gini coefficient between the ith and mth
regions, and Dim is the relative impact of ALUCE for cultivation
between the ith and mth region. dim is the difference in ALUCE
between regions, and pim is the difference in ALUCE between the i
and m regions, ymr-yij is the mathematical expectation of the sum of
the >0 sample values in the i and m regions.

2.2.2 Spatial kernel density estimation methods
Spatial autocorrelation testing is a critical preliminary step in the

analysis of spatial kernel density distribution dynamics
(Kariminejad et al., 2022). It not only ensures the accuracy and
relevance of the analysis but also aids in the rational interpretation of
the spatial characteristics of ALUCE. By calculating the Moran’s I
statistic, it can assess the spatial correlation of ALUCE distribution
across Chinese provinces, laying a solid foundation for further
dynamic analysis of spatial distribution. The calculation formula
for Moran’s I is represented as follows:

Moran′ s I � ∑n
i�1 ∑n

j�1 Wij Yi − �Y( ) Yj − �Y( )
S2∑n

i�1 ∑n
j�1 Wij

(2)

S2 � 1
n
∑n

i�1 Yi − �Y( ), �Y � 1
n
∑n

i�1 Yi (3)

Where Yi and Yj represent the observed ALUCE values for
provinces i and j respectively, andWij is the spatial adjacency weight
matrix, implemented as a 0–1 matrix.

The spatial kernel density estimation method is used to analyze
the distribution dynamics of ALUCE in China. The traditional
kernel density estimation method is represented by Equations 4,
5. In contrast, the spatial kernel density estimation method
incorporates time and space factors into the traditional kernel
density estimation method. This approach uses continuous
density curves to describe the distribution conditions of the
random variables under spatio-temporal evolution, as shown in
Equations 6, 7.

f x( ) � 1
Nh

∑N
i�1

K
Xi − x

h
( ) (4)

FIGURE 2
ALUCE in 2018.
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K x( ) � 1���
2π

√ exp −x
2

2
( ) (5)

f x, y( ) � 1
Nhxhy

∑N
i�1

Kx
Xi − x

hx
( )Ky

Yi − y

hy
( ) (6)

g y | x( ) � f x, y( )
f x( ) (7)

Where f(x) denotes the random variable x density function; N
is the number of observations; and h denotes the bandwidth; K(x)
denotes the random variable x the kernel function of the random
variable; f(x, y) denotes the joint density function of x and y.
g(y | x) denotes the distributional state of y under the x condition.

2.2.3 Driver decomposition model
The Logarithmic Mean Divisia Index (LMDI) method is a type

of index decomposition analysis widely applied in environmental
and energy economics, with specific definitions provided in
Appendix 1. The LMDI method was chosen for this research due
to its ability to decompose changes in carbon emissions into several
explanatory factors, including production efficiency, industrial
structure, and scale effects. Unlike traditional decomposition
methods, LMDI is known for its robustness and lack of residuals,
making it ideal for analyzing the drivers of carbon emissions in
complex systems like agriculture.

To better understand the driving factors of ALUCE, this
research employs the LMDI model. The LMDI model was
selected because it effectively decomposes changes in carbon
emissions, revealing the factors that have the most significant
impact on the increase or decrease of ALUCE. Specifically, the
LMDI model can break down changes in carbon emissions into key

influencing factors such as agricultural production efficiency,
industrial structure, and labor scale (Wu et al., 2016). This
decomposition analysis provides important insights for
policymakers, helping them identify priority areas to focus on for
carbon reduction.

Another advantage of the LMDI model is its ability to handle
data from different time periods and regions, allowing for precise
analysis of regional carbon emission variations (Wang and Yan,
2022). For example, by using this model, this study can compare the
impact of agricultural production efficiency on carbon emissions
between eastern and western China, offering targeted policy
recommendations for low-carbon transitions. Therefore, the
application of the LMDI model is crucial for a comprehensive
analysis of the driving factors of carbon emissions across
different regions. An LMDI model is constructed to
quantitatively decompose the driving factors of ALUCE, with its
specific formulation as follows:

ALUCE � ALUCE

G
×

G

GBig
×
GBig

P
× P (8)

β1 �
ALUCE

G
(9)

β2 �
G

GBig
(10)

β3 �
GBig

P
(11)

Where ALUCE represents the total carbon emissions from
agricultural land use (t), with the variables defined in Table 1; G
represents the total output value of the plantation industry (yuan),
GBig represents the total output value of agriculture, forestry, animal

FIGURE 3
ALUCE in 2022.
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husbandry, and fishery (yuan); P represents the scale of agricultural
labor (persons); β1 represents agricultural production efficiency (kg/
yuan), β2 represents agricultural production structure (%), and
β3 represents agricultural output level (yuan/person).

ALUCE � β1 × β2 × β3 × P (12)

By applying logarithmic, additive, and decomposition methods
to Equation 12, the contribution values of each decomposed factor of
ALUCE are obtained. The formula is expressed as follows:

Δβ1 �
ALUCET − ALUCE0

lnALUCET − lnALUCE0
× ln β1

T − ln β1
0( ) (13)

Δβ2 �
ALUCET − ALUCE0

lnALUCET − lnALUCE0
× ln β2

T − ln β2
0( ) (14)

Δβ3 �
ALUCET − ALUCE0

lnALUCET − lnALUCE0
× ln β3

T − ln β3
0( ) (15)

ΔP � ALUCET − ALUCE0

ln ALUCET − lnALUCE0
× ln PT − ln P 0( ) (16)

ΔALUCE � Δβ1 + Δβ2 + Δβ3 + ΔP (17)

Where Δβ1 represents the carbon emission effect induced by
agricultural production efficiency; Δβ2 represents the carbon
emission effect induced by agricultural production structure; Δβ3
represents the carbon emission effect induced by agricultural output
level; ΔP represents the carbon emission effect induced by the scale
of agricultural labor; ΔALUCE represents the total carbon emission
effect induced by all influencing factors.ALUCET, β1

T, β2
T, β3

T, and
PT represent the values of ALUCE, β1, β2, β3 and P in year T,
respectively; ALUCE0, β1

0, β2
0, β3

0, and P 0 represent the values of
ALUCE, β1, β2, β3 and P in the base year, respectively.

