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Soil erosion has led to land degradation, which affects the environmental and
economic sustainability of agricultural land systems. This study aims to assess the
annual soil loss potential to prioritize land risk areas in the Sala watershed for
conservation planning. Soil sampling and topographic data were the primary
sources of data. The secondary sources were satellite imagery and
meteorological data. The Revised Universal Soil Loss Equation (RUSLE) model,
integrated with GIS and remote sensing (RS) techniques, was used to formulate
optimal soil erosion management plans and assess erosion hotspot areas in the
study area. The results showed that the distribution of annual soil loss ranged
from 1 to 1,875 t/ha/year, and the mean annual soil loss was 312.6 t/ha/year. The
findings also revealed that the watershed was classified as having low soil erosion
rates (1–162 t ha/year) (31.91%), moderate soil erosion rates (162–405 t ha/year)
(39.67%), high soil erosion rates (405–805 t/ha/year) (20.78%), and very high soil
erosion rates (800–1875 t/ha/year) (7.64%). 28.42% of the watershed was
classified as having high to very high erosion severity, primarily found on
steeper slopes and in areas with inappropriate land use practices. In the Sala
watershed, soil and water conservation measures have important implications for
improving soil fertility and productivity. Thus, effective land management
planning should be implemented to achieve sustainable agricultural land use
in the study watershed area.
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1 Introduction

Soil erosion is currently a significant environmental and economic concern worldwide
(Benavidez et al., 2018; Chuenchum et al., 2019; Pimentel and Burgess, 2013; Ozsahin et al.,
2018), endangering freshwater, land, and marine environments (Borrelli et al., 2020). It is
one of the environmental problems that hinder the implementation of the first (No poverty)
and second (Zero hunger) Sustainable Development Goals by the year 2030 due to declining
soil fertility (Moisa et al., 2022). Globally, one-third of agricultural soils are being affected by
soil degradation (Hurni and Meyer, 2002), of which water and wind erosion account for
56% and 28% of the observed damage, respectively (Blanco-Canqui and Lal, 2008; Gelagay
and Minale, 2016). Assessment of tectonic evolution and fluvial system anomalies in water
streams and river basins is crucial for understanding the landscape changes (Ghosh and
Kundu, 2025). Soil erosion negatively impacts agricultural production, water resource
quality, and the ecosystem’s sustainability (Fayas et al., 2019). The erosion process is
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influenced by numerous factors, primarily anthropogenic, such as
urbanization and mining, and natural causes, such as flash floods
and rainstorms (Koirala et al., 2019; Hategekimana et al., 2020).
Natural and man-made factors have the potential to accelerate soil
erosion (Alexandridis et al., 2015), but it is clear that human activity
is the primary cause of soil erosion, accounting for 60%–80% of all
soil erosion and degradation (McNeill, 2001). In addition to soil
degradation, other difficulties caused by soil erosion include removal
of soil nutrients, a decline of crop yields, reduction of soil fertility,
and contamination of surface and groundwater supplies by fertilizer
nutrients, sediment, and insecticide residues (Hategekimana
et al., 2020).

Soil erosion not only decreases soil quality in the detachment
area (on-site effect) but also causes significant sediment-related
problems in the sedimentation area (off-site effect) (Liu et al.,
2020; Mekonnen et al., 2015), with an assessed 15 to 30 billion
tons of yearly sediment taken by the world’s water erosion to
reservoirs and lakes (Thomas et al., 2018b). A recent estimation
of land degradation due to soil erosion costs shows that the global
economic impact is highly uncertain, from 40 to 490 billion US$,
and varies from country to country (Nkonya et al., 2016), with an
estimated 24 billion tons of highly productive soil being lost from
croplands worldwide (Kassaye and Abay, 2019). In agricultural
areas, soil erosion is 10–100 times faster than soil formation
(Amundson et al., 2015) and affects 10 million hectares of arable
land each year (Gachene et al., 2020). Soil loss resulting from erosion
is a universal issue that affects agricultural production and natural
resources (Ighodaro et al., 2013; Koirala et al., 2019). The
acceleration of soil erosion occurs due to human activities such
as intensive agriculture, poor land management, deforestation, and
cultivation on steep slopes (Molla, 2017; Alemu and Melesse, 2020;
Jayasekara and Kadupitiya, 2018). Additionally, soil erosion is
proportional to population growth, overuse of natural resources,
degraded land, and poor water management plans (Reichmann
et al., 2013; Ozsahin et al., 2018; Deb et al., 2019). Food
insecurity, poverty, and unsustainability of land productivity are
the results of the factors of soil erosion (Adimassu et al., 2014;
Yesuph and Dagnew, 2019).

