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Introduction: Decision-makers around the world are very concerned about
contaminated soil since it has a direct effect on soil and food security. This study
seeks to evaluate soil contamination by a chosen heavy metal, Ni, Mn, Co, Cu,
Cd, Pb, Fe, and Zn in the studied area located around the Kitchener drain in
Egypt, its main source for irrigation water in the studied area and it extends
69 km and pass through Gharbia, Kafr El-Sheikh and Dakahlia Governorates,
Egypt near).

Methodology: Principal component analysis (PCA), cluster analysis,
contamination factor (CF) and degree of contamination (DC) indices, which
Quantified the level of contamination hazard supported by GIS, were used to
determine the level of soil contamination in the area under study.

Results: The spatial pattern of studied variables by kriging shows that The K-Bessel
model is fitted for electrical conductivity (EC), Ni, and Cu, the exponential model is
well-suited for pH, CaCO3%, and Fe in the soil, and the circular model fit for Mn.
Stable model for silt, furthermore, a Gaussianmodel was fitted for Sand, Clay, and
Cd and the hole Effectmodel for Co. As thesemodels had lowMean Standardized
Error (MSE) values (around zero) and Root-Mean-Square Standardized Error
(RMSSE) values that were close to one. It indicates that the modals’ forecasts
are roughly as precise as the baseline. The study areawas divided into three zones
based on the unconventional results of the integration of PCA and cluster
analysis; each zone has a different heavy metal concentration and pattern.
The results showed, that 0.82% of the studied area, the pollution was at a
moderate level. Very high levels of heavy metal contamination were found
throughout most of the area (79.24%); average concentrations of these metals
were found to be 132.2+/-31.8,672.6 ± 125.4, 8.9 ± 5.1,103.8 ± 44.4, 25.5 ±
3.5,30.6 ± 10.3,223,021.4 ± 40484, and 246.5 ± 248.7 mg kg−1 for Ni, Mn, Co, Cu,
Cd, Pb, Fe, and Zn, respectively. On the other hand, 19.92% of the studied area is
contaminated considerably. There are various sources of contamination; such as
household goods and industrial trash, including those from the textile, paint,
sewage, and leather tanning industries; agricultural wastes, particularly those that
contain pesticides and superphosphate fertilisers; and sewage sludge.
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Conclusion: Overall mapping soil contamination could help decision-makers
create suitable heavy metal mitigation strategies. To lessen human harmful
behaviors that create environmental contamination, the study suggests enacting
farm management legislation. Future research will also concentrate on strategies
for controlling and lessening the consequences of soil pollution.

KEYWORDS

anthropogenic activates, soil pollution, middle Nile delta, PCA, cluster,
contamination indices

1 Introduction

Ecological ecosystems depend potentially on the soil for their
existence and proper functioning (Hu et al., 2013; Dogra et al., 2020).
But industrialization, widespread use of pesticides and fertilizers,
and fast urbanization all contribute to soil health reduction (Kumar
et al., 2019a; Kumar et al., 2019b; Dogra et al., 2020). Through
surface precipitation, ion exchange, and surface complexation, soil
serves as a storage tank for heavy metals (Yong et al., 1992). Since
elements are persistently harmful when thresholds are crossed and
become one of the main environmental issues, they have drawn
particular attention among pollutants. These element ions persist in
the environment and are not biodegradable (Wang and Chen, 2009).
As a result, the ecological problem of sediments and elemental soil
pollution has drawn more attention in recent decades from both
developed and developing nations worldwide (Zhang et al., 2007).
Worldwide, agricultural soil pollution by heavy metals is a serious
concern. Heavy metals can enter crops through the roots and cause
biomagnification in the various plant tissues, including the roots,
stems, and leaves. These metals enter the systems of animals and
humans from plants (Bhatti, et al., 2018).There are 5 million
locations worldwide where heavy metals or metalloids have
contaminated soil at concentrations higher than acceptable
thresholds (Li et al., 2019). Increasing levels of soil
contamination soils have reduced soil fertility and quality in the
last 2 decades (Baroudy et al., 2020). The middle Nile Delta is limited
by two main branches: the Damietta branch (240 km long) and the
Rosetta branch (235 km long). The Nile Delta region is the most
crowded area of the country, and it is home to around 40% of the
country’s industrial output (Stanley and Warne, 1998; Negm et al.,
2017). The main drainage water pump stations in the middle Nile
Delta are Nashart drain, Gharbia drain, Drain No. l, Tala drain,
Sabal drain, Drain No. l1, Drain no.7, and Bahr Tira drain. The main
purpose of the Kitchener drain, also called the Gharbia drain, was to
gather and move water from surface and underground drains in
agricultural environments. Agriculture provides almost 75% of the
water in the Kitchener drain, contaminating both the drain and its
branches (Khalifa et al., 2017). Along with agricultural wastewater,
the Kitchener drain also consumed municipal wastewater from
nearby cities and villages (2%), as well as industrial wastewater
(23%), which is released from industrial cities.

The health of the soil in the Nile Delta region of Egypt is
declining due to the growing number of enterprises and their
emissions, urbanization, increased congestion, and the utilization
of sewage and waste sediments (Khatita, 2011). Although the Nile
Delta covers only 20,000 km2, it accounts for 46% of Egypt’s total
agricultural area, which is 55,040 km2 (Fanos, 2001; Zeydan, 2005).