2.2.4 STIRPAT model
The STIRPAT model (Stochastic Impacts by Regression on

Population, Affluence, and Technology) extends the IPAT
identity, allowing for the examination of how population
dynamics, economic growth, and technological progress
collectively impact environmental variables like carbon emissions.
This model is particularly suited for analyzing the combined effects
of multiple socio-economic factors on carbon emissions, including
population size, economic development, and technological
advancement. The STIRPAT model is flexible in capturing
nonlinear relationships and accounting for regional and temporal
variations, providing deeper insights into the socio-economic
drivers of ALUCE, with specific definitions provided in the
Appendix 1. It not only quantifies the direct effects of each factor

but also reveals their interactions. This makes it a powerful tool for
understanding long-term trends in ALUCE. Unlike traditional
decomposition methods, its multidimensional analytical capability
allows for a more comprehensive understanding of the complex
environmental impacts. The specific formula is as follows:

ALUCE � aβb1β
c
2β

d
3β

e
4f (18)

Where a represents the model coefficient; b, c, d, and e represent
the coefficients of the driving factors; and e represents
the error term.

Taking the logarithm of Equation 18, can obtain the
following formula:

ln ALUCE � ln a + b ln β1 + c ln β2 + d ln β3 + e ln β4 + ln f

(19)
To analyze the impact of driving factors on ALUCE, path

analysis is used to decompose the correlation coefficients based
on the STIRPAT model. This approach estimates the total, direct,
and indirect effects of driving factors on ALUCE. By analyzing the
influence of driving factors on ALUCE from both individual and
common perspectives, this method serves as an important approach
for exploring the driving patterns of ALUCE.

This research selects the LMDI and STIRPAT models based on
their extensive application in carbon emission analysis and their
complementary strengths. The LMDI model is renowned for its
efficient decomposition capabilities. It allows for precise
identification of the driving factors behind changes in carbon
emissions, such as agricultural production efficiency, production
structure, and output levels. This model enables a quantitative
analysis of these factors’ contributions to changes in ALUCE,
providing valuable insights for policymakers to identify priority
areas for emission reduction. On the other hand, the STIRPAT
model excels at analyzing the complex relationships between socio-
economic variables and environmental pressures, particularly in
capturing nonlinear and dynamic changes. The STIRPATmodel can
address a broader range of socio-economic factors, such as
population size, economic development level, and technological
progress, revealing their comprehensive impacts on carbon
emissions. By combining the decomposition analysis capability of
the LMDI model with the dynamic regression analysis of the
STIRPAT model, this research constructs a more comprehensive
analytical framework that not only quantifies the effects of driving
factors but also uncovers the deeper relationships between socio-
economic variables and carbon emissions. This approach provides

TABLE 1 Driving factors of ALUCE.

Driving factor Definition Data source Symbol

Agricultural Production
Efficiency

Ratio of ALUCE to the total output value of the plantation industry China Rural Statistical
Yearbook

β1

Agricultural Production
Structure

Proportion of the total output value of the plantation industry to the total output value of
agriculture, forestry, animal husbandry, and fishery

China Rural Statistical
Yearbook

β2

Agricultural Output Level Ratio of the total output value of agriculture, forestry, animal husbandry, and fishery to the number
of employees in the primary industry

China Rural Statistical
Yearbook

β3

Agricultural Labor Scale Number of employees in the primary industry China Rural Statistical
Yearbook

β4
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new theoretical support for the study of ALUCE and offers greater
explanatory power and practical value in regional disparity analysis
and policy formulation.

2.3 Variable selection and data description

2.3.1 Measurement of ALUCE
The ALUCE specific formula is as follows:

ALUCE � ∑ALUCEi ∑Ti × εi (20)

In Equation 18, Ti represents the input amount of the ith carbon
source, and εi represents the carbon emission coefficient of the ith
carbon source. The main carbon sources and their emission
coefficients for ALUCE are shown in Table 2.

Table 3 displays ALUCE for 2013 and 2022, in conjunction with
the average ALUCE from 2013 to 2022. ALUCE 2013/2022: ALUCE
for each province in 2013 and 2022. Mean ALUCE 2013–2022:
Average ALUCE across the 2013–2022 period for each province.

2.3.2 Factors affecting ALUCE
This study focuses on four key driving factors: agricultural

production efficiency, production structure, output level, and
labor scale, all of which directly influence carbon emissions and
are crucial for understanding ALUCE. Agricultural production
efficiency (β1) reflects the resources and energy required per unit
of output; improvements in efficiency typically reduce resource
waste and carbon emissions, thus negatively correlating with
ALUCE. Agricultural production structure (β2) represents the
contribution of various agricultural sectors (such as crop farming,

TABLE 2 Major carbon sources and emission coefficients of ALUCE.

Carbon source Carbon emission
coefficient

Reference source

Diesel 0.59 kg/kg IPCC (2019)

Fertilizer 0.89 kg/kg Oak Ridge National Laboratory, United States

Pesticide 4.93 kg/kg Oak Ridge National Laboratory, United States

Plastic mulch 5.18 kg/kg Institute of Agricultural Resources and Regional Planning, Nanjing Agricultural University (Holt and
Shukla, 2016)

Irrigation 266.48 kg/km2 Refer to Relevant Research (Pulido-Bosch et al., 2018)

Tillage 312.60 kg/km2 Refer to Relevant Research (Zhang et al., 2022)

TABLE 3 Partial sample of ALUCE in 30 provinces of China (ten thousand tons).