A recent application to the African continent estimates the
annual loss of crop yield to be about 280 million tonnes (Wolka
et al., 2018). Over 40% of the extra food required tomeet the growing
food demands by 2025 will have to come from intensified rain-fed
farming in the sub-Saharan Africa region (Bekele, 2021). Especially
in East Africa, where Ethiopia shows the highest erosion rates
(Gessesse et al., 2015; Lanckriet et al., 2014). The annual rate of
soil loss (over 1.5 billion tons) in the nation is much greater than the
rate of soil formation on an annual basis (1.5 million tons) (Tamene
et al., 2006) with an associated cost of close to one billion Ethiopian
birrs each year (Alemu, 2005; Bekele et al., 2019). Sheet and rill
erosion mainly affected the highlands of Ethiopia (Gashaw et al.,
2019; Yesuph and Dagnew, 2019), with annual soil losses of
200–300 t/ha/year (Gelagay and Minale, 2016). Soil erosion
degrades agricultural land by removing nutrient-rich topsoil,
increasing runoff from increasingly impermeable subsoils, and
reducing the amount of water available to plants (Ettazarini and
Mustapha, 2017; Ganasri and Ramesh, 2016). 50% of the country’s
agricultural area and 88% of its population remain negatively
affected by soil loss and resulting sedimentation (Sonneveld et al.,

2011). The annual productive capacity in Ethiopia’s highlands is
decreasing by 2.2% (Tesfahunegn et al., 2014). This threatens
agricultural production and productivity (Mihara et al., 2005),
ecosystem degradation, increased sedimentation, and increased
flood risk (Chuenchum et al., 2019; Pham et al., 2018).
Additionally, soil erosion continues to cost the country $1 billion
annually and affects 50% of the country’s arable land and 88% of its
population (Bekele et al., 2019). Because smallholder farmers in the
area primarily rely on the land for their livelihood, the resultant
severe soil degradation in Ethiopia’s highlands has threatened both
current and future generations’ food security by resulting in lower
yields or higher input costs (Teferi et al., 2016). The sustainability of
Ethiopian agricultural production is seriously threatened by soil
erosion, depletion of organic matter, and soil nutrient removal
(Haile, 2012; Elias, 2017; Gelagay and Minale, 2016).

The estimation of human and natural factors is crucial to
grasp the individual impact of the factors and establish the
decisive watershed for proper management and conservation
measures to be planned to mitigate erosion (Ganasri and
Ramesh, 2016). Productive land and adequate water
availability are crucial for sustainable development and
increased food production in those countries whose
livelihoods are based on agriculture. Due to this, numerous
methods are available for quantifying soil erosion to sustain
land and water productivity. Scientists have developed
different models, ranging from physical-based models to
empirical models, to study soil erosion at various
spatiotemporal scales (Karydas et al., 2014). The RUSLE
model is developed as an empirical model representing the
main factors controlling soil erosion processes, namely climate
(rainfall erosivity), soil characteristics (soil erodibility),
topography (slope length and slope steepness), cropping and
cover management, and conservation practice factors (Abdo
HG., 2022; Okenmuo and Ewemoje, 2023; Richi, 2025; Renard,
1997). However, the RUSLE model is the most frequently applied
model for predicting the long-term average annual soil loss rate
due to raindrop, sheet, and rill erosion, but not from gully and
channel erosion (Koirala et al., 2019; Molla and Sisheber, 2017;
Renard, 1997; Taye et al., 2018).

Numerous studies have been conducted in Ethiopia that have
quantified the potential for soil erosion and identified areas at risk of
erosion at various watershed levels by integrating the revised
universal soil loss equation (RUSLE) with geographic information
systems (GIS) and remote sensing techniques (Belayneh et al., 2019;
Gashaw et al., 2018; Moisa et al., 2021; Negash et al., 2021;
Mohammed et al., 2022; Tessema et al., 2020; Haregeweyn et al.,
2017; Hurni et al., 2015), which is effective in quantifying the
magnitude of the issue. As a result, soil loss values in Ethiopia
vary significantly due to differences in measurement scales, applied
methods, variations in climate, land use, and soil types. Due to the
severity and consequences of soil erosion, research was conducted
on different watersheds in Ethiopia; however, it did not include the
current study area. Thus, no study has been done on the
quantification of soil loss potential prioritization risk analysis in
the study of the Sala watershed area. A prerequisite of soil
conservation is the reversal of land desertion and the
enhancement of the agricultural production, the provision of
food sanctuary, and sustainability, thereby requiring identification
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of critical erosion-prone areas. Therefore, the spatial assessment of
soil erosion risks is a fundamental approach to natural resource
management and planning in river basins (Ansari et al., 2024).