Because of the ideal soil quality and the presence of irrigation
infrastructure, 63% of the Nile Delta is devoted to agriculture
(Dawoud, 2004). Wastewater is necessary for irrigation
operations in the Nile Delta. To irrigate the studied region,
agricultural and industrial drainage effluent from the El Gharbia
main drain (Kitchenr), Egypt, was combined with Nile water.
Nonetheless, a variety of crops used for food, feed, and
fodder—referred to as hyperaccumulators—are capable of
absorbing excess heavy metals and translocation them in their
aerial portions and have a high resilience to metal stress
(Abuzaid et al., 2019; Chen et al., 2022). As a result, there are
serious health dangers when metals that have accumulated in soils
are concentrated in animal and human organs via the food chain
(Song et al., 2022). Therefore, it is imperative to conduct a thorough
evaluation of soil pollution to create an effective remediation plan
and mitigate adverse effects (Yang et al., 2020) Analyzing the spatial
distribution of potentially toxic metals concentration is the starting
point for enhancing the assessment of soil pollution (Hammam
et al., 2022). Geostatistical analysis is a method for analyzing spatial
data and then forecasting the location of unsampled data (Hammam
et al., 2022). One method for evaluating geographical data and then
estimating the site from the uncollected data is geostatistical
analysis. Numerous geostatistical analysis methods, like Inverse
Distance Weighting (IDW) and Kriging. High precision can be
achieved in calculating the unsampled values using the Kriging
semivariogrammodels. Their computation relies on determining the
distances between samples. The models compute the correlations
between the elements and the data parameter’s range, nugget, and
sill values (Webster and Oliver, 2007). In research about the
evaluation of natural resources, the PCA has also been utilized as
a multi-indicator weighting approach (Andrews et al., 2002;
Sutadian et al., 2017; Abuzaid and Jahin, 2022). One of the
primary restrictions, nevertheless, is the number of instances
examined, as the PCA necessitates at least 150–300 cases (Jahin
et al., 2020; Abuzaid and Jahin, 2022). The Analytical Hierarchal
Process (AHP) is the right method for employing fewer cases
(Sutadian et al., 2017). The AHP is a theory of measurement that
assigns a priority number on a scale of 1–9 through pairwise
comparisons (Saaty, 2008). As a result, as noted for the Tigris
Basin (Budak et al., 2018), using PCA to reduce data complexity
in conjunction with the AHP weighting procedure can result in a
better evaluation. Soil ecological risk is estimated using the index
approach, quotient technique, fuzzy comprehensive assessment,
geo-accumulation index, prospective ecological risk index, and
pollutant load index (Ma, 2021). Analysis of principal
components, or PCA, has further been applied to identify several
reasons behind soil pollution, such as agricultural and industrial
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operations, as well as the proportion of heavy metals leading to soil
contamination (Yang et al., 2017; Yang et al., 2020; El Behairy et al.,
2022b; Shokr et al., 2022). The spatial distribution maps of heavy
metals were successfully predicted by using semivariogram models.
Additionally, the combination of PCA, HCA, and contamination
indices produced unconventional results in the classification of the
various studied areas in Egypt (near the northwest Nile Delta, Kafr
EL Zayat, and the El-Moheet drainage) into zones, each of which has
a different heavy metal concentration and pattern (El Behairy et al.,
2022b; Hammam et al., 2022; Shokr et al., 2022). Moreover,
numerous other researches employed a variety of soil
contamination indices, namely the degree of contamination and
contamination factors. (Elgharably et al., 2014; Kumar et al., 2019c;
Abo Shelbaya et al., 2021; Alzahrani et al., 2024).

The objective of the current work is to determine heavy metal
(Ni, Mn, Co, Cu, Cd, Pb, Fe, and Zn) of soil through spatial
mapping, defining the degrees of contamination using PCA, and
estimating the degree of contamination around Kitchener drain
which is the largest drainage systems in the Nile delta, Egypt.

2 Materials and methods

2.1 Description of the research area

The research area is occupied in the Governorate of Kafr El-
Sheikh around Kitchener drain with an area of 562.45 km2

(56,245 ha). The Gharbia Main drain (Kitchener drain) is one of
the largest drainage systems in the Nile Delta which is located in the
central part of Middle Nile Delta. It extends about 69 km2 starting at
El-Gharbia governorate and stretches northward through Kafr El-
Sheikh Governorate to the Mediterranean Sea. Kitchener drain
extends 60.4 km2 through the research area, The region is
positioned between 31° 0′1.376″to 31° 13′44″.618 E Longitude
and 31° 4′47.090″to 31° 35′30″.654 N Latitude (Figure 1),
Wastewater from three main sources pollutes the Kitchener
Drain: (i) untreated or insufficiently treated domestic wastewater
from several villages in the two governorates; (ii) wastewater
discharged by an industrial facility; and (iii) wastewater from an
agricultural drainage system that includes pesticides and fertilizers
(El-Amier et al., 2023). The terrain is mostly flat to nearly flat, with
elevations ranging between 0 and 5 m higher than sea level in the
northern region. The entire research area was covered with
Quaternary sediments, which are often composed of alluvium
deposits (Aridisol and Entisol) that were created by the Nile
River’s sedimentation processes as a result of frequent floods over
geologic time. The current alluvium deposits in the Nile Delta were
formed from the hard rocks of the Ethiopian Highlands by a variety
of weathering processes, including physical, chemical, and biological
ones (Elbasiouny et al., 2019; Gad et al., 2019). Typically categorized
as silty clay and clayey soil, the Nile Delta is characterized by
moderately alkaline deposits that are rich in clay, and silt
(Khalifa et al., 2018; Elbasiouny et al., 2019; Gad et al., 2019).
The research area has hot, dry summers, warm winters, and little
rainfall, all of which are characteristics of the typical Mediterranean
climate (arid to semi-arid). The average temperature throughout the
dry season is 22°C, with mean temperature ranging from 24°C to
31°C. The average temperature difference between summer and

winter is 6°C (Climatologically Normal for Egypt, 2011). According
to USDA (Soil Survey Staff, 2022), the investigated area’s soil
temperature regime is classified as Thermic, and its soil moisture
regime is Torric. The average annual rate of demographic growth in
the Nile Delta is 21,600. Important features and prominent Land use
and land cover include the coastal plain, urban and industrial
commercial areas, and some sand dunes in the coastal parts.

2.2 Soil survey and human activities
identifications

Conducting field studies and engaging with farmers through
inquiries, we gathered information to discern prevalent crop
patterns as well as the irrigation water supply in the research area.
Predominant crops in the studied area include wheat, alfalfa, and sugar
beets in the winter season; on the other hand, rice cotton and corn are
the main strategic crops in the summer season. Agricultural activities
primarily rely on irrigation from the Kitchener Drain and its branching
waterways, as well as secondary freshwater canals. It is noteworthy that
Egyptian farmers typically depend on personal experience to
determine the amounts of chemical and organic fertilizers, often
disregarding recommendations from relevant authorities. The

FIGURE 1
Location map and spatial distribution of soil samples within the
study area.
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agricultural system in the study area employs surface irrigation,
utilizing both fresh water and wastewater. Owing to a shortage of
fresh water, some farmers resort to using low-quality water for
irrigation directly from the Kitchener Drain or through mixing.
Twenty-seven soil samples from the surface were obtained near the
Kitchener Drain for the evaluation of soil pollution levels. The
geocoordinates of each location were accurately recorded using A
hand-held GPS (Germin e-Trix, Nevada, KS, United States) (Figure 2).

