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This study investigates the impact of economic growth and foreign direct
investment (FDI) on China’s sustainable development goals (SDGs), specifically
Zero Hunger (SDG 2), Life Below Water (SDG 14), and Life on Land (SDG 15). It
examines ecological footprints and load capacity factors (LCFs) in cropland,
fishing, forest, and grazing land using Fourier bootstrap autoregressive
distributed lag (ARDL) cointegration analysis and fully modified ordinary least
squares (FMOLS) estimators. The study covers the period from 1979 to 2022. Key
findings reveal that while GDP and FDI often exacerbate environmental
degradation, urbanization and value-added agriculture, forestry, and fishing
(FAFGDP) improve sustainability in some areas. The study confirms the
pollution haven hypothesis for most models, suggesting that China’s legal and
regulatory frameworks may inadequately mitigate FDI’s adverse environmental
effects. The Environmental Kuznets Curve (EKC) hypothesis is not supported as
GDP growth generally increases ecological footprints. However, trade openness
and urbanization show positive influences on environmental sustainability. Policy
recommendations include enhancing energy efficiency, promoting renewable
energy, implementing green technologies in agriculture and urban development,
and revising FDI policies to incentivize environmentally friendly practices. These
strategies are crucial for achieving China’s sustainable development goals and
mitigating the pressures of human activities on natural resources.
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Introduction

Sustainable development is a growth model that satisfies current
needs without compromising the ability of future generations to
meet theirs. This approach aims to balance economic growth, social
equity, and environmental sustainability. The United Nations’
17 Sustainable Development Goals (SDGs) target eliminating
poverty, protecting the planet, and ensuring peace and prosperity
for all by 2030 (Sugiawan et al., 2023). The following variables are
vital for measuring the sustainable management and use of
natural resources.

The cropland footprint indicates the use of agricultural land for
food production, highlighting the need for efficient and sustainable
land use to ensure food security and ecosystem health. The cropland
load capacity factor measures the pressure agricultural lands can
sustainably bear, influencing food production sustainability.
Similarly, the fishing grounds footprint (FGF) tracks the use of
fishing areas for seafood, emphasizing the importance of sustainable
practices to prevent overfishing and marine resource depletion. The
fishing load capacity factor assesses the sustainable capacity of
fishing grounds, determining the level of fishing activity that
ecosystems can sustainably support.

The forest product footprint measures the consumption of forest
products like timber and paper, underlining the need for sustainable
forest management to conserve biodiversity and combat climate
change. The forest load capacity factor evaluates howmuch resource
extraction forests can sustainably support. The grazing land
footprint represents the use of grazing areas for livestock,
indicating the land required for meat and dairy production, and
stresses the importance of sustainable grazing to prevent soil erosion
and biodiversity loss. The grazing load capacity factor measures the
sustainable utilization capacity of grazing lands, determining the
sustainable level of livestock activity. These variables, known as
sustainable development indicators, are essential for achieving
sustainable development goals. Effective and sustainable resource
management is crucial for preserving our capacity to meet the needs
of future generations (Klimovskikh et al., 2023; Ulussever et al.,
2024). Each indicator helps develop and implement strategies for
sustainable resource use and management.

Several economic, social, and environmental factors influence
sustainable development indicators. These include GDP, foreign
trade openness, urbanization, agriculture, forestry, fishing value-
added (AGR), and foreign direct investment (FDI). GDP can impact
sustainable development indicators by improving agricultural
technologies and practices, enhancing fishing technologies, and
promoting the sustainable use of forest and livestock resources
(Yang and Solangi, 2024). Foreign trade openness (OPN) can
increase the demand for natural resources in international
markets, potentially complicating their sustainable management.
However, it also offers opportunities to import and adopt
sustainable practices and technologies (Hasan and Du, 2023).
Higher urbanization (URB) can convert agricultural and forest
lands into urban areas, affecting their use and sustainability while
increasing the demand for seafood, thereby putting pressure on
fishing grounds (Bhattarai and Adhikari, 2023). Conversely, urban
expansion can reduce the extent of grazing areas. Agriculture,
forestry, and fishing value-added (AGR) can promote efficient
and sustainable resource use, encouraging better management

practices and technological innovations. FDI can provide the
necessary financing and technology for sustainable resource
management, although it can also lead to overuse and
environmental degradation in some cases (Renyong and Sedik, 2023).

Therefore, GDP and FDI can facilitate the adoption of
sustainable practices in agriculture, forestry, and fishing. OPN
can increase natural resource demand while promoting
sustainable technologies and practices. Higher URB can impact
natural resource use and sustainability, often reducing
agricultural and forest lands. Figure 1 illustrates the proportion
of the Chinese population within the global population in 2023.

In 1961, the Chinese economy made up roughly 1.01% of the
global GDP, but by 2023, this share had increased to 18.5% (World
Bank, 2024a). Additionally, as depicted in Figure 1, China, with its
swiftly growing economy and a population of 1.410 billion in 2023,
comprises approximately 18% of the global population. This
substantial GDP and population underscore the importance of
sustainable natural resource management. Sustainable
development is vital for sustaining China’s long-term economic
growth, preventing environmental degradation, and ensuring social
equity. Advancements in sustainable development goals will yield
numerous benefits for the Chinese economy. For instance, efficient
and sustainable agricultural land use will enhance food security,
reduce import reliance, and boost agricultural production. Given
China’s responsibility to feed a significant portion of the world’s
population, progress in this area is crucial. Enhancing the
sustainable use capacity of agricultural land is essential for
maintaining soil fertility and ensuring ongoing agricultural
production, thereby providing stability in the agricultural sector
and supporting rural economic development.