In the Sala watershed, rill and sheet erosion resulting from
unsustainable land use and landmanagement practices, steep slopes,
rugged topography, climate change (erosive rainfall), and other
anthropogenic activities are the main causal factors. The severity
and impacts of soil erosion are leading to the formation of gully
erosion, siltation, and sedimentation, which are intensively
increasing and causing loss of agricultural productivity due to the
depletion of soil fertility and productivity in the current study area.
Soil loss carries productive topsoil off-site, leading to decreased soil
fertility and crop productivity in the study watershed area. Though
soil erosion leading to soil loss is a natural phenomenon, intricately
dependent on natural factors such as rainfall intensity, duration and
amount, slope gradients and length, soil texture, soil organic matter
and soil hydraulic properties, anthropogenic factors such as tillage
and soil covers could control it in managed cropping systems
(Ochoa-Tocachi et al., 2016; Zhang et al., 2017).

Assessment andmapping of soil erosion rates in a watershed is vital
for the identification of critical hotspot areas for a targeted
implementation of appropriate land management and rehabilitation
measures (Aneseyee et al., 2020; Ganasri and Ramesh, 2016). It is
argued that identifying and prioritizing soil erosion risk-prone areas by
using the RUSLE model is essential for implementing appropriate soil
and water conservation measures for sustainable land use (Azimi et al.,
2019). Accordingly, the RUSLE model was combined with GIS and
remote sensing techniques to estimate and prioritize spatial soil erosion
risk areas in the study watershed. Hence, the present study aimed to
estimate the potential mean annual soil loss for prioritization of land
risk areas using the RUSLEmodel in the Sala watershed of the Ari Zone
in South Ethiopia. The results of this assessment represent an important
basis for decision-makers in improving the performance of soil erosion
protection measures and implementing mitigation strategies to prevent
the acceleration of erosion in high and very high-risk areas.

2 Materials and methods

2.1 Study area

The study was conducted in the Sala watershed of North Ari
woreda in the Ari Zone, South Ethiopia. The study area is found
between 6°7′30° and 6°12′30 N latitude and 36°40′0° and 36°45′0 E
longitude. It covers a total area of 7,919.71 ha (ha). An elevation range of
1,391–3,210 m above sea level (Figure 1). The study area is located
585 km south of Addis Ababa. The topography of the study area is
characterized by a flat to steep hillside landscape.Most of the study areas
are under high mountains with very steep slopes. In the area, Orthic
Acrisols (a very deep, well-drained, dark brown clay soil) are the
predominant soil type. Average monthly temperatures range from
11°C to 22°C. The mean annual rainfall of the watershed ranges
from 753.95–1,552.53 mm per year. The least amount of rainfall
occurs during the summer (Bega) season, which is from December
to February. The dominant rainy season is the Winter (Kiremt), which
runs from June to August. Acacia abyssinica, Cordia africana, Hagenia
abyssinica (also called Koso in Amharic), and bamboo (also called
kerka) were the indigenous trees found in the study watershed.

The watershed study had a total population of about 39,646, of
which 21,024 (53.03%) were female and 18,622 (46.97%) were male.
Mixed farming is the main source of income for the communities.
Cattle, donkeys, goats, sheep, and mules are the most common
livestock productions in the watershed. Some of the dominant
seasonal and perennial crops grown in the watershed are teff
(Eragrostis tef), sorghum (Sorghum bicolor), banana (Musa
mesta), potato (Solanum tuberosum), taro (Colocasia esculenta),
cassava (Manihot esculenta), barley (Hordeum vulgare), wheat
(Triticum vulgare), bean (Phaseolus vulgaris), and others. In the
study, crops such as korerima (Aframomum corrorima or Ethiopian
cardamom) and coffee (Coffea arabica) are also grown in the
watershed. Ensete (Ensete ventricosum) is one of the major
perennial crops in the study area. It is used as a main staple food
crop for the communities in the Sala watershed.

2.2 Data sources and methods of acquisition

The RUSLE model variables are estimated from various sources.
This method evaluates the influence of climate, soil, topography, and
land use factors on soil erosion (Mete and Bayram, 2024). Both
primary and secondary data were used for the RUSLE parameters of
the study watershed. Soil sampling and topographic data were the
sources of primary data. The secondary source was generated from
satellite imagery and meteorological data. The rainfall erosivity factor
(R-factor) was derived from annual rainfall data for 15 years
(2006–2021) obtained from the Ethiopian National Meteorological
Agency. Slope length and slope gradient factor (LS-factor) were
determined using a digital elevation model (DEM) from a 1:
50,000 scale topographic map with 30 m contour lines of varying
heights. The Landsat image was used for the conservation practices
(P-factor) and crop management (C-factor).

The soil erodibility factor (K-factor) was determined from field-
estimated organic matter, texture, structure, and permeability of the
soil of the study area. Three random strata were selected from the
watershed elevation, and the major adjacent land use types in each
stratum were identified across elevation gradients, of which four

FIGURE 1
Location map of the study area.
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were at the top (cultivated land, grazing land, shrubland, and
forest land), three in the middle (cultivated land, grazing land,
and forest land), and three at lower altitudes (cultivated land,
grazing land, and shrubland), with one depth and three replicates
per sample field (4 × 3 × 3 × 3 elevations × 1 depth × 3 replicates).
Soil samples were collected at three elevations: upper
(2,500–3,210), middle (1,900–2,500), and lower (1,391–1900),
followed by identifying land use types across elevation gradients.
A total of 30 composite soil samples were collected from different
current land use types and altitudinal gradients using a zigzag
sampling technique at a constant depth of 0–20 cm from upland
(12), midland (9), and lowland (9) to calculate the soil erodibility
factor (K-factor).