2.3 Laboratory analysis

Twenty-seven random soil locations were taken with a plastic
hand trowel adjacent Kitchener Drain (Figure 1). Three replicates
weighing roughly 1 kg each were collected from each site, combined
into a single composite sample, stored in plastic bags, and brought to
the lab. The samples were air-dried, ground down to pass through a
2-mm sieve, and stored afterward in plastic bags around 4°C until
further analyses. The Bouyoucos hydrometer method, as outlined by
Gee et al. (1986), was employed to ascertain the particle size

distribution. Soil pH was measured in a 1:2.5 soil-to-water
suspension using a pH meter (Jenway, United States). For soil
electrical conductivity (ECe), measurements were conducted on
soil paste extracts utilizing an EC meter (Jenway, United States).
The total forms of heavy metals (As, Cd, Cr, Fe, Pb, and Zn) were
extracted using USEPA technique 3,052: microwave-assisted acid
digestion utilizing concentrated HNO3, HF, and HCl, as
recommended by the (Schumacher, 2002).In a 100-mL Teflon
microwave digestion vessel, a 0.50 g soil sample was combined
with 5.0 mL HNO3 (16 M), 2 mL HCl (12 M), and 1 mL HF (29 M).
The vessels were then placed in a microwave digestion system
(Mars-X, HP-500 plus, CEM Corporation) and heated to 180°C
until digestion was complete. After allowing the digests to cool, they
were put into 50 mL volumetric flasks, filled with deionized water,
and stored until analysis. Inductively coupled plasma mass
spectrometry (Thermo ICP-MS model.

iCAP-RQ, United States) was used to determine the elements.
Limits of quantification (LOQs), limits of detection (LODs), and
linearity were all evaluated for the ICP-MS instrument at NARSS.
Each metal’s correlation coefficient (R2) between concentrations and

FIGURE 2
(Continued).
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the detector signal was determined through linear regression analysis.
Supplementary Table S1 displays each element’s LOQs and LODs.
NARSS Laboratory employed a standard analytical batch that included
Certified Reference Material (CRM) to ensure data accuracy before
release and a reagent blank to measure the background.

2.4 Evaluation of soil contaminant

The contamination factor (CF) of each of the heavymetals under
study was determined by dividing the total concentration of each
measured heavy metal by the background value, which is the

FIGURE 2
(Continued).
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chemical composition of the upper continental crust, by Taylor and
McLennan (1995) (Equation 1).

CF � Cm

Cb
(1)

Where:

Cm = measured total concentration of heavy metal
Cb = Each metal’s backgrounds value

FIGURE 2
(Continued).
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Hakanson’s classification scheme (Hakanson, 1980), was
employed to categorize CF into four levels Supplementary Table
S2. Additionally, the Degree of Contamination (DC), as defined by
Hakanson, was calculated as the sum of CF for each sample

(Equation 2). The levels of contamination were then categorized
based on the calculated DC values (Supplementary Table S3).

DC � ∑
i�n
i�1CF (2)

FIGURE 2
(Continued). Studied variables interpolationmaps. (A) pH, (B) EC (dSm−1), (C) sand (%), (D) silt (%), (E) clay (%), (F)CaCO3%, (G)Ni (mg kg−1), (H)Mn (mg
kg−1), (I) Co (mg kg−1), (J) Cd (mg kg−1), (K) Cu (mg kg−1), (L) Pb (mg kg−1), (M) Fe (mg kg−1),and (N) Zn (mg kg−1).
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Where:
n is the number of elements analyzed, and i is ith element

2.5 Mapping of land use and land
cover (LULC)

Land use and Land cover (LULC) discrimination and
recognition is a very important application of Remote Sensing. In
the last few years, Machine learning classification techniques have
been emerging for crop classification. Google Earth Engine (GEE) is
a cloud-based platform to explore multiple satellite data with
different advanced classification techniques (Xu et al., 2018; Neetu
et al., 2019; Clemente et al., 2020; Xue et al., 2023) Clemente et al.,
2020, Xue et al., 2023). Random Forest (RF) technique and High-
Resolution optical data, Sentinel-2, (10 m) were used for crop
classification (Akbari et al., 2020; Tariq et al., 2023) 2,200 ground
truth data were collected to establish the model’s accuracy, 70% of
these points were allocated for model calibration, allowing for the fine-
tuning of parameters and features. The remaining 30%were reserved for
model validation; the calibration-validation split enhances the model’s
reliability, ensuring that it can accurately generalize its findings beyond
the calibration dataset. Thismethodology contributes to amore accurate
and dependable discrimination of crop patterns, valuable for agricultural
monitoring, planning, and management.

2.6 Mapping soil properties and
heavy metals

Utilizing the Kriging interpolation method on ArcGIS software
10.8, we conducted spatial distribution mapping of various soil
parameters, including ECe, pH, and chosen heavy metals (Ni, Mn,
Co, Cu, Cd, Pb, Fe, and Zn). The Kriging spatial interpolation
technique, as outlined by Isaaks and Srivastava (1989) was employed
as part of geostatistical analyses. To predict the unmeasured values
of soil heavy metals, we selected an appropriate model from the
semivariogram models, considering their accuracy. Model strength
was assessed using three parameters: nugget, sill, and range, by the
approach outlined by Cambardella et al. (1994). The precision of
diverse models was assessed by considering mean standardized error
(MSE), and root-mean-square standardized error (RMSSE),
following the methodology outlined by Johnston et al. (2001). In
this evaluation, the models were deemed more accurate when MSE
values approached zero and RMSSE values were closer to one, and
conversely, less accurate when MSE deviated from zero and RMSSE
diverged from one (Gundogdu and Guney, 2007).

2.7 Statistical process and principal
components analysis

Statistical analyses throughout this study were performed using
the 2021 version of the XLSTAT add-in for Excel, ensuring accuracy
and reliability. Principal Component Analysis (PCA) proves
advantageous in simplifying the dataset into principal components,
or factors, thereby simplifying the interpretation of variance
differences among various variables. For PCA implementation,T
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XLSTAT v2021 was utilized to reduce the chosen variables in the
current research to a new dimension with the application of
orthogonal transformation, effectively capturing the majority of the
variance. PCA produces several Principal Components (PCs) equal to
the number of variables, and the selection of PCs is determined by
eigenvalues (Massart et al., 1998). The resulting PCs provide
estimations of relationships, which are assessed through factor
loading. To delve into the behavior, origins, and sources of heavy
metals, Hierarchical Cluster Analysis (HCA) was employed. This
analysis aids in comprehending the correlations existing between
different heavy metals (Abdel-Fattah et al., 2021).