Decreasing per capita use of fishing grounds will aid in
protecting marine ecosystems and promoting sustainable fishing
practices, ensuring the sustainable use of marine resources and
bolstering economic sustainability in the fishing sector (Kemp

FIGURE 1
Population of China (2023) (World Bank, 2024a).
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et al., 2023). Increasing the sustainable use capacity of fishing
grounds will prevent overfishing, protect marine ecosystems,
ensure the sustainability of seafood production, and safeguard the
livelihoods of local communities (Soeparna and Taofiqurohman,
2024). Reducing per capita use of forest products will foster forest
conservation and sustainable forest management, helping preserve
biodiversity and combat climate change (Rosenfeld et al., 2024).
Enhancing the sustainable use capacity of forest ecosystems will
protect their ecological functions and ensure the continued
sustainable production of forest products, providing economic
sustainability in the forest product sector and supporting rural
livelihoods (Tampekis et al., 2024). Decreasing per capita use of
grazing lands will prevent pasture overuse and maintain soil
fertility, enhancing sustainability in the livestock sector and
ensuring food security (Caradus et al., 2024). Increasing the
sustainable use capacity of grazing lands will mitigate the negative
impacts of livestock activities on ecosystems and maintain the long-
term productivity of pastures, supporting economic sustainability in
the livestock sector and strengthening rural economies (Li et al., 2024).

Therefore, the sustainable use of natural resources prevents
environmental degradation and ecosystem destruction, playing a
critical role in preserving biodiversity and combating climate change.
Sustainable agricultural, forestry, and fishing practices support long-
term economic growth and stability by promoting efficient resource use
and building resilience against economic crises. Adopting sustainable
practices in the agriculture and livestock sectors helps increase food
production and security, essential for feeding China’s growing
population. Sustainable development enhances economic
opportunities in rural areas, protects local communities’ livelihoods,
reduces income inequality between rural and urban areas, and ensures
social equity. Achieving sustainable development goals will bolster
China’s environmental leadership on the global stage and contribute
to worldwide sustainability efforts.

Improvements in China’s sustainable development indicators
will support long-term economic growth, ensure environmental
protection, enhance social equity, and significantly contribute to
global sustainability efforts. Consequently, the efficient and
sustainable management of natural resources is crucial for China
to achieve its sustainable development goals. The following
information illustrates the proportions of the Chinese economy
in global meat, milk, and egg production in 2021.

As shown in Figure 2, China accounted for 14% of global meat
production in 2021 and approximately 37% and 5% of global egg
and milk production, respectively. This substantial share in global

production underscores the importance of sustainable natural
resource management in China. Sustainable development
indicators are crucial for strategic decision-making to ensure
agriculture, livestock, and fishing sustainability (Yang and
Solangi, 2024). For example, producing feed crops for meat and
milk requires extensive agricultural land. The per capita agricultural
land footprint is vital for efficient resource use.

Efficient agricultural land use ensures sustainable feed crop
production, meeting the livestock sector’s needs and supporting
meat and milk production sustainability.

Optimizing the feed crop production capacity guarantees the
livestock sector’s continuity. Enhancing the agricultural lands’ load
capacity ensures sustained and efficient feed production, stabilizing
meat and milk production.

Fish and seafood production plays a crucial role, particularly for
fish feed. The per capita fishing grounds footprint measures the
efficiency of resource use. Sustainable fishing practices protect fish
and seafood stocks, supporting fish feed production and enhancing
feed resource sustainability in the livestock sector. Protecting fish
stocks for fish feed production is critical, and optimizing the fishing
load capacity ensures the protection and sustainability of fish stocks
for fish feed production (Naghdi et al., 2024).

Forest products, such as feed additives and agricultural
equipment, are used in various ways in the agriculture and
livestock sectors. The sustainable use of forest products meets
these sectors’ needs and supports their sustainability. Sustainable
forest ecosystem use ensures biodiversity protection and indirectly
supports agricultural and livestock activities. Increasing forest load
capacity ensures forest resource protection and sustainable use,
indirectly supporting the agriculture and livestock sectors.

Grazing lands are fundamental for meat and milk production in
the livestock sector. The per capita grazing land footprint ensures
efficient land use. Efficient grazing land use supports livestock sector
sustainability and increases the animal product (meat and milk)
production capacity. Optimizing environmental sustainability in
livestock activities is necessary. Increasing the load capacity of
grazing lands reduces the negative impacts of livestock activities
on ecosystems and supports sustainable livestock production (Henn
et al., 2024).

Therefore, China’s significant share in global meat, milk, and egg
production necessitates the efficient and sustainable use of natural
resources. Sustainable development ensures food security,
environmental protection, economic sustainability, and long-
term planning.

FIGURE 2
Meat, egg, and milk production in China (2021) (Food and Agriculture Organization of the United Nations, 2024).
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Conversely, economic sustainability and strategic long-term
planning in agricultural production are vital for sustainable
development. Figure 3 depicts the agricultural output of the top
10 economies with the highest global agricultural
production in 2020.

China’s status as the world’s second-largest producer of
softwood and hardwood (including bamboo) (Statista, 2024;
Wang et al., 2023), along with its leading role in agricultural
production, as depicted in Figure 3, highlights the critical need
for sustainable development indicators to sustainably manage and
use natural resources. Key variables such as cropland footprint per
capita, cropland load capacity factor, fishing grounds footprint per
capita, fishing load capacity factor, forest products’ footprint per
capita, forest load capacity factor, grazing land footprint per capita,
and grazing load capacity factor are essential for ensuring the
sustainability of China’s natural resources and minimizing
environmental impacts.

Thus, China’s prominent role in softwood and hardwood
production and agriculture requires the efficient and sustainable
use of natural resources. Sustainable development ensures food
security, environmental protection, economic sustainability, and
long-term planning.

Alternatively, economic sustainability and strategic, long-term
planning in agricultural production are crucial for sustainable

development. Figure 3 illustrates the agricultural output of the
top 10 economies leading global agricultural production in 2020.

Upon examining Figure 4, it is evident that the agricultural
sector’s contribution to China’s GDP was 37.5% in 1965, decreasing
to 29.6% in 1980, 14.7% in 2000, 9.3% in 2010, and further
decreasing to 7.1% in 2023. In contrast, the industrial sector’s
contribution to GDP was 35.1% in 1965, increasing to 48.1% in
1980, 45.5% in 2000, 46.5% in 2010, and then decreasing slightly to
38.3% in 2023. This significant shift from an agriculture-based
economy to a highly industrialized economy highlights the
increased importance of managing resource sustainability and
environmental impacts. Sustainable development indicators are
thus critical for ensuring sustainable growth throughout China’s
industrialization process.