2.3 Determination of the RUSLE
model factors

Scientists have developed several methods to estimate soil
erosion through experimental, statistical, and physical methods
(Beck et al., 2018; Fredj et al., 2024; Wischmeier and Smith,
1965; Williams, 1975; Renard, 1997). RUSLE is an empirical
predictive model used to estimate average annual soil loss. The
RUSLE model is a widely used, low-cost, non-data-intensive
predictive model for agricultural and forestry watersheds
(Renard, 1997). This model for estimating soil erosion from
sheets and rills has been developed (Yesuph and Dagnew, 2019;
Kulimushi et al., 2021a; Kulimushi et al., 2021b) to prioritize areas at
risk of soil erosion (Tessema et al., 2020). The RUSLE model was
computed using five erosion parameters to calculate the yearly
average soil loss in the Sala watershed (Equation (1)) (Renard, 1997):

A � R pK p LS pC pP (1)
whereA is the mean annual rate of soil loss tonne/hectare/year (t/ha/
y), R is the rainfall erosivity factor (MJ mm/ha/hr/year), K is soil-
erodibility (t/ha/MJ mm), LS is slope length and slope steepness, C is
land-cover management and P is land management factors,
respectively.

2.3.1 Rainfall erosivity (R-factor)
The rainfall erosivity factor (R-factor) represents the

aggressiveness of rainfall and is related to the amount and rate
of runoff that has the potential to cause erosion. Rainfall can
remove and transport detached materials in a specific area, and
the RUSLE model uses this factor as input in soil loss
determination (Hategekimana et al., 2020). The R-factor is
strongly influenced by the storm volume, energy, duration and
intensity, raindrop shape, precipitation distribution, and
subsequent runoff velocity (Farhan and Nawaiseh, 2015;
Amellah and Karim, 2021). This factor can be estimated as a
function of kinetic energy/raindrops/and their 30-min maximum
intensity (I30) (Renard, 1997). However, measurements to
generate these variables are not available for Ethiopia as a
whole. Therefore, the empirical formula developed by (Hurni,
1985b) was applied to estimate the R-factor for the Ethiopian
condition, which has been derived from spatial regression
analysis (Helldén, 1987) (Equation 3). The R-factor was
developed using the average annual precipitation (P) of the

precipitation data of five stations from 2006 to 2021 collected
by the Ethiopia National Meteorological Agency (Equation 2).

R � −8.12 + 0.562*P( ) (2)
where R; is the rainfall erosivity factor in MJ mm ha/h/year, and P is
the mean annual rainfall (mm/year).

However, to validate the average rainfall, a standard linear
regression equation using DEM was used:

Mean Rainfall � α + β p DEM( ) (3)
Where α stands for mean rainfall intercept (constant), β The slope
coefficients for the predictor (DEM) values of the regression model
and DEM for the digital elevation model.

The spatial distribution of the rainfall erosivity factor (R-value)
over the study’s Sala watershed area is shown in Figure 2. The spatial
distribution of different precipitation amounts increases in the
mountainous areas of the studied watershed compared to the
lowlands, as indicated by the R-factor results of the linear
regression model (Table 1; Figure 2). Precipitation and the digital
elevation model (DEM) showed a strong correlation (−0.425)
(Table 1). Elevation rises by one unit, and precipitation
variability is expected to increase by a factor of −0.425 if all
other variables stay the same (Table 1). According to Figure 3,
the R factor in the study area ranges from 753.95 to 1,552.53MJmm/
ha/hr/year, with an average value of 1,153.24 MJ mm/ha/hr/year.
The results show that the Sala watershed has high rainfall erosivity,
which may lead to soil erosion. A higher R-value indicates higher
kinetic energy of rainfall and surface runoff, which contributes to
higher soil erosion (Balasubramani et al., 2019).

Spatially, the rainfall erosivity distribution was not uniform in
the study area due to variations in rainfall shown in Figure 2). The
R-value is lower, indicating the low erosivity of rainfall to erode the
soil (Asmamaw and Assen, 2019) and low rainfall intensity in the
study area (Devatha et al., 2015). The highest elevation in the

FIGURE 2
R-factor map of the Sala watershed.
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southern part of the watershed corresponds to the highest annual
rainfall values, while the northern part, which is closest to the outlet,
has the lowest rainfall values, as shown in Figure 2. This result is
supported by the findings of (Belay et al., 2019), who found a strong
relationship between elevation and mean annual precipitation. The
major problem of soil loss may occur due to high rainfall as the
southern part of the study watershed receives high average annual
rainfall (Das et al., 2022). Thus, Figure 2 shows that rainfall-induced
erosion rates vary across the watershed.