Province Id 2013 ALUCE 2022 ALUCE Mean
ALUCE

2013–2022

Province Id 2013 ALUCE 2022 ALUCE Mean
ALUCE

2013–2022

Anhui 1 542.415 513.486 547.997 Jiangxi 16 270.135 222.881 254.287

Beijing 2 28.525 14.370 18.771 Liaoning 17 323.999 280.279 304.962

Fujian 3 243.424 206.638 234.846 Inner
Mongolia

18 342.692 415.981 393.649

Gansu 4 251.610 229.074 253.920 Ningxia 19 70.855 70.949 71.564

Guangdong 5 393.563 349.079 383.159 Qinghai 20 22.584 18.691 21.294

Guangxi 6 354.969 357.054 367.863 Shandong 21 912.653 734.645 827.377

Guizhou 7 157.351 132.912 150.029 Shanxi 22 198.255 187.202 196.963

Hainan 8 91.208 79.368 90.992 Shaanxi 23 323.907 298.461 316.574

Hebei 9 697.694 526.277 631.220 Shanghai 24 35.159 19.425 29.962

Henan 10 962.174 883.124 957.198 Sichuan 25 421.599 375.790 406.936

Heilongjiang 11 510.614 524.405 538.473 Tianjin 26 48.676 27.817 37.365

Hubei 12 525.250 429.566 481.185 Xinjiang 27 430.054 542.738 545.441

Hunan 13 422.513 395.772 423.853 Yunnan 28 359.654 319.352 365.363

Jilin 14 329.017 336.348 346.590 Zhejiang 29 301.003 256.651 284.053

Jiangsu 15 562.023 507.870 538.696 Chongqing 30 147.275 140.767 147.046
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forestry, and animal husbandry) to carbon emissions. The
differences in agricultural structures, with intensive farming in
the eastern regions and traditional farming in the western
regions, affect ALUCE. Agricultural output level (β3) indicates
the overall economic output of agriculture, directly linked to
carbon emissions. High-output regions may experience variations
in carbon emissions due to technological innovations or increased
resource inputs. Agricultural labor scale (β4) reflects the number of
people involved in agricultural activities, which can influence
production methods and efficiency, indirectly impacting carbon
emissions, especially between labor-intensive and mechanized
agricultural regions.

Descriptions of each variable can be found in Table 3. By
considering these standards, the selected factors not only possess
scientific validity and practicality but also provide an effective
theoretical framework for understanding and addressing
agricultural carbon emissions.

2.3.3 Data description
The data used in this research, including fertilizer, agricultural

film, pesticides, diesel for agricultural machinery, crop sown area,
irrigated area, total output value of the plantation industry,
agricultural output value, and agricultural labor force size, were
sourced from the China Rural Statistical Yearbook (2013–2022) and
the provincial statistical yearbooks of the 30 mainland provinces
(excluding Hong Kong, Macao, Taiwan, and Tibet). These data were
manually collected. Provincial-level data was selected for its
representativeness and consistency, providing valuable insights
for national policy formulation and the overall analysis of
ALUCE patterns across China.

Descriptive statistics for the variables were conducted using
Stata16, and the results are shown in Table 4. The ALUCE variable
shows substantial variability, with values ranging from 11.651 to
995.753. The β1 and β2 variables exhibit concentrated distributions
with small standard deviations, indicating that most data points
cluster around the mean. The β3 variable has a wider range and
higher standard deviation, indicating greater variability. The
β4 variable shows significant disparities across provinces.

Pearson correlation tests conducted in Stata16 are shown in
Table 5. The correlation between ALUCE and β1 is 0.260, suggesting
that higher production efficiency is associated with increased carbon
emissions. The ALUCE-P correlation is 0.439, indicating that a
larger agricultural labor force correlates with higher emissions. The
β1-β3 correlation is −0.358, suggesting that increased production
efficiency may reduce output. The β2-β3 correlation is −0.243,

implying that structural changes in agriculture could lower
output. Lastly, the β3-β4 correlation is −0.418, highlighting
inefficiencies in labor-intensive agricultural models. VIF values
are all below 10, confirming no multicollinearity among
the variables.

3 Empirical analysis

3.1 Analysis of the results of measuring
ALUCE in China

Figure 4, calculated using Stata16 based on Equations 18 and 20,
reveals substantial inter-provincial disparities in ALUCE and carbon
emission intensity across 30 Chinese provinces. Provinces such as
Henan, Shandong, and Hebei report the highest total ALUCE,
primarily due to their large-scale, intensive agricultural activities.
Henan, as a major grain-producing area, relies heavily on chemical
inputs like fertilizers and pesticides to enhance crop yields,
contributing significantly to higher emissions. For example, in
2022, Henan used over 1.8 million tons of chemical fertilizers,
contributing significantly to carbon emissions. Based on the
carbon emission coefficients from Table 3, the use of chemical
fertilizers in Henan results in substantial emissions, with a
coefficient of 0.89 kg of CO2 per kg of fertilizer. The heavy use
of pesticides (4.93 kg CO2 per kg) and plastic films (5.18 kg CO2 per
kg) in agriculture further exacerbates emissions in the region. These
data highlight the significant role of agricultural inputs in driving
ALUCE and the region’s overall carbon emissions. In contrast,
provinces like Qinghai, Beijing, and Shanghai exhibit the lowest
total ALUCE, driven by limited agricultural activities and a focus on
industrial and service sectors. Qinghai’s reliance on traditional, low-

TABLE 4 Descriptive statistics for each variable.

Variable Obs Mean Std. Dev Min Max VIF test

ALUCE 300 335.912 227.392 11.651 995.753

β1 300 0.156 0.055 0.034 0.355 1.19

β2 300 0.570 0.082 0.377 0.782 1.08

β3 300 6.457 3.266 −5.876 19.384 1.53

β4 300 719.836 496.661 12.700 2044.000 1.24

Note: The VIF, test shows that the average VIF, for all variables is about 1.26, and all individual VIF, values are less than 10, so there is no multicollinearity problem.

TABLE 5 Correlation test.

ALUCE β1 β2 β3 p

ALUCE 1.000

β1 0.260*** 1.000

β2 0.059 −0.015 1.000

β3 −0.039 −0.358*** −0.243*** 1.000

β4 0.439*** 0.031 0.054 −0.418*** 1.000

Note: ***, **, * respectively indicate significance levels above 1%, 5%, and 10%.
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input farming methods and a smaller agricultural land area further
explain its lower carbon emissions, highlighting the impact of
different economic structures and land use priorities.

In terms of carbon emission intensity, Zhejiang, Fujian, and
Beijing rank the highest. These southeastern provinces employ high-
input, high-output farming models aimed at maximizing
productivity, relying heavily on synthetic inputs such as plastic
films, chemical fertilizers, and advanced irrigation systems. This
intensive approach significantly increases carbon emissions per unit
area of farmland. Conversely, Guizhou, Sichuan, and Chongqing
show the lowest carbon emission intensities, primarily due to their
adoption of traditional, low-input agricultural practices and more
diverse cropping systems. The agroecological approaches in these
southwestern provinces, focusing on soil health and resource
conservation, naturally limit carbon emissions and promote
sustainability.