The transition from an agriculture-based economy to one
characterized by intense industrialization necessitates the efficient
and sustainable use of natural resources (Herman, 2024).
Sustainable agricultural and fishing practices are vital for securing
the production capacity to feed China’s large population and
ensuring food security. Managing natural resources sustainably
helps protect forest, agricultural, and marine ecosystems while
maintaining biodiversity. Sustainable practices also support
economic stability and growth in agriculture, forestry, and
fisheries (Sharma et al., 2024).

FIGURE 3
Agricultural production (2022) (Food and Agriculture Organization of the United Nations, 2024).

FIGURE 4
Agricultural and industrial sector revenues in China from 1962 to 2023 (World Bank, 2024a).
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China must develop and implement long-term strategies for the
sustainable management of natural resources to ensure that the
needs of future generations are met.

Policy actions concerning cropland, fishing, forests, and grazing
are crucial for various SDGs, particularly Zero Hunger (SDG 2), Life
Below Water (SDG 14), and Life on Land (SDG 15), while also
indirectly influencing others like No Poverty (SDG 1) and Climate
Action (SDG 13). Strengthening the supply chain, conserving
natural resources, and preventing environmental degradation on
land, in forests, and in marine environments are essential initiatives
for promoting sustainability in all countries.

Due to its vast population, which constitutes approximately
17.72% of the global population, China’s unique position makes
sustainable resource management critical. China’s substantial
contribution to global meat, milk, and egg production (14%,
4.49%, and 36.83%, respectively) and its significant share in
global fish and aquaculture production underscore the
importance of sustainable practices for global food security in
these sectors. Additionally, China is a major producer of
softwood and hardwood, emphasizing the need for sustainable
management of its forestry resources.

Given China’s role as a major agricultural producer and its
massive transformation toward industrialization, sustainable
management of its natural resources is crucial for national and
global supply chains. The research aims to test the Environmental
Kuznets Curve (EKC) and load capacity curve (LCC) hypotheses in
China, focusing on cropland, fishing, forests, and grazing lands
using Fourier bootstrap autoregressive distributed lag (ARDL)
cointegration and FMOLS estimators with the Fourier function.
With reference to all concepts evaluated in the study, the study
provides comprehensive knowledge on sustainable agriculture and
fishing using advanced econometric approaches. Focusing on the
demand and supply sides of all relevant dependent variables plays a
vital role in mitigating degradation and enriching productivity in
terms of the EKC and LCC hypotheses; this study represents one of
the first comprehensive investigations into the scope of sustainable
agricultural and fishing. Moreover, Fourier bootstrap ARDL
cointegration analysis provides more consistent results compared
to the methods that ignore structural changes, and the FMOLS
estimators confound the concerns of serial correlation and
endogeneity by achieving asymptotic efficiency. Furthermore, the
FMOLS estimators yield more reliable results in small samples and
help eliminate bias caused by missing series. This study is a
pioneering effort in separately focusing on all relevant ecological
indicators to enhance understanding and policymaking in
sustainable development.

Literature review

With the globalization process, discussions on the environment
have increased. In this context, researchers have conducted many
studies. The environmental issue was first associated with economic
growth. The effects of economic growth on the environment have
been addressed in numerous studies. In this context, the EKC
hypothesis, which argues that there is an inverted U-shaped
relationship between real GDP and CO2 emissions, is frequently
researched (Li et al., 2024; Aydin and Degirmenci, 2024). The

validity of different forms of the EKC hypothesis has been
investigated for various periods and countries. It has been
observed that time series and panel data methodologies are used
very frequently. In these studies, CO2 emissions are generally
preferred to represent environmental conditions. It has been
determined that GDP per capita is used as the economic growth
variable. Increased industrialization, high growth in global
production, and the acceleration of liberalization steps have made
foreign direct investments important. In this context, the
relationship between foreign direct investments and the
environment has begun to attract attention. Research has
increasingly focused on the environment–foreign direct
investment relationship. These studies tested the validity of the
pollution haven and pollution halo hypotheses. The pollution haven
hypothesis argues that foreign direct investment not only
contributes positively to the economic development of developing
countries but also forms the basis of environmental degradation
experienced in these countries. On the other hand, the view that
foreign direct investment reduces environmental degradation in
developing countries supports the pollution halo hypothesis
(Destek et al., 2024; Yilanci et al., 2023). In both hypotheses, the
environmental variable is often represented by CO2 emissions. The
ecological footprint variable has recently begun to be used frequently
among environmental indicators. On the other hand, recent studies
have found that the load capacity factor (LCF) variable is rarely used.
In addition to the EKC hypothesis, a new curve, the LCC), can be
tested using the LCF. With LCC, it is argued that as income
increases, environmental degradation initially increases, and
above a certain income level, environmental degradation will
decrease (Pata and Kartal, 2023).

Table 1 lists studies focusing on environmental degradation. In
this context, the focus is on current research that tests the EKC,
pollution halo, pollution haven, and LCC hypotheses.

When Table 1 is examined, it is observed that economic growth,
foreign direct investment, and other socio-economic variables affect
environmental degradation. Studies show that CO2 emissions are
the most commonly used indicator of environmental conditions. In
a few studies, it has been found that the ecological footprint variable
is preferred. The choice is influenced by the fact that the ecological
footprint is a more comprehensive indicator than CO2 emissions.
On the other hand, it has been determined that the LCF variable is
preferred in current studies. In this context, it stands out as an
important variable for comparing results, especially in empirical
studies. LCF, which monitors ecological thresholds by comparing
biological capacity with the ecological footprint, enables
comprehensive research on environmental degradation. Unlike
CO2 and the ecological footprint, an increase in the LCF
indicates improved environmental quality (Pata and Isik, 2021).
In contrast, CO2 and the ecological footprint indicate degradation,
while the LCF signals recovery (Pata and Kartal, 2023).