2.3.2 Soil erodibility (K-factor)
Soil erodibility (K-factor) is the soil’s susceptibility to erosion,

ease of silt removal, and expected runoff per rainfall contribution
(Kayet et al., 2018). K-factor is an assessment of the impact of soil

properties on soil loss and the vulnerability of soil to erosion as well
as the potential susceptibility of soil to the detachment and transport
caused by rainfall and runoff (Alemu and Melesse, 2020; Haile and
Fetene, 2012). The influence of soil quality and profile characteristics
on soil loss is reflected in the K-factor component (Molla and
Sisheber, 2017; Pham et al., 2018; Renard, 1997). Soil texture,
organic matter, soil structure, drainage, soil profile depth, and
permeability are the primary soil properties that alter the
K-factor (Ayalew and Selassie, 2015; Ettazarini et al., 2017;
Haregeweyn et al., 2017; Koirala et al., 2019; Molla and Sisheber,
2017; Mohammed et al., 2020; Prasannakumar et al., 2012; Saha,
2018). The K factor was calculated from estimated soil properties,
namely texture, organic matter, and structural and permeability
(Foster et al., 1981; Panagos et al., 2015). In this study, the K-factor
was calculated by the formula of (Equation 4).

K � 27.66/m1.14 * 10−8 12 − a( )( ) + 0.0043 * b − 2( )( )
+ 0.0033 * c − 3( )( ) (4)

where;m = (silt (%) + very fine sand (%)) (100−clay (%)); a = organic
matter (%); b = structure code: (1) very structured or particulate, (2)
fairly structured, (3) slightly structured and (4) solid, and c = profile
permeability code: (1) rapid, (2) moderate to rapid, (3) moderate, (4)
moderate to slow, (5) slow and (6) very slow.

The soil erodibility factor shows the mean long-term soil and
soil profile response to the erosive power associated with rainfall and
runoff (Millward and Mersey, 1999). The K factor indicates the
sensitivity of soil to erosion (Kayet et al., 2018). For soil erodibility
estimations, soil type and color methods were adapted from (Hurni,
1985a) as indicated in Table 2). Through laboratory analysis, the
study area’s soil textures and organic matter values were assessed to
estimate the soil erodibility factor (K-value). Figure 3 shows the
spatial prediction map of soil K-factor based on Table 2. The results
range from −0.056 to 0.058 t/ha/MJ mm, and the average K-factor
value is −0.035 t/ha/MJ mm, which is close to 0, indicating low
sensitivity to soil erosion (Figure 3). K-value was also negatively
correlated with soil permeability (−0.056). These correlations
corroborated the general understanding of the soil erodibility vis-
à-vis soil texture, organic matter, and permeability (Olaniya et al.,

TABLE 1 Correlation between rainfall and elevation in the Sala watershed.

Rainfall Elevation

Pearson Correlation Rainfall 1.000 −0.425

Elevation −0.425 1.000

Sig. (1-tailed) Rainfall 0.127

Elevation 0.127

N Rainfall 9 9

Elevation 9 9

Model Unstandardized
coefficients

Standardized coefficients t Sig 95.0% confidence interval for B

B Std. Error Beta Lower bound Upper bound

(Constant) 171.284 9.180 18.658 0.000 149.576 192.991

Elevation −0.005 0.004 −0.425 −1.242 0.254 −0.015 0.005

FIGURE 3
K-factor map of the Sala watershed.
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2020). The lowest erodibility was observed in the study area due to
the higher organic matter content, which allowed soil fractions to
exhibit more excellent aggregate stability (Olaniya et al., 2020). The
current findings are in line with earlier research reported on the
K-values of tropical soils that range from 0.06 to 0.48 (El-Swaify
et al., 1992), and the majority of Ethiopian soils have K-values
between 0.05 and 0.6 (FAO–UNDP, 1984).

The lower value of the K factor is associated with the soils having
low permeability and low antecedent moisture content. Higher
K-values indicate higher erodibility and vulnerability to soil
erosion, which could be attributed to low clay and organic matter
contents as less aggregation of soil colloids (Bartoli et al., 1992). Soils
with good soil structure, high organic matter content, and high
permeability are more resistant to erosion. In general, the highest
K-value soil is highly affected by erosion and intrinsically susceptible
to the erosive force of rainfall, and also intrinsically less resistant to
the eroding power of rainfall, whereas the lowest K-value has low soil
erodibility and less susceptible to the detaching power of raindrop,
and therefore high-resistance to rainfall force (Figure 3).