The observed regional disparities in ALUCE can be attributed to
differences in agricultural practices, technological access, economic
development, and policy focus. High-emission provinces like
Shandong and Jiangsu have greater access to advanced
agricultural technologies, yet their focus on maximizing output
often leads to excessive use of high-carbon inputs. In contrast,
western provinces such as Qinghai and Ningxia typically use less
mechanized, lower-input farming methods, resulting in lower
emissions. Moreover, eastern provinces tend to prioritize
economic growth and intensive farming, whereas western regions
often emphasize environmental conservation and sustainable land
use. This variation suggests the need for region-specific policies that
account for local agricultural practices and socio-economic
conditions.

Figure 5, calculated using Stata16 and plotted with Excel, shows
that China’s total ALUCE decreased from 3,426,950 tons in 2013 to

FIGURE 4
Average ALUCE and ALUCE intensity in 30 Chinese provinces during the sample period.

FIGURE 5
Time series trends of ALUCE and its growth rate in China during the sample period.
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3,132,320 tons in 2022, reflecting an 8.6% decline over 10 years. This
reduction likely results from energy-saving technologies, improved
agricultural practices, and green development initiatives. Fertilizer
emissions peaked at 1,784,900 tons in 2016 but decreased to
1,538,900 tons by 2022, remaining the largest contributor to
ALUCE. Plastic mulch emissions also peaked in 2016 at
449,230 tons and decreased to 406,840 tons by 2022. Pesticide
and diesel emissions rose until 2016, then declined, with pesticide
emissions dropping sharply from 296,770 tons in 2015 to
203,560 tons in 2022. Irrigation emissions increased from
557,704 tons in 2013 to 612,120 tons in 2022, reflecting
expanded irrigation infrastructure. Tillage emissions remained
stable, with a small annual increase from 17,002 tons in 2013 to
17,560 tons in 2022.

Overall, the analysis shows that while there have been reductions
in emissions from fertilizers, plastic mulch, pesticides, and diesel, the
increase in irrigation emissions highlights areas for further efficiency
improvements. The stable tillage emissions indicate a consistent
approach to land management. These findings highlight the need for
actionable measures, such as promoting the adoption of precision
irrigation technologies and incentivizing the use of low-carbon
fertilizers. Additionally, improving water-use efficiency through
advanced irrigation systems and reducing pesticide use by
supporting integrated pest management could further help in
reducing ALUCE. With the advancement of energy-saving and
emission-reduction technologies and green agricultural policies,
the carbon emissions from the main sources of ALUCE showed a
significant decline during the sample period. This reflects the
effectiveness of measures aimed at reducing chemical inputs and
improving resource use efficiency.

China’s vast geographical expanse leads to significant regional
differences in climate, arable land resources, agricultural structures,
and economic development, which in turn cause disparities in
ALUCE carbon emissions across provinces (Figure 6). Fertilizer
is the primary ALUCE source, with provinces like Shaanxi, Henan,

Hubei, and Jilin showing high fertilizer reliance to boost crop yields.
Plastic mulch usage is high in Shanghai, Beijing, Gansu, and
Xinjiang, improving efficiency but contributing to emissions.
Diesel usage is notably high in Guizhou, Heilongjiang, Inner
Mongolia, and Qinghai, driven by mechanization. Pesticide input
is significant in Jiangxi, Hunan, Hainan, and Zhejiang. While
irrigation and tillage-related emissions are less variable, regions
like Heilongjiang and Qinghai report higher irrigation emissions.
These regional differences reflect varying agricultural practices and
resource usage, highlighting the need for region-specific emission
reduction strategies, particularly for high-ALUCE sources like
fertilizers, plastic mulch, and diesel, to promote sustainable
agriculture.

3.2 Analysis of regional differences in ALUCE

The measurement results of the Gini coefficient and
contribution rate of ALUCE in the regional divisions of China,
calculated using Equation 1, are shown in Figure 7. It was calculated
using MATLAB 2022b and plotted using Excel.

The measurement results of the Gini coefficient and
contribution rate of ALUCE across China’s regional divisions are
presented in Figure 7, calculated using MATLAB 2022b and plotted
using Excel. From Figure 7A, the overall Gini coefficient reflects the
level of inequality in ALUCE across different regions of China,
fluctuating between 0.369 and 0.376 from 2012 to 2019. This
indicates a relatively stable, yet slightly variable, degree of
inequality in ALUCE. The within-group Gini coefficient (Gw),
measuring inequality within individual provinces, remains
around 0.1, suggesting that internal provincial inequality has
shown minimal variation over time. In contrast, the between-
group Gini coefficient (Gb), which captures the inequality
between different provinces, has declined from 0.128 in 2012 to
0.109 in 2021. This trend may be associated with a narrowing of

FIGURE 6
Proportion of ALUCE sources.
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disparities between provinces, though the underlying causes likely
include multiple factors such as regional policies, economic changes,
and shifts in agricultural practices. The transition density Gini
coefficient (Gt), which represents both within- and between-
group differences, increased from 0.147 to 0.164 during the same
period. This indicates a growing complexity in the distribution of
ALUCE disparities. The higher between-group Gini coefficient
compared to the within-group coefficient suggests that inter-
provincial differences are more pronounced than intra-provincial
differences. To address these disparities, targeted emission reduction
policies should be designed for high-emission provinces, such as
promoting precision agriculture and incentivizing the use of low-
carbon technologies. In provinces with lower emissions, policies
could focus on maintaining sustainable practices while enhancing
agricultural efficiency. These tailored policies would ensure that
emission reduction efforts are more effectively aligned with regional
characteristics.