3 Results and discussion

3.1 Soil characteristics and heavy metal
content in the study area

The soil texture in the study region consists of clay, silty clay, and
sand (Table 1; Figure 2. Quantitative data on soil pH, and EC, are

provided in Table 1; Figure 3. Soil pH ranged between 8.01 and
9.00 with an average of 8.12 ± 0.14. A pH of more than 7 indicates
that the soil is strongly alkaline, and high quantities of alkali (Na+

and K+) and alkaline-earth cations (Ca2+ and Mg2+) dominate,
(Brady et al., 2008). Since alkaline soils make up more than 25%
of the world’s land, they are frequently found in semiarid and arid
locations. According to López-Bucio et al. (2000), these soils
typically feature significant amounts of calcium carbonate, good
drainage, and porosity. High quantities of dissolved calcium in the
soil solution of alkaline soils cause the development of insoluble
calcium phosphate compounds, which decrease the solubility of
phosphorus (Robinson and Syers, 1991; López-Bucio et al., 2000).
Soil electrical conductivity (ECe) varied from 0.75 to 11.45dSm−1,
with an average of 4.66 ± 3.50 dS/m. Although many crops show
yield losses at lower ECe, most crops show a reduced production rate
at 4 dS m−1 ECe (Shrivastava and Kumar, 2015). An estimated 33%
of irrigated fields and 20% of all farmed land worldwide have been
affected by high salinity (Negacz et al., 2022). Furthermore, several
variables, such as inadequate precipitation, high surface evaporation
along with irrigation using saltwater, and subpar cultivation
methods, can be blamed for the 10% annual expansion of
salinized fields (Nachshon, 2018). Forecasts indicate that by 2050,
the percentage of arable land worldwide affected by salinization is
expected to exceed 50% (Butcher et al., 2016),. This is consistent with
the Nile Delta’s overall pattern, where the majority of the soil is
distinguished by high soil salinity (Abdel-Fattah et al., 2020;
Hammam et al., 2020; El Behairy et al., 2022a; Shokr et al.,
2022). CaCO3% ranged from 0.1% to 2.20%.

Descriptive statistics for the total concentrations of the studied
Ni, Mn, Cu, Zn, Pb, Cd, Co, and Fe are detailed in Table 1. The Ni
total concentration ranged between 36.31 and 201.47 with a mean of
112.43 ± 43.68 mg kg−1. Mn concentration varied from 424.20 to
1,002.94 with an average of 697.53 ± 138.46 mg kg−1. The range of
total Cu concentration was between 18.91 and 217.78 with an
average of 87.15 ± 47.69 mg kg−1. The total content of Zn has an
average value of 207.40 ± 216.76 mg kg−1. Cur is essential for plant
nutrition; however, high concentrations can decrease plant
productivity. According to Forstiner and Wittman (1983),
Alloway (2012), Zn is a heavy metal that is necessary for life. It
functions biologically as a structural or catalytic component of
several enzymes involved in energy metabolism, transcription,
and translation. While some natural processes contribute to the

FIGURE 3
Scree plot of different PCs.

TABLE 2 Comparison between mean concentration of heavy metals in current study and other pervious studied in the Nile delta.

Mean concentrations

Ni Mn Cu Zn Pb Cd Co Fe

mg kg−1

Current study 112.43 697.53 87.15 207.40 31.11 6.50 23.97 10,706.09

Khatita (2011) 70.60 1,099 61.80 143 30.70 — 31 62,583

Shokr et al. (2022) — — — 61.29 54.15 11.26 — —

El Behairy et al. (2022a) 70.29 37.80 149.27 17.39

Abuzaid et al. (2023) 46.74 311.22 320.29 104.21 2.27 5.93

El-Amier et al., 2023 (averageof six stations 43.60 978.01 58.77 340.07 225.72 6.54 26.28 55,740.42
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influx of Zn into the air, water, and soil, human activity is the
primary cause. Total concentrations of Pb were 16.09–58.10 (31.11 ±
8.66) mg kg−1. The Earth’s crust contains trace amounts of Pb, a
bluish-gray metal that occurs naturally. Human activities such as
mining, manufacturing, and the burning of fossil fuels are mostly
responsible for environmental lead pollution (Nazzal et al., 2013).
Total Cadmium concentration 0.54–16.02 (6.50 ± 5.62) mg kg−1.
Cadmium pollution is connected to the heavy use of phosphate
fertilizers, pesticides, and wastewater sludge (Wuana and Okieimen,
2011). As mentioned in Khan et al. (2021), the extensive use of
phosphate fertilizers, herbicides, and sewage sludge has been
connected to soil contamination with cadmium (Cd). The Co
total concentration is 10.46–33.46 (23.97 ± 5.96) mg kg−1.
Because cobalt plays an essential role in promoting the growth of
leguminous crops, it is significant for plant nutrition when it is
present in the soil in low quantities (Hammam et al., 2022). Total
concentration of Iron as microelement was 4,289.21–14,623.04
(10,706.09 ± 2,855.29) mg kg−1, (Figure 2). The average
concentrations of Ni, Cu, and Pb were higher than what the
Department of Environmental Affairs (DEA, 2013) suggested, but
the remaining elements were lower (Table 1). The means of all the
heavy metals under study were greater than the chemical
composition of the upper continental crust as determined by
Taylor and McLennan (1995) and the natural concentration of
heavy metals in rocks as determined by Bradl (2005) except for
Mn. The average levels of all examined heavy metals surpassed those
typically found in the upper continental crust, as indicated by Taylor
and McLennan (1995) and the naturally occurring heavy metal
concentrations in rocks, based on Bradl (2005) except for Mn.
Anthropogenic sources like sewage sludge and other wastes used
as soil conditioners, agricultural fertilizers, especially phosphates,
atmospheric deposition, and inorganic fertilizers are the main
sources of Ni, and Co, pollution in soils (Abowaly et al., 2021)

TABLE 3 Parameters for semi-variogram in spatial data modeling.