2.3.3 Slope length and steepness (LS) factor
The LS factor describes the impact of the topographic factors on

the rate of soil erosion (Fayas et al., 2019; Wischmeier and Smith,
1978; Haan et al., 1994; Shreevastav et al., 2022; Song et al., 2011).
This factor has an impact on the transport capacity of surface runoff
(Mandal, 2017; Karna et al., 2021). The steepness gradient affects the
flow velocity, whereas the gradient length identifies the distance
between the points where erosion begins and the deposition (Renard
et al., 1997). The flow velocity on the rate of erosion between the
origin and termination of inter-rill processes is influenced by the
combined LS factor. The velocity of water flowing over the ground
and the slope of the ground surface are dependent parameters
(Karna et al., 2021). As slope length increases, soil erosion by
water increases due to increased runoff water accumulation. The
steeper the slope, the more susceptible it is to soil erosion and vice
versa (Ostovari et al., 2017; Wang et al., 2020).

The LS factor was initially suggested and determined by direct
slope measurements (Renard, 1997); this method was not suitable for
studies conducted at the watershed scale. Accordingly, the S-factor is
the actual slope divided by the experimental slope (9%), and the
L-factor is obtained by dividing the actual horizontal slope length by
the experimentally measured slope length of 22.13 m (Arekhi, 2008;
Renard, 1997; Wischmeyer and Smith, 1978). Consequently, the
topographic factor raster calculator tool in the ArcGIS

environment was utilized in conjunction with a digital elevation
model (DEM) to produce a combined LS factor (Atoma, 2018):

L � λ
22.13

( )
m

(5)

Where L is the slope length factor, λ is the slope length (m), and m is
the slope–length exponent.

m � F

1 + Fʹ
(6)

F � sin /0.896
3 sin( )0.8 + 0.56ʹ

(7)

Where F = ratio between rill erosion and inter-rill erosion, β =
slope angle (0).

In this study, the steepness factor derived from the slope map of
the study area was calculated for high-slope (>9%) and low-slope
(<9%) lands, as shown below (Mccool et al., 1987; McCool et al.,
1997; Renard, 1997):

S � 10.8 × sin θ + 0.03, for σ ≤ 9% (8)
S � 16.8 × sin θ- 0.50, for σ > 9% (9)

Where θ is the slope angle in degrees and σ is the slope gradient in
percentage.

The LS factor indicates the impact of topography on the soil
erosion process. It is the combined effect of the slope length (L)
factor and the slope steepness (S) factor (Figure 4). There is a direct
relationship between slope length and erosion rate (Wischmeier and
Smith, 1978). As a result, erosion increases as slope length increases.
The LS is the ratio of observed soil loss related to the soil loss of a
standardized plot (22.13) as indicated in (Schmidt et al., 2019). The LS
value is considered to have values between 0.02 and 48 for the
Ethiopian condition (Hurni, 1985b), and the study watershed area
ranges from 2.86 m at the bottom to 380.15 m at the top (Figure 4).
The combined slope LS factor has a greater influence on soil loss in the

TABLE 2 Soil properties and their respective K-factor in the Sala watershed.

Soil properties Upper land Middle land Lowland

Silt (%) 14 22.5 22

Very Fine sand (%) 22.9 25.6 28.5

Clay (%) 48.95 37.73 42.7

Organic matter 2.71 3.3 4.68

Structure 3 2 1

Permeability 4 3 2

K-value −0.056 0.001 0.058

FIGURE 4
LS-factor map of the Sala watershed.
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southern part of the watershed, whereas the northern and central parts
of the watershed also contribute less to soil erosion due to the existing
slope (Figure 4). As a result, longer slopes see larger accumulations of
runoff from a larger area, which raises flow velocities and causes soil
loss to increase with slope. As the watershed is mountainous with a
steep slope, it inherits a high slope length factor and consequently high
overland flow with high velocity (Das et al., 2020). Thus, as the slope
length increases, this leads to high overland flow and increases soil
erosion and sediment yield in the study area.

2.3.4 Cropping and cover management (C-factor)
According to (Hategekimana et al., 2020; Renard, 1997) the

C-factor shows how vegetation or plant cover and management
interventions contribute to soil loss. The ratio of soil loss from a
particular vegetated area to the equivalent soil loss from a fallow area
with the same rainfall is known as the cover andmanagement factors
(Wolka et al., 2015). This establishes how successful crop and soil
management strategies are in preventing soil loss. Cover
management (C-factor) is used to associate the relative impact of
management strategies on conservation plans (Renard, 1997; Fayas
et al., 2019). The vegetation cover of the land use class is used to
calculate the C-factor value based on land cover management
measures (Karna et al., 2021; Zeleke, 2000) states that the
dimensionless C-factor value establishes the proportion of soil
loss in distinct regions with varying land cover conditions. Four
land use/land cover types were identified as cultivated, forest,
grazing, and shrublands (Table 3). The Landsat image was used
for the classification and mapping of land use/land cover types using
Remote Sensing (RS) and Geographic Information Systems (GIS)
techniques.