It has been determined that aside from the environmental
variables in question, the most frequently used variable is energy
consumption, along with economic growth and foreign direct
investment. In this context, renewable or non-renewable energy
consumption variables were preferred. The primary reason for this
preference is that energy consumption from fossil fuels increases
carbon emissions (Ghorbal et al., 2024; Li and Haneklaus, 2021;
Hanif, 2018).When research on the validity of the EKC hypothesis is
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TABLE 1 Details of the literature.

Researcher(s) Country/time period Variable Empirical method(s) Empirical results

Al-Mulali et al. (2015) Vietnam/1981–2011 CO2, renewable and non-
renewable electricity
consumption, capital stock,
employment, foreign trade, and
GDP per capita

ARDL EKC hypothesis (x)

Baek (2016) Five ASEAN countries/
1981–2010

CO2, GDP per capita, energy
consumption, and FDI

Panel cointegration, PMG Pollution haven hypothesis (✓)

Bakirtas and Cetin (2017) MIKTA countries/1982–2011 CO2, FDI, per capita energy
consumption, and per
capita GDP

Panel VAR
Panel causality

Pollution haven hypothesis (✓)

Liu et al. (2017) Four ASEAN countries/
1970–2013

CO2, renewable and non-
renewable energy consumption,
agricultural sector added value,
and GDP

Panel cointegration, OLS, FMOLS, and
DOLS

EKC hypothesis (−)

Shao (2017) 188 countries/1990–2013 CO2, fossil fuel consumption,
manufacturing industry added
value, urbanization, openness,
and FDI

Panel GMM Pollution halo hypothesis (✓)

Dong et al. (2018) 14 Asia-Pacific Countries/
1970–2016

CO2, natural gas consumption,
and GDP per capita

Panel cointegration, causality, AMG,
and FMOLS

Environmental Kuznets Curve
hypothesis (✓) 13 Countries.
Invalid for Philippines.

Destek and Okumuş (2019) 10 Countries/1982–2013 Ecological footprint, GDP per
capita, energy consumption,
and FDI

Panel cointegration, CCE and MG Pollution haven hypothesis (✓)

Lorente et al. (2019) MINT countries/1990–2013 Ecological footprint, foreign
direct investment, GDP per
capita, renewable energy
consumption, and population

Panel OLS and FMOLS Pollution hypothesis (✓)

Balsalobre-Lorente et al.
(2019)

MINT countries/1990–2013 Ecological footprint, FDI,
urbanization, renewable energy
consumption, and GDP per
Capita

Panel cointegration, FMOLS, and
DOLS

Environmental Kuznets Curve
and pollution haven
hypotheses (✓)

Rahman et al. (2019) Pakistan/1975–2016 CO2, agricultural value added,
GDP, financial development,
openness, FDI, and population

NARDL Pollution haven hypothesis (✓)

Güzel and Okumuş (2020) Five ASEAN Countries/
1981–2014

CO2, GDP per capita, FDI, and
energy consumption per capita

Panel cointegration, CCE, and AMG Pollution haven hypothesis (✓)

Adeel-Farooq et al. (2020) 76 countries/2002–2012 Environmental performance
index, FDI, GDP per capita,
energy consumption, and
urbanization

Panel GMM Pollution halo hypothesis (✓)
in developed countries and
pollution haven hypothesis (✓)
in developing countries

Pata and Isik (2021) China/1981–2017 LCF, human capital, energy
intensity, natural resource
rents, and GDP

Dynamic ARDL It was concluded that increases
in natural resource rent,
income, and energy intensity
caused a decrease in the LCF. It
has also been found that
human capital increases
environmental quality in the
long term. EKC hypothesis (✓)

Bulut et al. (2021) Türkiye/1970–2016 CO2, electricity production
based on renewable energy,
FDI, and GDP per capita

Soft transition panel regression model Pollution haven hypothesis (✓)

Udemba and Yalçıntaş
(2021)

Algeria/1970–2018 CO2, GDP per capita, natural
resource use, non-renewable
energy consumption, and FDI

NARDL Pollution halo hypothesis (✓)

Işık et al. (2021) Eight OECD countries/
1962–2015

CO2, energy consumption,
openness, population density,
and GDP per capita

Fixed effect regression and CCEMG Environmental Kuznets Curve
hypothesis (✓). Four countries

(Continued on following page)
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TABLE 1 (Continued) Details of the literature.

Researcher(s) Country/time period Variable Empirical method(s) Empirical results

Fareed et al. (2021) Indonesia/1965Q1–2014Q4 LCF, renewable energy
consumption, non-renewable
energy consumption, GDP, and
exports

Fourier quantile causality,
Fourier–Toda–Yamamoto causality

Renewable energy and export
diversification increase LCF
and support environmental
quality. On the other hand, the
increase in the consumption of
non-renewable energy reduces
the LCF.

Pavlović et al. (2021) 10 Balkan countries /1998–2019 CO2, energy consumption,
person, GDP per capita,
and FDI

Pearson correlation and polynomial
linear regression

Pollution haven hypothesis (✓)

Gyamfi et al. (2021) E7 countries/1995–2018 CO2, energy consumption,
and GDP

Panel cointegration, ARDL, and
causality

EKC hypothesis (✓)

Shikwambana et al. (2021) South Africa/1994–2019 CO2 and economic growth rate Sequential Mann–Kendall test EKC hypothesis is (−)

Pata and Balsalobre-Lorente
(2022)

Türkiye/1965–2017 LCF, GDP per capita, primary
energy consumption per capita,
and tourism

Dynamic ARDL Economic growth, increases in
the tourism, and energy
consumption have negative
effects on the LCF in the long
term

Abdulmagid Basheer Agila
et al. (2022)

South Korea/1970–2018 LCF, GDP per capita, non-
renewable energy consumption,
renewable energy consumption,
and trade globalization

Quantile cointegration and quantile
causality

Most of the quantiles show that
economic growth, structural
change, renewable and non-
renewable energies, and trade
globalization reduce the LCF.