Variable Model Nugget
(C0)

Partial
sill

Sill
(C0+C)

Nugget/
Sill

Major
range

SDC MSE RMSE RMSSE

pH Exponential 0.01 0.02 0.03 0.5 9,072 Moderate 0.02 0.19 1.01

EC J-Bessel 0.17 0.3 0.47 0.57 8,043 Moderate 0.03 0.64 0.98

Sand Gaussian 0.2 0.7 0.9 0.29 10,191 Moderate −0.05 20.47 1.07

Silt Stable 0.03 0.\ 0.73 0.04 12,337 Strong −0.01 13.53 1.1

Clay Gaussian 0.15 0.90 1.05 0.17 11,347 Strong −0.01 19.90 1.20

CaCO3 Exponential 0.17 0.29 0.46 0.59 12,880 Moderate −0.02 0.64 1.00

Ni K-Bessel 0.1 1.53 1.63 0.07 36,725 Strong −0.009 19.02 1.1

Mn Circular 0.49 0.73 1.22 0.67 7,611 Moderate 0.003 129.47 0.91

Co Hole Effect 0.37 0.52 0.89 0.71 11,429 Moderate −0.01 4.53 0.92

Cu K-Bessel 0.05 0.28 0.33 0.18 25,309 Strong −0.05 33.85 1.1

Cd Gaussian 0.08 1.06 1.14 0.08 32,371 Strong −0.04 1.87 0.92

Pb Stable 0.45 1.08 1.53 0.42 23,912 Moderate −0.003 6.7 0.98

Fe Exponential 0.03 1.14 1.17 0.03 26,452 Strong 0.02 44,919.09 0.83

Zn Circular 0.2 1.11 1.31 0.18 44,941 Strong −0.19 215.13 1.3

TABLE 4 Eigenvalues, variability cumulative of different PCs.

PCs parameters PC1 PC2 PC3 PC4

Eigenvalue 6.35 2.98 1.47 1.34

Variability (%) 42.32 19.85 9.80 8.91

Cumulative % 42.32 62.16 71.96 80.87

TABLE 5 PCA of studied variables.

Variable PC1 PC2 PC3 PC4

pH 0.387 0.005 0.008 0.021

EC 0.119 0.504 0.143 0.031

CaCO3 0.085 0.000 0.541 0.238

Sand 0.838 0.100 0.008 0.002

Silt 0.744 0.050 0.001 0.007

Clay 0.725 0.130 0.015 0.000

Ni 0.782 0.078 0.002 0.003

Mn 0.033 0.220 0.383 0.234

Co 0.731 0.003 0.061 0.099

Cu 0.609 0.182 0.001 0.131

Cd 0.445 0.342 0.048 0.000

Pb 0.043 0.618 0.000 0.023

Fe 0.572 0.020 0.238 0.087

Zn 0.171 0.202 0.018 0.459

Frontiers in Environmental Science frontiersin.org10

Hendawy et al. 10.3389/fenvs.2025.1493197

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1493197


TABLE 6 Pearson correlation between studied soil variables and heavy metals.

Variables pH EC CaCO3 Sand Silt Clay Ni Mn Co Cu Cd Pb Fe Zn

pH 1 0.072 0.231 0.512a −0.468b −0.491a 0.242 0.596a 0.440b 0.131 0.010 0.424b 0.415b 0.034

EC 0.072 1 0.225 −0.445b 0.324 0.496a 0.307 0.012 0.361b 0.232 −0.021 −0.090 0.548a 0.203

CaCO3 0.231 0.225 1 0.322 −0.300 −0.302 −0.297 0.202 −0.205 −0.048 −0.293 −0.076 −0.035 0.206

Sand 0.512a −0.445b 0.322 1 −0.929a −0.943a −0.674a 0.355 −0.744a −0.547a −0.415a 0.039 −0.713a −0.216

Silt −0.468b 0.324 −0.300 −0.929a 1 0.753a 0.618a −0.259 0.738a 0.530a 0.386b 0.018 0.712a 0.249

Clay −0.491a 0.496a −0.302 −0.943a 0.753a 1 0.638a −0.397b 0.661a 0.495a 0.386b −0.090 0.626a 0.161

Ni 0.242 0.307 −0.297 −0.674a 0.618a 0.638a 1 0.309 0.827a 0.871a 0.839a 0.583a 0.689a 0.495a

Mn 0.596a 0.012 0.202 0.355 −0.259 −0.397b 0.309 1 0.510a 0.251 0.146 0.595a 0.524a 0.210

Co 0.440b 0.361b −0.205 −0.744a 0.738a 0.661a 0.827a 0.510a 1 0.664a 0.531a 0.541a 0.880a 0.326

Cu 0.131 0.232 −0.048 −0.547a 0.530a 0.495a 0.871a 0.251 0.664a 1 0.764a 0.589a 0.516a 0.809a

Cd 0.010 −0.021 −0.293 −0.415b 0.386b 0.386b 0.839a 0.146 0.531a 0.764a 1 0.610a 0.400a 0.516a

Pb 0.424b −0.090 −0.076 0.039 0.018 −0.090 0.583a 0.595a 0.541a 0.589a 0.610a 1 0.408b 0.513a

Fe 0.415b 0.548a −0.035 −0.713a 0.712a 0.626a 0.689a 0.524a 0.880a 0.516a 0.400b 0.408b 1 0.284

Zn 0.034 0.203 0.206 −0.216 0.249 0.161 0.495a 0.210 0.326 0.809a 0.516a 0.513a 0.284 1

aCorrelation is significant at the 0.01 level.
bCorrelation is significant at the 0.05 level.
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TABLE 7 Characteristic statistics of the variables under investigation for clusters.