A C-factor map for the study area wasmade using changes in land
use/land cover, which have a significant impact on soil erosion
(Kidane et al., 2019). The Sala watershed was classified into four
land use/land cover categories, and the C-factor value was assigned
(Table 3; Figure 5) for the Ethiopian condition based on the existing
literature (Fayas et al., 2019; Olika and Iticha, 2019; Yesuph and
Dagnew, 2019; Amsalu and Mengaw, 2014; Girma and Gebre, 2020;
Bewket and Teferi, 2009;Wischmeier and Smith, 1978; Hurni, 1985b).

Cover control (C-factor) values in the study watershed range from
forest land (0.02) to cultivated land (0.18) (Table 3; Figure 5). The
findings demonstrated that from the classified land use/land cover
classes, cultivated land predominated (Table 3). The C values show that
the maximum amount of cultivated land generates high runoff and is
vulnerable to erosion, whereas shrub and forest lands receive the lowest
values and are resistant to soil erosion and runoff (Table 3; Figure 5).
Among the four land use/land cover classes, cultivated land is the most
vulnerable, while forest land use is the least vulnerable to soil erosion

(Table 3; Figure 5). Soil is highly eroded, especially when other LULC is
converted to cultivated land. The result is in line with the findings of
(Negassa et al., 2020). Soil erosion is significantly affected by the land
use/land cover conditions of the watershed, according to the present
land/land cover analysis findings (Table 3). This conclusion is
consistent with prior findings showing that vegetation significantly
decreased soil loss and sediment yield (Ebabu et al., 2019; Kidane et al.,
2019; Thomas et al., 2018a).

2.3.5 Erosion control practices (P-Factor)
According to (Renard, 1997; Fayas et al., 2019) the erosion control

practices factor (P) is also known as the support and conservation
practices factor. The support and conservation practices factor
(P-factor) measures how conservation practices affect the quantity
and rate of soil erosion and runoff (Ayalew and Selassie, 2015;
Koirala et al., 2019; Renard, 1997) states that the conservation
practice (P-factor) measures the degree to which soil erosion is
slowed by support methods such as terracing and contour tillage.
On-site, inappropriate physical land management practices were
observed. Determining the P-factor is difficult due to the lack of
long-term conservation measures and the inconsistent application of
conservation practices across the complex and rugged terrain of the
study watershed. For these reasons, we computed the P-factor output
map using a different estimationmethod that took into account the type
of land use/land cover (Figure 6).

P-factor values varied accordingly, with variations found in the
0.52 to 0.9 range (Table 4; Figure 6). The P-values range from zero
(0) to one (1), whereby the values close to zero indicate a good
conservation practice and erosion resistance facility, and the values
close to one indicate poor conservation practices and no manmade
erosion resistance facility (Ganasri and Ramesh, 2016; Olorunfemi
et al., 2020; Renard et al., 1997; Wischmeier and Smith, 1978). A
value close to forest land (0.52) denotes good conservation practices,

FIGURE 5
C-factor map of the Sala watershed.

TABLE 3 Cropping and cover management C-factor values of the study
area.

Land-use and land-cover types C- factor value

Cultivated land 0.18

Grazing land 0.15

Shrub land 0.05

Forest land 0.02
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while a value close to cultivated land (0.9) denotes poor conservation
practices that need soil and water conservation measures (Table 4).
The cultivated and barren lands had a maximum p-factor value,
which indicated that they are highly vulnerable to soil erosion due to
the weakness of soil conservation practices, whereas forest land is
resistant to soil erosion and runoff (Table 4; Figure 6).

3 Results and discussion

3.1 Soil erosion potential assessment for
prioritization of land risk areas using the
RUSLE model

The potential soil loss in the Sala watershed was calculated by
integrating GIS and remote sensing techniques with the RUSLE soil
loss parameters (Figure 7). Erosion loss estimation results showed that the
annual soil loss rates in the study area range between 1 and 1875 t/ha/
year, with a mean annual soil loss of 312.6 t/ha/year (Table 5; Figure 7).
Themean annual soil loss was determined by a cell-by-cell analysis of the
soil loss surface by multiplying the RUSLE factors. Based on estimated
annual soil loss, soil erosion risk areas were classified into four categories
ranging from low to very high risk (Table 5), whichwas adopted, as noted

by (Haregeweyn et al., 2017;Woldemariam et al., 2018). According to the
findings, 31.91% of the land was categorized as a low-risk area because it
had low erosion rates (1–162 t/ha/year). The remaining areas fall into
three categories: medium-risk areas (162–405 t/ha/year) (39.67%), high-
risk areas (405–205 t/ha/year) (20.78%), and very high-risk areas
(800–1875 t/ha/year) (7.64%) (Table 5). The soil erosion rates have
led to a decline in soil fertility, water-holding capacity, and crop
productivity (Beek et al., 2016; Haregeweyn et al., 2008; Haileslassie
et al., 2005). The watershed area with high soil erosion hotspots requires
immediate soil and water conservation planning and implementation
measures to reduce further soil loss and the development of gullies on
those sites.