Özbek and Oğul (2022) Türkiye/1990–2018 CO2, GDP per capita, and
primary energy consumption
per capita

ARDL and FMOLS CCR EKC hypothesis (✓)

Xu et al. (2022) Brazil/1970–2017 LCF, GDP per capita,
renewable energy consumption,
urbanization, non-renewable
energy consumption, and
financial globalization

ARDL It has been concluded that
renewable and non-renewable
energy and economic growth
decrease the LCF, financial
globalization increases it, and
urbanization has no effect

Awan and Azam (2022) G20 countries/1993–2017 CO2, GDP per capita,
technological development,
financial development, and
social globalization

Panel cointegration and panel causality There is a relationship in the
form of panel cointegration
and panel causality N

Pata and Samour (2022) France/1977–2017 LCF, CO2, ecological footprint,
GDP per capita, nuclear energy
consumption, and renewable
energy consumption

Fourier ARDL and
Fourier–Toda–Yamamoto causality

Nuclear energy reduces CO2

emissions and increases the
load capacity factor

Abbasi et al. (2023) Asian countries/1985–2020 CO2, GDP per capita, foreign
direct investment,
urbanization, primary energy
consumption per capita, and
number of tourists

Panel cointegration, PMG, and ARDL Environmental Kuznets Curve
and pollution haven
hypotheses (✓)

Aminu et al. (2023) Sub-Saharan African countries/
1995–2019

CO2, industrial value-added,
financial development, foreign
direct investment, primary
energy consumption, and
employment

Panel cointegration and FMOLS Environmental Kuznets Curve
and pollution haven
hypotheses (✓)

Pata and Kartal (2023) South Korea/1977–2018 LCF, CO2, ecological footprint,
GDP per capita, nuclear energy
consumption, renewables, and
energy consumption

Bayer–Hanck cointegration, ARDL,
DOLS, and CCR

EKC and LCC hypotheses (✓)

Raihan et al. (2023) Mexico/1971–2018 LCF, GDP per capita,
urbanization, financial
globalization, primary energy
consumption per capita, and
renewable energy consumption

ARDL, FMOLS, DOLS, and CCR Urbanization, economic
growth, and non-renewable
energy consumption reduce
the LCF and increase
environmental degradation

(Continued on following page)
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examined, the study by Grossman and Krueger (1991) is considered
a pioneering work. The authors tested the validity of the EKC
hypothesis using data from the economies of 42 countries for the
period 1977–1988. The results of the study using the panel GLS
method showed the validity of the relevant hypothesis. Under the
leadership of this study, many studies have been conducted on the
EKC hypothesis. These studies observed that in addition to the
inverted U-shaped relationship, the N-shaped relationship has also
been tested (Azam et al., 2024; Mohammed et al., 2024; Sarkodie and
Ozturk, 2020). Thus, the course of the relationship between
economic growth and the environment is determined
periodically. In addition, turning points in relationships can be
determined, and mathematical results can be produced. When the
studies on the EKC Hypothesis in Table 1 are examined, it is
understood that the results vary depending on the period,
country, and empirical method used. However, in general, it was
concluded that the relevant hypothesis was mostly valid. Interest in
the pollution halo and pollution haven hypotheses increased in the
periods following the introduction of the EKC hypothesis. Birdsall
and Wheeler’s (1993) study on the validity of the pollution haven
hypothesis is a pioneering study. The authors tested the validity of
the relevant hypothesis in 25 Latin American countries during the
1960–1988 sample period. In the study where regression analysis
was used as the empirical method, it was concluded that the
pollution haven hypothesis is valid. In the following period, the
relevant hypothesis was tested in numerous studies. Studies have
shown that there has been an increase in the 2000s, when the
globalization process deepened. Although foreign direct investment
inflows were mostly used in the studies, foreign direct investment
outflows were also preferred. Although there is no consensus on its
validity, most findings support the pollution haven hypothesis. In
the pollution haven hypothesis, as in the EKCHypothesis, the results
vary depending on the country, period, and empirical method used.
It has been observed that the EKC and pollution haven hypotheses

have been tested together in a limited number of recent studies
(Aminu et al., 2023). This enables broader policy recommendations
to be made regarding environmental degradation. Although results
vary depending on the period, country, and method used, there are
studies that support the validity of the EKC and pollution haven
hypotheses together (Akkaya and Çetin, 2024; Pata et al., 2023b). In
this study, where the effects of various variables on the environment
are extensively examined, the EKC, pollution haven, and pollution
halo hypotheses are examined in depth. On the other hand, recently,
in addition to these hypotheses, there have been studies on LCC and
fisheries LCC hypotheses, albeit in limited numbers (Raihan et al.,
2023; Pata et al., 2023a). The main point in these studies is that the
dependent variable used is LCF and its derivatives. In this context, it
is observed that variables such as fishery LCF, GDP per capita,
fishing production, fishing footprint, container port traffic, nuclear
energy consumption, renewable energy consumption, foreign direct
investment, urbanization, and financial development are used (Adalı
et al., 2024; Wang et al., 2024). There is evidence in studies that
financial development and foreign direct investments will increase
environmental degradation by increasing economic development
and energy consumption, suggesting that they may increase
economic expansion and energy consumption and potentially
harm the environment (Akinsola et al., 2022; Kihombo et al.,
2021; Shahbaz et al., 2023).

Data and methodology

In order to provide the policy guidelines for various
SDGs—directly Life on Land, Life Below Water, and Zero
Hunger and indirectly for No poverty, Climate Action, and other
SDGs— the EKC, LCC, the pollution haven, or halo hypotheses are
analyzed. Urbanization, foreign trade openness, agriculture,
forestry, and fishing value-added are included as the control

TABLE 1 (Continued) Details of the literature.