In Figure 7B, the stable contribution of within-group inequality
to ALUCE disparities contrasts with the gradual decline in the
between-group contribution rate. This pattern suggests a relative
reduction in inter-provincial disparities over time, which may be
influenced by broader socio-economic trends or regional
agricultural adjustments. However, the increasing trend in
transition density contribution points to a rise in the complexity
of ALUCE inequality, potentially driven by factors like divergent
regional policies and varied levels of technology adoption. These
findings indicate that while narrowing inter-provincial disparities is
important, addressing the combined effects of both within- and
between-group differences is equally crucial for achieving balanced
and sustainable agricultural development.

From Figure 7C, the data reveal significant regional disparities in
ALUCE within China. The inequality within the Northeast and
Western regions has increased, suggesting an expansion of internal
disparities. This trend may be related to differences in local

agricultural practices, economic conditions, or access to
technology, but further investigation is needed to pinpoint
specific drivers. In the Eastern region, the consistently high level
of inequality likely reflects the diverse range of agricultural practices
and varying levels of economic development. Conversely, the
Central region shows lower and more stable inequality, which
might be associated with relatively uniform agricultural practices
and balanced economic growth. These findings suggest that regional
policies should be tailored to address the unique characteristics and
challenges of each area. This is especially important in the Northeast
and Western regions, where internal disparities are widening.

Figure 7D illustrates significant disparities between regions, with
a general trend of decreasing inequality in ALUCE between the
Eastern and Western, as well as Central and Western regions. This
suggests a narrowing gap in ALUCE levels among these regions,
which could be linked to shared advancements in agricultural
technologies or policy harmonization efforts. The increasing
disparity between the Western and Northeastern regions points
to diverging trends. These differences may be influenced by varying
regional policies, technology access, or economic conditions. This
highlights the need for targeted interventions in these areas, such as
increased investment in technology and better resource allocation,
to reduce disparities and promote more balanced development in
agriculture.

3.3 Distribution dynamics of ALUCE

The results from Table 6’s global spatial auto-correlation test
and Figure 8’s local indices show that from 2013 to 2022, Moran’s I
indices were greater than zero and passed the 5% significance test,
indicating a significant positive spatial correlation of ALUCE among
provinces in China. This necessitates further analysis of ALUCE
distribution dynamics using the spatial kernel density method. Both

FIGURE 7
Changes in the Gini coefficient of ALUCE. (a)Gini coefficient. (b) contribution rate. (c)Gini coefficient within group. (d) Inter-group Gini coefficient.
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global and local Moran’s I were calculated using Stata16, based on
Equations 2, 3.

The spatial conditional static kernel density and contour
distribution of ALUCE are shown in Figure 9. It was calculated
and plotted using MATLAB, based on Equations 4–7.

From the kernel density plot, the main peak appears on the
center line, indicating that these provinces have ALUCE values
similar to those of their neighboring provinces. This suggests a high
level of uniformity in agricultural production methods, resource use
efficiency, and emission reduction measures among neighboring
provinces. Besides the main peak, the density plot shows a tailing
phenomenon in some areas, particularly where ALUCE values are
lower. This indicates that the ALUCE values in these provinces are
more widely distributed and include some extremely low values.

The contour plot peaks, with one located along the diagonal line
and another below it, indicate a phenomenon of polarization in

China’s ALUCE. When the contour peak is positioned on the
diagonal line, it suggests that the ALUCE values of the province
are approximately equal to those of its neighboring provinces. This
implies that some provinces exhibit similarities in agricultural
practices, resource use efficiency, and emission reduction
measures. Conversely, when the contour peak is below the
diagonal line, it indicates that some provinces have lower
ALUCE values than their neighboring provinces. These provinces
perform better in terms of ALUCE, exhibiting lower carbon
emissions. They play a demonstrative role in low-carbon
agricultural development, and their successful experiences and
technologies can be extended to neighboring provinces to help
achieve ALUCE reduction goals. This information is crucial for
formulating regional and targeted emission reduction policies,
contributing to more balanced and sustainable agricultural
development.

TABLE 6 Global spatial auto-correlation measurement results for ALUCE.

Index 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

I 0.183* 0.174* 0.151* 0.141** 0.138* 0.135* 0.134* 0.128* 0.135* 0.131*

z(I) 1.799 1.721 1.531 1.649 1.724 1.894 1.585 1.542 1.499 1.459

P value 0.072 0.085 0.056 0.047 0.054 0.063 0.066 0.080 0.062 0.074

Note: ***, **, * represent significance levels at p < 0.01, p < 0.05, and p < 0.10, respectively.

FIGURE 8
Local Moran’s indices for Year 2013, 2018, and 2022.

FIGURE 9
Spatial static kernel density and contours of ALUCE.
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Figure 10, calculated using MATLAB based on Equations 4–7,
presents the spatial dynamic kernel density and contour maps of
ALUCE. The results show that ALUCE values in certain provinces
are influenced by neighboring regions. In the Eastern region, high-
density areas with high ALUCE reflect intensive agricultural
activities and resource utilization, though some balance exists.
The Western region has more low-density areas, indicating
uneven distribution, with certain provinces having high
ALUCE values likely due to low resource efficiency. In the
Central region, the main peaks are aligned along the y-axis,
with high-density areas above the diagonal line, suggesting that
ALUCE in these provinces will continue to increase in the next
3 years (t+3). The Northeastern region’s high-density areas are
concentrated on and below the diagonal line, indicating a more
balanced ALUCE distribution, with some provinces exhibiting
low emissions. Overall, the Eastern region has higher ALUCE,
while the Central and Northeastern regions show more balance
and lower ALUCE, serving as models for low-carbon agricultural
development. The Western region needs improvements in
resource use efficiency and agricultural technology to
reduce ALUCE.

4 Driver analysis

4.1 Key driving factors analysis for ALUCE

Decomposition of driving factors for ALUCE using the LMDI
model, as illustrated in Figure 11. Figure 11 was calculated using
Stata16, based on Equations 8–17.

4.1.1 Efficiency Factor
The efficiency factor exhibited noticeable fluctuations across the

analyzed years. The most prominent positive contribution occurred
in 2017, suggesting that improvements in agricultural efficiency
were likely associated with reduced ALUCE during that year. This
may reflect advancements in technology and the adoption of more
efficient production methods, which are generally expected to help
mitigate carbon emissions. In contrast, negative contributions
observed in 2016 and 2022 indicate that efficiency gains were less
pronounced, potentially pointing to external factors or varying levels
of technology adoption. The peak contribution rate of the efficiency
factor, which exceeded 40% in 2017, underscores its potential role in
reducing emissions during certain years. Moving forward, policies
that promote precision agriculture and increased mechanization
could help enhance efficiency, though the extent of their impact on
long-term carbon reduction requires further investigation.