71.58% of the watershed area is classified as having low to
moderate erosion severity (the majority of the study area is the low
to medium soil erosion category (Table 5). From the total area of the
watershed, 28.42% is grouped under high to very high erosion
severity, which needs high soil and water conservation measures
(Table 5). The watershed risk map shows that some topographically
rugged central locations and most of the southwestern and southeast
portions of the watershed are more affected by soil erosion than
others (Figure 7). Field observation verified that the high
vulnerability of the study watershed to soil erosion is associated
with the areas cultivated, barren, and degraded lands with steep
slopes. Similar findings were reported (Bekele et al., 2022; Kidane
et al., 2019), that the variation in soil erosion rate is due to land use,
topography, soil type, and various soil and water management
activities. These factors collectively contributed to the decline in
soil fertility and crop productivity in the study area. Thus, the
developed soil erosion risk map is one of the key inputs to decision-
support systems in soil resource management and can have an
impact on future land use planning in the study area.

The results of this study regarding the spatial location of soil erosion
showed that soil loss classes were high to very high in areas with steep
slopes, high drainage density, variation in climate, land use, and soil
types, and susceptibility to soil erosion. Soil erosion events result from
the spatial integration between the physical geographical factors
(topography, precipitation, vegetation cover, and soil properties)

TABLE 4 P factor with corresponding LULC type in the Sala watershed.

Land use/land cover P- value

Waterbody (-)

Forest 0.52

Cultivated land 0.9

Barren land 0.73

Grazing land 0.62

Source: Olika and Iticha (2019); Fayas et al. (2019); Prasannakumar et al. (2012).

FIGURE 7
Soil risk areas map of the Sala watershed.

FIGURE 6
P-factor map of the Sala watershed.

Frontiers in Environmental Science frontiersin.org08

Debebe et al. 10.3389/fenvs.2025.1495923

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1495923


(Khallouf et al., 2021; Abdo and Salloum, 2017; Djoukbala et al., 2019).
Moreover, human activities accelerate soil erosion, inferior
maintenance measures, agricultural intensification, population
growth, urban expansion, and military actions (Mokhtar et al., 2021;
Zubkova et al., 2021; Abdo, 2018; Abdo HazemG., 2022). Soil loss
tolerance is a valuable criterion for evaluating the potential for
production decline and associated economic repercussions,
formulating soil erosion control measures, and implementing soil
conservation activities (Stefano et al., 2023). As a result, the
quantified mean annual soil loss for the entire watershed was
312.6 t/ha/year, which was larger than the tolerable soil loss of
5–11 t/ha/year that was estimated to ensure agricultural and
economic sustainability (Morgan, 2009; Renard et al., 1996). Hence,
to maintain soil fertility and agricultural productivity, appropriate soil
and water conservation measures should be implemented in the study
of the Sala watershed, considering areas of topographic differences to
prioritize and minimize the risk of soil erosion.

4 Conclusion

Soil erosion is one of the main challenges to agricultural
sustainability that affects people’s livelihoods due to the
sustainable land management practices in the study’s Sala
watershed. It has huge potential to affect food security by
declining agricultural land productivity. In this study, the RUSLE
model was used in combination with ground measurements and
remote sensing data in a comprehensive spatial assessment of the
soil’s sensitivity to erosion. The spatial annual soil loss distribution
of the watershed ranges from 1 to 1,875 t/ha/year, and the average
annual soil loss rate is 312.6 t/ha/year. Based on the assessment of
soil erosion severity, 28.42% of the watershed is classified as having
high to very high levels of soil erosion, which require special priority
and control measures. To prioritize land management options for
the study watershed, all RUSLE parameters were integrated to
estimate the distribution of soil erosion potential using an
erosion risk area map. Thus, based on soil erosion priority levels,
integrated soil and water conservation measures should be
implemented in the study area to minimize the soil loss risk.
Furthermore, estimating soil erosion risk under the spatial and
temporal dynamics of different land uses/land covers should be a
focus of future research. In addition to this, further studies should be
focused on quantifying gullies in the Sala watershed to advance the
precision of soil loss and sediment yield estimation.
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TABLE 5 Soil loss severity classes in the Sala watershed.

Soil loss potential (ton/ha/y) Soil erosion Risk class Priority classes Area

Hectare (ha) (%)

1–162 ton/ha/y Low IV 2,527.76 31.91

162–405 ton/ha/y Moderate III 3,141.32 39.67

405–800 ton/ha/y High II 1,645.12 20.78

800–1875 ton/ha/y Very High I 605.51 7.64

Total Area 7,919.71
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