C1

Ni Mn CO Cu Cd Pb Fe Zn pH ECe CaCO3 Sand Silt Clay

mgkg−1 — dS m−1 %

observations 9

Minimum 115.97 630.64 24.90 85.13 10.20 30.92 179,337.10 123.59 8.01 1.25 0.10 2.30 38.20 38.50

Maximum 201.47 978.60 33.46 217.78 16.02 58.10 292,683.50 1,201.77 8.58 4.55 2.20 10.60 54.70 56.80

Mean 153.00a 716.25a 27.60a 132.26a 13.43a 38.34a 240,726.73a 344.39a 8.28a 2.55ab 0.61a 7.10a 45.34a 47.56a

Std. Deviation 23.54 122.15 2.62 47.45 1.86 8.18 36,350.41 338.93 0.18 0.24 0.76 2.66 5.77 6.12

C2

observations 14

Minimum 54.9 424.2 43.1 43.1 0.6 16.1 26,934.0 86.5 8.2 2.5 0.0 2.7 35.3 38.2

Maximum 168.4 879.6 108.2 108.2 13.0 38.7 268,102.5 254.5 8.8 11.50 2.2 8.8 55.7 60.8

Mean 106.6a 654.7a 76.3b 76.3ab 3.7b 26.2a 161,613.1a 153.0a 8.4ab 7.00a 0.9a 5.5a 45.3a 49.0a

Std. Deviation 27.3 129.0 19.4 19.4 3.1 6.8 81,620.2 51.7 0.1 0.7 0.7 1.8 6.8 7.7

C3

observations 4

Minimum 36.3 591.3 10.5 18.9 0.5 31.0 20,409.6 59.4 8.5 1 0.6 93.7 2.6 1.4

Maximum 51.4 1,002.9 17.0 29.3 1.0 33.3 29,039.2 124.9 9.0 1.50 2.2 96.1 4.1 2.2

Mean 41.7b 805.4a 13.4a 23.5b 0.8b 31.9a 24,919.5b 89.7a 8.7b 1.00b 1.4a 94.8a 3.4a 1.8a

Std. Deviation 6.8 170.8 2.8 4.9 0.2 1.2 3,562.7 26.9 0.2 0.1 0.7 1.1 0.7 0.4

Significant differences between variables are indicated by means of variables with different letters and bold.

FIGURE 4
Biplot of PCs.

FIGURE 5
Dendrogram extracted from PCA in the investigated area.
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Other sources include the metal plating, fossil fuel combustion, Ni
mining, and electroplating industries (Senesil et al., 1999; Nicholson
et al., 2003; Parth et al., 2011). The current study shows the highestmean
concentration of Ni (122.43 mg kg−1) and the lowest concentration of
Mn (697.53 mg kg−1) when compared to the prior studies’mean values
in the Nile Delta, Egypt. The mean concentration of Cu (87.15 mg kg−1)
is lower than the mean concentration recorded by Abuzaid et al. (2023)
(311.22 mg kg−1), and higher than the mean concentrationmeasured by
Khatita (2011), El Behairy et al. (2022b), and El-Amier et al. (2023)
(61.80, 37.80, and 58.77 mg kg−1, respectively) (Table 2). Our study’s
mean concentrations of Pb and Cd (31.11 and 6.50 mg kg−1,
respectively) are lower than those of all previous investigations,
except Khatita (2011) and Abuzaid et al. (2023) (30.70,
2.27 mg kg−1) However, the current study’s mean concentration of
Fe is lower than that of all earlier investigations. Themean concentration
of Co is lower than themeasured values of Co by Khatita (2011), and El-
Amier et al. (2023), and higher than the measured values of Co by El
Behairy et al. (2022a), Abuzaid et al. (2023) (Table 2).

3.2 Geostatistical analysis and
spatial mapping

The semi-variogrammodeling parameters are listed in Table 3. The
results showed the accuracy parameter of the optimal model fit in the

semi-variogram analysis for the variable RMSSE. The results
demonstrated that the Exponential model exhibited a high degree fit
for soil pH, CaCO3%, and Fe, the k-Bessel model was well-suited for Ni
and Cu, the J-Bessel model was fit for ECe, Circular model was fit for
Mn. The Gaussian model was fit for sand and clay. The stable model
was suitable for silt. Furthermore, the Hole Effect model was fit for Co
and Gaussian model fit for Cd. The RMSSE values were close to one of
all resulting models they had low MSE values (close to zero) (Abuzaid
et al., 2023). The results from the semi-variogram analysis demonstrated
that the nugget values of pH, EC, Ni, Mn, Co, Cu, Cd, Pb, Fe, and Zn
ranged between 0.01 and 0.49 for all models. The nugget/sill ratio across
all model parameters varied between 0.03 and 0.0.42. The ratio of
nugget (C0) to sickle (C0 + C) determines the spatial dependency
(SPD); values below 0.25, between 0.25 and 0.75, and above 0.75,
respectively, denote strong, moderate, and weak SPDs (Dad et al., 2021).
The results showed that spatial dependence (SDC) varied between
moderate and strong predictions. These findings show that the
measured and expected concentrations of the studied metals have
strong relationships (Abuzaid et al., 2023).

3.3 Multivariate analysis

Only the top four PCs with eigenvalues greater than 1.0 were
taken into account for the analysis, according to the PCA
results, which are displayed in Tables 4, 5. They provided an
explanation for 80.87% of the variance in the entire data, with
PC1, PC2, PC3, and PC4 accounting for 42.32, 19.85,9.80% and
8.91% of the overall variance, correspondingly. Four variables
with intermediate positive loadings (0.74–0.50), such as silt,
clay, Co, and Cu, and two with high positive loadings (>0.75),
such as Sand and Ni, dominated the PC1 (Table 7). EC and Pb
were the two variables with moderate loadings in the PC2. Mn
and CaCO3 have a positive loading in the PC3. Zn was present in
the PC4 with positive loadings (Table 5). Table 6 displays
Pearson’s correlation matrix for the dataset containing all
soil sample counts (n = 27). Heavy metals showed substantial
(p < 0.05) and extremely significant (p < 0.01) associations. The
examined metals had strong positive relationships with one
another, except Mn (Table6). Indicating that they originate
from common sources (Kumar et al., 2021). Particle size is a
significant factor influencing the sediment’s ability to
concentrate and hold onto heavy metals (Förstner and
Wittmann, 1981). The main place for the accumulation of
heavy metals is small particles rather than coarse particles
because of their enormous specific surface area (Jenne et al.,
1980). Therefore, there are significant negative correlations
between heavy metals and sand, and positive correlations
between clay and silt and heavy metals concentration (Jenne
et al., 1980). There are positive correlation between pH and
heavy metal concentrations because, raising the pH makes soil
organic and inorganic colloids more negatively charged, which
improves the soil’s ability to retain metal cations by electrostatic
sorption (Rate, 2022). The metal-EC correlations imply that Co
dissolved in soils to form complexes with both organic and
inorganic ligands (Nieder et al., 2018) (Table 6).