4.1.2 Structural Factor
The impact of the agricultural production structure factor varied

across the years, with alternating positive and negative
contributions. This variation suggests that shifts in agricultural
structure may have different effects on ALUCE depending on the
context and specific changes made. For example, the structural
factor had its highest positive contribution in 2014, while
2018 and 2020 showed notable negative contributions, possibly
reflecting changes in the composition of high-emission
agricultural sectors. Although the overall contribution rate of the
structural factor was generally below 15%, its fluctuations indicate
that structural adjustments in agriculture could be linked to changes
in carbon emissions. Policymakers may benefit from exploring

FIGURE 10
Spatial dynamic contours of ALUCE in each region.
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strategies that support low-carbon agricultural practices, such as
organic farming and sustainable cropping systems, while further
analyzing the specific effects of different sectors on ALUCE.

4.1.3 Output Factor
The output factor consistently showed a positive contribution,

indicating a strong association between increased agricultural
output and rising ALUCE. The significant contributions in
2016 and 2020 align with periods of notable agricultural
expansion. However, this expansion is often accompanied by
increased use of high-carbon inputs, such as fertilizers and
machinery, which are associated with elevated carbon emissions.
This finding highlights the potential need for stricter measures to
encourage energy-saving and emission-reduction practices,
including the adoption of energy-efficient machinery and eco-
friendly fertilizers. Future policy efforts should aim to balance
agricultural output growth with strategies that reduce carbon
intensity, though additional research is necessary to clarify the
relationship between output increases and carbon emissions.

4.1.4 Scale Factor
The agricultural labor scale consistently contributed positively

to ALUCE, suggesting a significant association between labor scale
and carbon emissions in certain years. The peak contributions
observed in 2017 and 2020 may reflect an expansion of the
agricultural labor force during these periods. However, as
mechanization and modern agricultural technologies have
advanced, the contribution of the labor scale has gradually
diminished, indicating a potential shift away from labor-intensive
farming. This trend suggests that future policy initiatives could

prioritize the promotion of mechanized agriculture, especially in
regions that still rely heavily on manual labor. Reducing dependence
on human labor while increasing the use of technology may help
lower carbon emissions, although the specific impact of these
changes warrants further examination.

4.2 Analysis of flux diameters

This research uses ridge regression analysis to enhance
parameter estimation stability and address correlations between
factors like production efficiency, industrial structure, output
level, and labor scale. By applying ridge regression, a model was
established to analyze the influence of these factors on ALUCE.
Ridge trace plots and coefficient of determination (RSQ) charts for
each factor, shown in Figure 12, were calculated based on
Equation 19 using SPSS26.

The regression equation was fitted using SPSS26, with the ridge
coefficient K selected at 0.05 after analysis of the ridge trace curve
(Table 7). The goodness-of-fit for the equation was above 89%, and
each driving factor passed the significance test at the 10% level,
confirming the strong relationship between the factors and ALUCE.
Validation through an independent sample T-test showed a P-value
of 0.951, indicating a good fit between the predicted and actual
values of ALUCE, suggesting that the model is suitable for further
analysis of ALUCE’s driving factors.

Although the STIRPAT model successfully reveals the impact of
variables such as population, affluence, and technology on ALUCE,
it has certain limitations in predicting how changes in future socio-
economic indicators (such as a decrease in the number of farmers,

FIGURE 11
Contribution values and contribution rates of each driving factor in ALUCE.
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the expansion of agricultural management scale, and the
improvement of agricultural economic development) will affect
carbon emissions. The STIRPAT model primarily captures
current or historical relationships but does not account for long-
term structural changes or feedback effects brought about by
agricultural practices, technological innovations, or economic
transformations. To overcome these limitations, future research
could combine the STIRPAT model with dynamic models or
scenario simulation methods to predict the long-term impact of
these changes on carbon emissions. For example, integrating system
dynamics models or agent-based models could better simulate the
process of future socio-economic and agricultural transformations,
thereby improving the accuracy of carbon emissions forecasts and
providing stronger support for the formulation of carbon
neutrality policies.

To analyze the impact of various driving factors on ALUCE, path
analysis based on the STIRPAT model is used to decompose the
correlation coefficients, measuring the total, direct, and indirect effects
of production efficiency, industrial structure, output level, and labor
scale on ALUCE. The total effect represents the correlation between

each driving factor and ALUCE, the direct effect is shown by the
standardized regression coefficients, and the total indirect effect is
calculated by summing the products of the direct and indirect effects.
Specific results are presented in Table 8, calculated using SPSS26.
Since the STIRPAT model accommodates partial errors, a small
residual impact is considered reasonable.

The path analysis in this research indicates that lnβ2 plays a
significant role in influencing ALUCE, with a total effect of 0.442, the
highest among all factors. The agricultural production structure not
only exerts a direct effect (0.173) on carbon emissions but also
amplifies the emission reduction effects of lnβ1 and lnβ4 through
positive indirect effects (0.055 and 0.064, respectively). However,
lnβ2 shows a negative indirect effect (−0.092) through lnβ3,
suggesting that in the absence of structural adjustments, an
increase in output level could lead to higher carbon emissions.
Thus, the agricultural production structure functions as a
bidirectional transmission mechanism at the systemic level,
enhancing production efficiency while controlling the negative
impact of output levels on carbon emissions. This finding
underscores the systemic importance of optimizing the

FIGURE 12
Ridge plot of drivers of ALUCE and changes in the coefficient of determination.

TABLE 7 Ridge regression fitting results for factors influencing ALUCE.

Variant ln β1 ln β2 ln β3 ln β4 R2 F Test

coefficient 0.075*** 0.442* −0.043*** 0.084* 0.87 67.28

standard error (0.017) (0.173) (0.007) (0.018)

Note: ***, **, * denote significance at the 1 per cent, 5 per cent and 10 per cent levels, respectively.

TABLE 8 Results of path analysis for factors influencing ALUCE.