Researcher(s) Country/time period Variable Empirical method(s) Empirical results

Ozturk et al. (2023) South Asian countries/
1971–2018

Ecological footprint, GDP per
capita, primary energy
consumption per capita,
foreign direct investment, and
financial development

Panel cointegration, FMOLS, DOLS,
and PMG

Environmental Kuznets Curve
and pollution haven
hypotheses (✓)

Pata et al. (2023a) Top 20 countries with highest
fisheries production/2000–2018

Fisheries LCF, GDP Per capita,
fisheries production, fishing
footprint, and container port
traffic

Panel cointegration and
Dumitrescu–Hurlin panel causality

Fisheries LCC and EKC
hypotheses (✓)

Hakkak et al. (2023) Russia/1992–2018 LCF, ecological footprint, GDP
per capita, urbanization,
nuclear energy consumption,
and renewable energy
consumption

ARDL EKC and LCC hypotheses (✓)

Demir et al. (2024) Türkiye/1970–2021 CO2, GDP per capita, primary
energy consumption per capita,
and trade openness

A-ARDL EKC hypothesis (✓)

Zheng et al. (2024) China/1980–2019 CO2, GDP, foreign direct
investment, energy intensity,
and population

NARDL Pollution haven hypothesis (✓)

Note: PMG, pooled mean group; DOLS, dynamic ordinary least squares; FMOLS, fully modified ordinary least squares; CCR, canonical cointegrating regression; FGLS, feasible generalized least

squares; SGMM, system generalized method of moments; MG, mean group; GMM: generalized method of moments; ARDL, autoregressive distributed lag; A-ARDL, augmented-ARDL.
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variables within the framework of these hypotheses. Within this
scope, this study employs an annual time series spanning from
1979 to 2022 by considering the availability of all used series. In the
study, the cropland footprint, the fishing ground footprint, the forest
products’ footprint, the grazing land footprint, and these series’ load
capacity factors are utilized as the dependent variables. Using the
series’ footprint and LCF data, this study provides comprehensive
evidence on the demand and supply sides of the environmental
indicators, contributing to holistic strategies for mitigating
environmental degradation and enhancing sustainability.

Table 2 provides the characteristics and information on the
variables. The study transforms all series into natural logarithm
forms to calculate elasticity and ensure reliable and consistent
results by mitigating heteroskedasticity. After providing the
series details, Table 3 presents the descriptive analysis.
According to the outcome of Table 3, the variable with the
highest mean value is lnGDP, whereas the variable with the
lowest value is lnGF. However, the highest standard deviation
value is lnFDI.

In the study, the approach suggested by Narayan and Narayan is
followed to test the EKC, LCF, and pollution haven/halo hypotheses.
According to this approach, long-run income and LNFDI elasticity
are first estimated; then, the short-run equation is derived using the
residual terms from the long-run estimations, allowing the
hypothesis to be evaluated by comparing long- and short-term
elasticity. Focusing on the differences in the shape and
interpretation of the EKC and LCF hypotheses, two model
equations are demonstrated. The models for the footprints and
LCFs of the series are shown in Equations 1, 2.

lnEFt � c 0 + θ1 lnGDPt + θ2 lnFDIt + θ3 lncontrol variablet + ϵt,
(1)

lnEFt � c 0 + δ1 lnGDPt + δ2 lnFDIt + δt lncontrol variablet + ϵt.
(2)

In Equation 1, lnEF represents all footprint variables and
lncontrol variables represent lnURB, lnLNTRADE, and
lnFAFGDP, while c 0 and ϵt are constant and the white noise
terms, respectively. Moreover, θ1 and θ2 denote the long-run
coefficient of lnGDP and lnFDI.

When performing the short-run estimations, comparing the
short- and long-run coefficients of explanatory variables provides
knowledge for testing the EKC and pollution haven/halo hypotheses.
If long-term income and FDI elasticity are found to be lower than
their short-run values, the presence of EKC and pollution halo
hypotheses is confirmed. Because of the LCC hypothesis framework,
if the long-term coefficients of lnGDP and lnFDI and the short-run
coefficients of the considered variables are positive and negative,
respectively, the LCC hypothesis is confirmed. After the preliminary
analysis of the series, Figure 5 shows the steps for performing the
econometric process in the study. Figure 5 reveals the methodology
of the econometric methods.

Fourier bootstrap ARDL
cointegration analysis

The conventional ARDL approach is one of the most widely
used methods for testing the validity of the cointegration
relationship between variables. When determining the presence
of a cointegration connection between variables, two conditions
stated by Pesaran et al. (2001) should be considered. First, the
coefficient of the error correction terms and the lagged explanatory
variables must be statistically significant in the ARDL model.
Second, the lower and upper critical bounds test, as proposed by
Pesaran et al. (2001), must be conducted.

However, executing upper and lower critical bounds is not
necessary for the first condition as its validity relies on the order
of integration of the variables. Suppose the variables considered in

TABLE 2 Abbreviations and sources.

Variable Abbreviation Log
transformation

Data source

Cropland footprint per capita CF lnCF Global Footprint Network (Global Footprint Network,
2023)

Cropland load capacity factor C-LCF lnCLCF

Fishing grounds footprint per capita FF lnFF

Fishing load capacity factor F-LCF lnFLCF

Forest products’ footprint per capita FP-F lnFPF

Forest load capacity factor FP-LCF lnFPLCF

Grazing land footprint per capita GF lnGF

Grazing load capacity factor G-LCF lnGLCF

Per capita real gross domestic product (constant 2015 US
dollar)

GDP lnGDP World Development Indicators (World Bank, 2024b)

Foreign TRADE openness (% of lnGDP) TRADE lnTRADE

URBAN population (% of total population) URB lnURB

Agriculture, forestry, and fishing value-added (% of lnGDP) FAFGDP lnFAFGDP

Foreign direct investment (net inflows % of lnGDP) FDI lnFDI
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TABLE 3 Descriptive statistics.