In agricultural soils, PCA has been acknowledged as a potent
technique for locating possible sources of metal toxicants (Abuzaid

FIGURE 6
Land use and land cover in the investigated area.
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et al., 2020; Emam et al., 2022; Hammam et al., 2022). PCA was
conducted after the Kaiser–Meyer–Olkin (KMO) test was employed
to assess the suitability of sampling for all variables (Peres-Neto
et al., 2005). Because soil samples were deemed appropriate, the
KMO value of 0.53 was found to be more than 0.5 (Said et al., 2020)
Supplementary Table S4. With 27 observations and 14 variables,
PCA was produced. The Scree plot displays the major component or
factor’s eigenvalue and cumulative variability (%) (Figure 3). Four
PCs that represented potential sources and governing mechanisms
were found in our investigation. PC1 may represent the impact of
human activity, primarily related to agricultural practices. Ni, Co,
Cu, Cd, and Fe have high relationships.Anthropogenic outputs
from household products and industrial effluents, especially
those from the leather tanning, paint, sewage, and textile
industries in El-Mehalla El-Kobra, as well as agricultural
wastes, especially those containing superphosphate fertilizers
and pesticides, may be responsible for this (Boxall et al., 2000;

Emam et al., 2022; El-Amier, et al., 2023). The PC2 showed a
positive correlation with both Pb and EC. Urban activities such as
fertilizers, pesticides, sewage sludge, industrial effluents, and
automobile exhaust and batteries may be to blame for this (El-
Amier, et al., 2023). Due to fertilizer release from agriculture and
sewage discharge from multiple villages along the drains, the
PC3 is associated with Mn concentration (Arslan Topal et al.,
2022). Sewage effluents and the electroplating industry may be
sources of zinc in PC4. These sources of contamination were
concentrated in the middle Nile Delta, Egypt. The results of El-
Amier et al. (2020), and El-Alfy et al. (2020) lend credence to this
investigation.

The scoring plot and the loadings plot are rescaled to overlay on
a single plot in the principal component analysis biplot of D1
(39.35%), and D2 (21.63%), as shown in (Figure 4). The cosine
of the angle formed by the arrows connecting each pair of variables
determines the correlation between them in the biplot, where the

FIGURE 7
CF of different clusters (C1, C2 and C3). (A) CF of C1, (B) CF of C2, and (C) CF of C3.
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variables are represented as arrows. A greater correlation exists
between variables when the angle between each pair of arrows is
smaller (Smith et al., 2002). Yet, there was a positive correlation
(Hernández Suárez et al., 2016) since all the variables were
connected at an angle of less than 90°. The dendrogram in
Figure 5 demonstrates how the three clusters differ from each
other; each cluster possesses unique characteristics. The first
cluster displayed 9 observations, the second had 14 observations,
and the third had 4 observations, with varying ranges, means,
and standard deviations (SD) of every variable, according to
descriptive data presented in Table 7. These three groups were
taken out of the PCA-obtained factors (PC1, PC2, PC3, and
PC4). According to the results, there were notable variations
between C1 and C2 in pH, EC, Co, Cu, and Cd. Additionally,
there were notable variations between C2 and C3 on pH, EC, Ni,
Cu, and Fe. Furthermore, there were notable variations between
C1 and C3 on sand, pH, Ni, and Cu. The mean heavy metal
concentrations in cluster 1 are higher than those in cluster
2 except for Co, and Cd (Table 4). Clustering analysis was
applied to data derived from soils contaminated by heavy
metals in Egypt’s northwest and middle Nile Delta (El Behairy
et al., 2022b; Shokr et al., 2022). The cluster 1 samples are
situated close to the textile factories at El-Mehalla El-Kobra,
to the south of the research region. Therefore, contamination in
this area may be caused by anthropogenic outputs from domestic
goods and industrial effluents, particularly those from paint,
sewage, leather tanning, and agricultural wastes, particularly
those containing superphosphate fertilizers and pesticides.
While, sewage discharge from several settlements along the
drains and fertilizer release from agriculture were the primary
sources of contamination for cluster 2 samples which located in

the middle of the study area. The cluster 3 samples in the north of
the research region had relatively low concentrations of heavy
metals because of their coarse texture, which allows pollutants to
swiftly penetrate deeper soil layers and perhaps reach
groundwater due to high permeability.

3.4 Land use and land cover for the
investigated area.

The research area’s land use surrounding the Kitchener drain in
Kafr El-Sheikh Governorate is seen in Figure 6. Seven classes were
observed: fish farms, sabkha, sand dunes, hills, irrigated crops, and
irrigated horticultural crops. The dominating classifications are
irrigated crops, making up approximately 83% of the entire area,
including urban areas, which include industrial zones, and
residential sectors, which make up approximately 7% of the
examined area. Since there is a shortage of pure irrigation water,
some farmers utilize kitchener drain water to irrigate their crops,
which is why it is regarded as a source of pollution (Abowaly
et al., 2021).

3.5 Contamination factor (CF) for
different clusters

The variation in CF between the three clusters may be explained
by the disparity between farmers in the irrigation process from drain
water, different LULC, in addition to mineral fertilization in
different clusters. According to the findings of Ni, 88.89% of the
soil samples had high contamination and 11.11% of the samples had

TABLE 8 Areas and concentrations of different contamination classes in the study area.

Moderate degree of contamination (MDC) Area (km2) Area (%)