Variant Overall impact Direct impact Indirect impact Indirect impact Residual impact

ln β1 ln β2 ln β3 ln β4

ln β1 0.075 0.017 - 0.006 −0.017 0.017 0.006 0.052

ln β2 0.442 0.173 0.055 - −0.092 0.064 0.027 0.241

ln β3 −0.043 0.007 −0.007 −0.004 - −0.007 −0.017 −0.033

ln β4 0.084 0.018 0.018 0.007 −0.018 - 0.007 0.059
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agricultural production structure to achieve more effective carbon
reduction, an area that policymakers should prioritize.

lnβ1 has a total effect of 0.075 on ALUCE, with a direct effect of
only 0.017, indicating its limited direct influence on carbon
emissions. Notably, the impact of production efficiency is largely
realized through the agricultural production structure, as evidenced
by its indirect effect (0.006) and transmission through labor scale
(0.017). Therefore, policies aimed at improving production
efficiency must also focus on optimizing the agricultural
production structure to maximize the indirect emission reduction
effects. Specific policy measures should include promoting precision
agriculture and energy-efficient machinery. These can improve
production efficiency and reduce reliance on high-carbon inputs,
leading to greater carbon reduction.

Conversely, lnβ3 shows a negative total effect on ALUCE
(−0.043), with both its direct and indirect effects being negative
(0.007 and −0.017, respectively). This indicates that, in the absence
of structural adjustments, increasing output levels will likely lead to
higher carbon emissions. While improving output is critical for
meeting agricultural demand, policymakers must ensure that output
growth is accompanied by structural adjustments to mitigate its
negative impact on carbon emissions.

Based on the results of the path analysis in this study, the
interactions between driving factors play a crucial role in influencing
ALUCE, particularly the complex relationships between efficiency
improvements, structural adjustments, labor scale, and output levels.

While agricultural production efficiency (lnβ1) and agricultural
production structure (lnβ2) are key drivers of emission
reductions, their interactions with other factors, such as labor
scale and output levels, have not been fully explored. Improving
production efficiency can indirectly reduce carbon emissions by
optimizing the agricultural production structure, but this process is
not unidirectional. Without corresponding structural adjustments,
efficiency improvements may lead to overutilization of resources or
high-carbon inputs, potentially offsetting the reduction effect.
Therefore, efficiency enhancement and structural adjustment
must evolve in coordination, and interventions focusing on a
single factor may be ineffective. Furthermore, there are potential
feedback effects between labor scale (lnβ4) and output level (lnβ3).
Increasing agricultural output often leads to greater labor input,
thereby raising carbon emissions, particularly in labor-intensive
agricultural sectors. To achieve carbon neutrality, policies should
encourage appropriate adjustments in labor scale, reduce reliance on
traditional labor, and promote agricultural mechanization and
smart technologies to enhance production efficiency and lower
carbon emissions. Therefore, policies should integrate both
efficiency improvements and production structure optimization,
reduce high-carbon inputs, and promote sustainable agriculture.
At the same time, when increasing output levels, adjusting labor
scale to reduce reliance on manual labor will help achieve carbon
emission reductions. Lastly, policies should support the green
transformation of the agricultural supply chain, encourage the

FIGURE 13
The innovative environmental organizational framework for ALUCE emission reduction.
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application of low-carbon technologies, and promote a coordinated
low-carbon transition across sectors. By comprehensively
considering the interactions of these factors, policymakers can
develop more precise and effective low-carbon transition
pathways, thereby advancing the achievement of carbon
neutrality in the agricultural sector.

4.3 Drivers organizational framework

Based on the empirical results, an innovative environmental
organizational framework for reducing ALUCE in China is
constructed according to the γ-multiple helix model (Xue and
Gao, 2022), comprising the main layer, the behavioral layer, the
functional layer, and the objective layer, as depicted in Figure 13.

The ground level plays a crucial role in reducing ALUCE,
involving collaboration among various institutions and
organizations. Universities and colleges contribute by conducting
research, providing technical support, and training personnel, thus
offering scientific foundations and human resources for ALUCE
reduction. Research institutes focus on developing and promoting
low-carbon agricultural technologies and methods. Agricultural
research and development institutions tailor emission reduction
strategies to local conditions, offering feasible solutions for
farmers. Agribusinesses lead in implementing advanced
technologies and management practices to enhance production
efficiency and reduce carbon emissions, while also promoting
greener agricultural products. Governments play a pivotal role in
policy formulation, financial support, and overseeing the
effectiveness of emission reduction measures. Social
organizations, including NGOs and community groups, advocate,
educate, and raise awareness, mobilizing public participation in
emission reduction efforts. Together, these actors form a
collaborative network that drives effective ALUCE reduction and
promotes sustainable agricultural development.

The behavioral level integrates strategies to enhance agricultural
efficiency and reduce carbon emissions, supporting sustainable
agriculture. Key actions include optimizing cropping patterns,
improving soil quality, and reducing the use of fertilizers and
pesticides; enhancing productivity through high-efficiency crop
varieties and modern technologies; adjusting the agricultural
production structure to optimize resource use; developing the
agricultural labor force with education and training; and
promoting technological innovation, such as precision agriculture
and water-saving irrigation systems. These measures collectively
foster sustainable agricultural development.

The functional level includes key components: policy guidance,
agricultural technology innovation, education and training, resource
optimization, and agricultural product competitiveness
enhancement. These layers aim to create a supportive policy
environment, develop and promote environmentally efficient
technologies, enhance farmers’ skills, optimize resources like
water and soil, and improve market competitiveness through
better product quality and marketing strategies. Together, they
form a comprehensive framework for reducing ALUCE and
promoting sustainability.

The target level focuses on three core objectives: (1) promoting
green agricultural ecosystems through organic farming and eco-

friendly methods to reduce carbon emissions; (2) increasing farmers’
income by improving efficiency and adopting low-carbon
technologies, while reducing the carbon footprint; and (3)
fostering sustainable agricultural development through R&D
investment, policy support, and a conducive business
environment. This framework emphasizes both immediate
improvements and long-term sustainability through economic,
ecological, and social dimensions.