Mean Median Maximum Minimum Standard deviation Skewness Kurtosis Jarque-Bera Probability Sum Sum sq. deviation

LNCF −11.314 −11.965 −0.7685 −15.88 0.2156 −0.0270 2.3634 0.7481 0.6879 −49.785 1.9994

LNCLCF −0.1696 −0.1239 −0.0355 −0.39 0.1114 −0.7626 2.1729 5.5196 0.0633 −74.644 0.5341

LNFF −29.792 −27.549 −26.308 −36.9 0.3779 −0.8871 2.1064 7.2355 0.0268 1.310.8 6.1421

LNFLCF −0.0485 −0.2959 0.9140 −0.52 0.4955 0.8785 2.1644 6.9407 0.0311 −21.355 10.558

LNFPF −17.189 −17.173 −14.161 −18.98 0.1313 0.8781 2.9960 5.6547 0.0591 −75.632 0.7419

LNFPLCF 0.203 0.2423 0.377 −0.083 0.1184 −109.840 3.5110 9.3265 0.0094 8.9409 0.6031

LNGF −20.770 −20.697 −20.04 −21.95 0.0413 −0.7984 3.3407 4.8874 0.0868 −91.391 0.0735

LNGLCF −0.1181 −0.1228 0.0296 −0.26 0.0631 0.0561 2.7905 0.1036 0.9495 −51.985 0.1713

LNLNGDP 7.753 7.7298 9.3553 6.0028 1.0619 −0.0556 1.7033 3.1049 0.2117 341.16 48.493

LNLN TRADE 3.465 3.5787 4.1663 2.4057 0.4691 −0.5831 2.4516 3.0447 0.2181 152.46 9.4639

LNURB 3.573 3.5800 4.1519 2.8848 0.3870 −0.1265 1.7441 3.0772 0.2146 160.80 6.5913

LNFAFGDP 26.92 26.9474 27.790 25.945 0.5279 −0.1689 1.9983 2.0488 0.35901 1184.7 11.984

LNLNFDI 0.2443 0.8780 1.789 −104.0 2.0368 −35.822 18.3811 527.83 0.0000 10.7509 178.391

Notes: Observations 44.
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the model are cointegrated at I (1), confirming the first condition. In
this case, the low power properties of conventional unit root tests
should be taken into account (Goh et al., 2017). The conventional
ARDL approach uses F- and t-statistics, and comparing these test
statistics with the lower and upper bounds defined as I (0) and I (1),
respectively, is essential for testing the validity of the cointegration
connection. If the test statistics exceed the upper bound critical
values, the null hypothesis indicating the absence of cointegration
can be rejected. However, if the test statistics fall between the upper
and lower bounds, it becomes inconclusive to determine the validity
or absence of cointegration.

To address the limitations of the conventional ARDL approach,
McNown et al. (2018) proposed employing bootstrap critical values,
introducing an approach labeled as the bootstrap autoregressive
distributed lag. When comparing the properties of the conventional
and bootstrap ARDL approaches, it is claimed that the bootstrap
ARDL approach provides more robust power properties than the
conventional ARDL approach when multiple explanatory variables
are present. Additionally, the bootstrap ARDL approach does not
impose limitations on the order of integration of the series and is
considered effective in correcting the weak power and size
characteristics of conventional ARDL approaches (Pata and
Aydın, 2020).

ΔlnXt � θ0 + ∑p−1
i�1

θ1 ΔlnXt−i +∑z−1
i�1

θ2 ΔlnYt−i +∑k−1
i�1

θ3 ΔlnY2
t−i

+∑k−1
i�1

θ4 Dt,i + γ1 lnX t−1 + γ2 lnY t−1 + γ3 lnY
2
t−1 + µt. (3)

In Equation 3, the constant terms are represented by θ0, while
the short-term zero coefficients are denoted by θ1, θ2, and θ3. In
addition, γ1, γ2, and γ3 denote the long-term coefficients, while the
dummy variables showing the sharp structural breaks are
represented by Dt,i.

In order to determine the cointegration relationship between the
variables, McKown et al. (2018) introduced novel test statistics for
the lagged values of the independent variables, in addition to the F-
and t-statistics. In this context, the overall F-statistic, t-dependent
statistic for the lagged dependent variables, and the newly
introduced F-independent statistic for the lagged independent
variables are employed to test the null hypothesis. The null
hypothesis employed for these three statistics are shown in
Equations 4-6 as follows:

Fstatistic → H0 � γ1 � γ2 � γ3 � 0, (4)
Tdependent → H0 � γ1 � 0, (5)

Fstatistic → H0 � γ1 � γ2 � γ3 � 0. (6)

Later, the bootstrap ARDL test is augmented with Fourier terms,
as developed by Solarin (2019), and the fractional frequency flexible
Fourier forms are incorporated into the bootstrap ARDL approach
proposed by Yilanci et al. (2020). Overall, if the three test statistics
considered are simultaneously greater than the measured bootstrap
critical values, the null hypothesis should be rejected, confirming the
existence of a cointegration relationship between the variables.

FMOLS estimators with the Fourier function

The fully modified ordinary least squares (FMOLS) estimator,
proposed by Phillips and Hansen (1990), is regarded as one of the
most effective and reliable estimators because most estimators face
issues such as serial correlation and endogeneity, which impair the
consistent estimation of regressors. The FMOLS estimator
overcomes these problems by achieving asymptotic efficiency and
provides more consistent results in small samples. Additionally,
FMOLS estimators eliminate the bias caused by missing series.

Although FMOLS estimators generate long-run coefficients,
short-run estimators can also be derived using the residual terms
from the long-run estimation as error correction (EC) terms and
employing the first-difference values of the series under
consideration. Furthermore, when FMOLS estimators are
augmented with the Fourier function, the Fourier FMOLS
estimators can be obtained, enabling estimation while accounting
for smooth structural breaks.

Fourier Toda–Yamamoto causality analysis

The conventional Toda–Yamamoto (T-Y) causality analysis,
introduced by Toda and Yamamoto (1995), is one of the most
widely used causality analyses in the literature for detecting causality
connections between variables. The T-Y causality analysis relies on
the vector autoregressive (VAR) models of Sims (1980) and provides
more robust information compared to the Granger causality analysis
as it uses the level values of the variables, thereby avoiding long-run
information loss.