Ni Mn Co Cu Cd Pb Fe Zn 4.66 0.82

mgkg−1

observations 1

Concentration 36.30 591.31 10.45 18.90 0.54 30.96 20,409.6 0.83

Considerable degree of contamination (CDC) 112.04 19.92

observations 7

Minimum 37.99 485.38 12.24 19.97 0.64 29.54 24,526.70 87.24

Maximum 109.44 1,002.94 31.55 86.72 1.15 35.61 58,464.30 169.78

Mean 69.74 780.48 21.66 51.65 0.93 32.54 38,712.40 122.38

Std. Deviation 30.07 155.01 8.55 28.65 0.18 1.91 15,621.11 32.91

very high degree of contamination (VHD) 445.72 79.24

observations 19

Minimum 71.52 424.20 2.50 48.16 16.87 16.09 157,185.20 86.53

Maximum 201.5 978.6 16.0 217.8 33.5 58.1 292,683.5 1,201.8

Mean 132.2 672.6 8.9 103.8 25.5 30.6 223,021.4 246.5

Std. Deviation 31.8 125.4 5.1 44.4 3.5 10.3 40,484.0 248.7
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considerable contamination in cluster 1(C1) (Hakanson, 1980)
cluster 2(C2) was defined by 7.14% moderate contamination,
64.29% considerable contamination, and 28.57% high
contamination, whereas cluster 3(C3) indicated moderate
contamination. The Mn contamination factor showed that C1 is
moderately contaminated; cluster 2 is characterized by low and
moderate contamination, respectively, of 42.86% and 57.14%;
cluster 3 is characterized by low and moderate contamination,
respectively, of 25% and 75%. About Co, C1 displayed two
distinct levels of contamination: moderate and considerable, with
corresponding percentages of 88.89% and 11.11%, respectively;
C2 displayed similar levels of contamination, with corresponding
percentages of 85.71% and 14.29%, respectively; additionally,
C3 displayed a moderate contamination class. Cu contamination
was found at considerable and high levels in C1, whereas moderate
and considerable classes were found in C2. Moreover, C3 showed
low and moderate contamination classes. C3 recorded two
classifications of contamination: considerable (25%) and high
(75%), while C1 and C2 displayed high levels of Cd
contamination. Human impact and the use of fertilizers within
the research region may be the cause of the increase in Cd levels in
both clusters (Rashed 2010). C1 and C3 showed a moderate Pb
contamination level. About 14.29% of Cluster 2’s samples showed
moderate Pb contamination, while 85.71% showed considerable Pb

contamination. The findings demonstrated that, whereas cluster
3 had comparatively low contamination, C1 and C2 had
considerable and high contamination as shown by the CF of Fe.
C1 displayed three distinct Zn contamination levels: moderate,
considerable, and high, corresponding to relative percentages of
55.56, 33.33, and 11.11%. Concerning the percentage of,
C2 displayed two distinct contamination levels: moderate and
considerable, at 57.71% and 14.29%, respectively. C3 displayed
low to moderate levels of contamination (Figure 7).

3.6 Degree of contamination (DC) for the
studied area

Many other researchers used various soil contamination indices,
particularly contamination factor and degree of contamination
(Shelbaya et al., 2021; Kumar et al., 2019c; Elgharably et al.,
2014; Dhaliwal et al., 2021). Three pollution levels in the research
area are presented in Table 8; Figure 8. A moderate degree of
contamination was found in 0.82% of the study area. The
majority of the area (79.24%) was found to have very high levels
of heavy metal contamination, with average concentrations of these
metals being 132.2 ± 31.8,672.6 ± 125.4,8.9 ± 5.1,103.8 ± 44.4, 25.5 ±
3.5,30.6 ± 10.3,223,021.4 ± 40484, and 246.5 ± 248.7 mg kg−1 for Ni,
Mn, Co, Cu, Cd, Pb, Fe, and Zn, respectively. The sources of
pollution differ, with some coming from sources of irrigation
water and other human activities associated with agricultural
management (Abd-Elmabod et al., 2019). However, a
considerable amount of contamination makes up roughly 19.92%
of the entire region. These results demonstrate that soil samples in
the research area have been enriched with potentially hazardous
metals due to anthropogenic sources, such as industrial and
agricultural practices (Shokr et al., 2022).

Socio-economic impact of contamination on local populations
Most exposure may be related to farming operations along Kitchener
Drain; it was found that the cumulative hazard index is obtained
through skin contact as opposed to ingesting or inhalation. Although
Ni and Co may have the greatest effect through ingestion contact and
inhalation exposure, Pb and Cr were significant contributors to
exposures through ingestion and dermal contact. Exposure to
elevated amounts of specific metals, including Ni, Cd, Cu, and Cr,
has been linked in previous epidemiological studies to markers of
cardiovascular disease (Meng et al., 2013). Furthermore, the
occurrence of hyperglycemia, insulin resistance, glycaemic
dysregulation, and hypertension in relation to exposure to Ni and
Cd has been documented in toxicological studies (Das Gupta et al.,
2009; Xu et al., 2018). In their previous study in the area under
investigation (El-Amier et al., 2023),found that both ingesting and
skin exposure may cause cancer in both adults and children.
Additionally, children’s shorter exposure times or the type of adult
activities may be the reason for their decreased carcinogenic risk
compared to adults. Soil contamination can result in both direct and
indirect losses. The overall drop in the cost of land as a tool and object
of labour for consumers is characterised by direct losses. A decrease in
agricultural crop output on contaminated soils, deteriorated product
quality, and an increase in the unit cost of contaminated food due to a
higher percentage of semi-fixed expenses as a result of lower crop
productivity are all examples of indirect losses (Kucher et al., 2015).

FIGURE 8
DC of investigated area.
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4 Conclusion

This study sheds light on the analysis of soil contamination by
heavy metals in the North Nile Delta, Egypt where it constitutes a
major challenge for food security and sustainable development. The
findings showed that GIS is a useful tool for mapping different heavy
metal concentrations as, it makes it possible to identify areas that
require immediate attention by allowing for a more comprehensive
and in-depth analysis of the extent and severity of pollution. Better
decision-making is made possible by the facilitation of data and
information sharing among many stakeholders, including
researchers, policymakers, and environmental authorities.
Additionally, it facilitates better monitoring and management of
soil pollution, enabling the early identification of probable problems
and the use of appropriate corrective measures. Intriguing
categorization results were also obtained from the combination of
PCA and AHC, which separated the study region into three zones
with different heavy metal concentrations and patterns. With
average concentrations of these metals being 132.2 ± 31.8,672.6 ±
125.4, 8.9 ± 5.1,103.8 ± 44.4, 25.5 ± 3.5,30.6 ± 10.3,223,021.4 ±
40484, and 246.5 ± 248.7 mgkg−1 for Ni, Mn, Co, Cu, Cd, Pb, Fe, and
Zn, respectively, it was determined that the majority of the area
(79.24%) had very high levels of heavy metal contamination. The
current study shows that the soils under investigation in the study
area have negative effects from human activities, such as excessive
use of polluted water for irrigation, pesticides, and mineral
fertilizers. Crop rotation, land use diversification, and effective
irrigation systems are advised to mitigate the soil contamination
in the research region. Additionally, precision agriculture provides a
variety of alternatives, such as lowering the amount of pesticides
used or increasing the effectiveness of fertilizer and irrigation. To
promote broader use of these methods, farmer-to-farmer education
and educating advisors on their numerous advantages. it is advised
to increase the sample size to enhance the spatial interpretation of
soil contamination.
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