5 Conclusions and implications

Based on the empirical analysis, this research draws the
following conclusions: (1) Significant regional disparities in
ALUCE are observed across Chinese provinces. Central provinces
like Henan exhibit the highest emissions, primarily due to the scale
of agricultural activities, rather than technological advancements.
This suggests that policy interventions should focus not only on
technological improvements but also on controlling the expansion
of intensive farming practices. Western provinces, such as Qinghai,
report lower emissions due to traditional farming methods.
However, these methods are still susceptible to rising emissions
as farming areas expand. Economically developed eastern regions,
including Shandong and Jiangsu, show high ALUCE due to
resource-intensive agricultural practices. The increase in
emissions in these regions is not just driven by economic growth
but also by the lack of sustainable practices in large-scale production.
Lastly, southwestern provinces like Guizhou and Sichuan have lower
emissions, which is largely due to slower agricultural modernization
and lower industrialization levels, rather than purely traditional
practices. (2) The inequality in ALUCE across regions remains
relatively stable over time, with minor fluctuations observed. This
aligns with Ke et al. (2022), who noted persistent regional disparities
in agricultural emissions. While both intra-provincial and inter-
provincial disparities contribute, inter-provincial differences are the
main driver. Our research highlights that socio-economic factors,
such as industrialization and rural-urban migration, also play a
significant role in shaping these disparities. This emphasizes the
need for region-specific policies that align agricultural practices with
broader socio-economic development goals. (3) Improvements in
agricultural production efficiency significantly reduce ALUCE.
However, our research finds that efficiency improvements alone
are not enough to reduce emissions at the regional level without
structural changes in agricultural practices. Technological advances
can reduce emissions, but their impact is often overshadowed by
factors like the use of high-carbon inputs and large-scale
monoculture. Some structural changes, such as shifting to more
resource-intensive crops, can even increase emissions. (4) Path
analysis demonstrates that the agricultural production structure
serves as a key intermediary, enhancing the positive effects of
increased efficiency while mitigating the negative impacts of
higher output levels. We highlight the need to integrate
environmental sustainability, particularly in high-emission sectors
like livestock farming and industrialized crop production. This
contrasts with Delandmeter et al. (2024), who focused on
optimizing crop production techniques. Our findings suggest that
sustainable practices in livestock and crop rotation are equally
important, indicating a broader scope for policy interventions.
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Additionally, understanding farmers’ adoption of low-carbon
practices, influenced by socio-economic factors such as income,
technology access, and government policies, is essential for
achieving carbon neutrality.

This research provides several key policy implications for
reducing ALUCE in developing countries. (1) Region-specific
strategies. Governments should implement targeted policies based
on regional differences in ALUCE. In high-ALUCE regions, the
focus should be on precision agriculture and identifying emission
hotspots, while in lower-ALUCE areas, efforts should prioritize
capacity-building, such as training local farmers and promoting
sustainable agricultural practices. The EU’s emphasis on sustainable
landmanagement and conservation tillage offers valuable lessons for
addressing high-carbon practices in regions with intensive
agriculture. (2) Technology transfer. Governments should
prioritize the transfer of sustainable agricultural technologies
through the establishment of technology centers and research
partnerships. This will enhance agricultural efficiency and
emissions management tailored to local conditions. Learning
from the EU’s Common Agricultural Policy (CAP), which
supports technological innovation and sustainable practices
across member states, China and other developing countries can
facilitate knowledge-sharing and capacity-building in agriculture.
(3) Sustainable agricultural practices. It is essential to optimize the
use of high-carbon inputs like fertilizers and fossil fuels by
promoting efficient fertilizer use, adopting biodegradable
mulches, and investing in energy-efficient machinery. These
practices, commonly promoted by the EU’s green agricultural
policies, can reduce emissions while improving productivity.
Implementing similar measures, such as eco-friendly fertilization
strategies and integrated pest management, would enhance China’s
low-carbon transition. (4) Addressing regional inequalities. Policies
should aim to reduce intra- and inter-regional ALUCE disparities by
improving access to resources, technology, and markets, particularly
in marginalized areas. Financial incentives, along with improved
access to land and water, will encourage the adoption of sustainable
practices and help balance regional inequalities. Drawing from the
EU’s experience, policies that provide financial support and
technical assistance to underdeveloped regions can accelerate the
adoption of sustainable agricultural technologies, thus reducing the
carbon footprint of agriculture in these areas.

This study contributes to understanding Agricultural Land Use
Carbon Emissions (ALUCE) by using the LMDI and STIRPAT
models to analyze driving factors and spatio-temporal evolution. It
offers theoretical support for policymakers by identifying key areas
for carbon reduction and emphasizing the impact of regional
disparities. The analysis of ALUCE changes across provinces
provides data-driven insights for developing targeted emission
reduction policies, highlighting the importance of optimizing
agricultural production structures and improving efficiency.
However, the study has limitations. Firstly, while the dataset
covers 2013–2022, it may not capture long-term trends, and
recent agricultural practices and policy changes might not be
fully reflected. The use of provincial-level data provides a
national overview but overlooks micro-level differences,
suggesting that future research should use city or county-level
data for more precision. Secondly, the LMDI and STIRPAT

models, while effective in decomposing driving factors,
oversimplify the complexity of agricultural systems. Future
studies should consider dynamic systems models to explore
long-term effects of agricultural transformation and
technological innovations. Thirdly, indirect effects such as
changes in market demand and international trade were not
fully addressed in this study, and future research should explore
these to provide more comprehensive policy recommendations.
Finally, while focused on China, expanding this research to other
developing countries or regions with similar agricultural practices
could validate the findings and offer insights into socio-economic
and environmental contexts. Future work could also explore
scenario-based modeling to predict long-term ALUCE trends
under different conditions, providing more systematic solutions
for achieving carbon neutrality.
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Appendix 1

Term Definition

LMDI Logarithmic Mean Divisia Index, a decomposition method used to analyze changes in carbon emissions by quantifying the contribution of
different factors

STIRPAT Model A stochastic regression model extending the IPAT identity, used to examine the influence of population, affluence, and technology on
environmental impacts

Dagum’s Gini Coefficient An advanced Gini coefficient that decomposes inequality into within-group and between-group components, enhancing the analysis of
regional disparities
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