FIGURE 5
Econometric process.
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In T-Y causality analysis, the optimal lag length is determined by
considering the lag based on the VAR model (denoted as p) and the
maximum order of integration of the series (represented as dmax).
Thus, p + dmax represents the optimal lag length used in the T-Y
causality analysis. Additionally, the T-Y causality analysis is
regarded as a flexible method because prior information on unit
root and cointegration properties is not required.

However, the T-Y causality analysis assumes that the constant
term remains stable over time and that structural changes do not
impact the series’ data generation process.

Neglecting structural changes, including various properties such
as unknown numbers, dates, and smooth or sharp transitions, may
lead to biased or misleading rejections of the null hypothesis.

In this context, Enders and Jones (2016) emphasized that failing to
account for structural changes in VARmodels can produce inaccurate
and inconsistent evidence of causal connections. To address this,

researchers have utilized the Fourier function in VAR models,
leading to the development of the Fourier Granger (FG) causality
analysis. Nazlioglu et al. (2016) extended this by incorporating the
Fourier function into the T-Y causality analysis, introducing the
Fourier Toda–Yamamoto (FTY) causality analysis. By integrating
the Fourier function, the FTY causality analysis accounts for
smooth structural breaks and mitigates long-run information
loss, enhancing the robustness of causality detection.
Furthermore, the single-frequency FTY causality analysis is
expressed in Equation 7.

mt � α0 + α1 mt−1 + . . . . . . + αp+dmax mt− p+dmax( ) + γ1 sin
2kπt
T

( )
+ γ2 cos

2kπt
T

( ) + μt.

(7)

TABLE 4 Unit root test results for the variables at the level.

Variables ADF KPSS FADF FKPSS

Constant Constant
and trend

Constant Constant
and trend

Constant Constant
and trend

Constant Constant
and trend

lnCF −1.0715
(0.7185)

−2.3547 (0.3970) 0.8285 0.1065 −2.2758 [1,
21.622]

−2.5955 [2,
12.6153]

0.3813 [1,
21.6226]

0.1290 [2,
12.6153]

lnCLCF 0.6883
(0.9905)

−1.8223 (0.6764) 0.6990 0.2158 −1.1960 [1,
68.3069]

−4.9734 [1,
107.072]

0.3315 [1,
68.306]

0.0420 [1,
107.072]

lnGF −3.6135
(0.0095)

−4.2329 (0.0089) 0.5448 0.1096 −4.1968 [1,
5.6295]

−4.7142 [5,
3.3105]

0.1368 [1,
5.6295]

0.1170 [5, 3.3105]

lnGLCF −2.1615
(0.2228)

−4.3330 (0.0068) 0.7856 0.0885 −3.5601 [1,
26.4935]

−2.5144 [5,
2.9554]

0.3195 [1,
26.4935]

0.1005 [5, 2.9554]

LnFPF −0.3119
(0.9144)

−1.1701 (0.9038) 0.3870 0.2137 −2.2645 [1,
67.2435]

−4.3776 [1,
149.697]

0.2986 [1,
67.2435]

0.0507 [1,
149.697]

LnFPLCF −0.4492
(0.8909)

−1.2784 (0.8797) 0.4823 0.1758 −2.0489 [1,
13.6241]

−4.0004 [1,
113.401]

0.3344 [1,
13.6241]

0.0388 [1,
113.401]

LnFF −2.2819
(0.1822)

−0.0962 (0.9933) 0.6866 0.2071 −1.6958 [1,
61.6426]

−3.2760 [1,
240.608]

0.3254 [1,
61.6426]

0.0542 [1,
240.608]

LnFLCF −2.8804
(0.0560)

0.0444 (0.9956) 0.7233 0.2113 −1.7143 [1,
52.6708]

−3.1152 [1,
298.890]

0.3345 [1,
52.6708]

0.0537 [1,
298.890]

lnGDP −1.4002
(0.5731)

−1.3182 (0.8696) 0.8403 0.1150** −0.8772 [1,
43.6955]

−2.7349 [1,
17.66094

0.3551 [1,
43.6955]

0.0592 [1,
17.6609]

lnFDI −13.171*
(0.0000)

−11.4576*
(0.0000)

0.5251 0.2318 −1.4970 [1,
13.9962]

−1.6633 [1,
28.62746

0.3485 [1,
13.9962]

0.06770 [1,
28.6274]

lnTRADE −2.5474
(0.1118)

−1.1889 (0.9002) 0.6280 0.2003 −2.7611 [1,
90.3736]

−3.4847 [1,
97.6837]

0.3308 [1,
90.3736]

0.0521** [1,
97.6837]

lnURB −1.2111
(0.6611)

0.7419 (0.9996) 0.8594 0.1870 −0.3652 [1,
36.5594]

−2.3475 [1,
53.8930]

0.3977 [1,
36.5594]

0.0737 [1,
53.8930]

lnFAFGDP −1.6219
(0.4629)

−2.4628 (0.3440) 0.8442 0.1538 0.0537 [1,
30.8992]

−3.6769 [1,
26.0552]

0.3556 [1,
30.8992]

0.0589 [1,
26.0552]

Notes: Values in brackets are related to the FKPSS and FADF unit root test denote frequency and F-test statistics. The critical values of the FKPSS unit root test with trends at 1%, 5%, and 10%

significance levels are 0.2177, 0.1478, and 0.1189, respectively, while the critical values of the FKPSS unit root test with constant at 1%, 5%, and 10% significance levels are 0.7222, 0.4592, and

0.3476, respectively, regarding four frequencies. The critical values of the FKPSS unit root test with trends at 1%, 5%, and 10% significance levels are 0.2177,0.1484, and 0.1210, respectively, while

the critical values of the FKPSS unit root test with constant at 1%, 5%, and 10% significance levels are 0.7386,0.4626, and 0.3518, respectively, regarding five frequencies (Becker et al., 2006).

Regarding one frequency, the critical values of the FADF unit root test at 1%, 5%, and 10% significance levels are −4.43, −3.85, and −3.52, respectively. Regarding two frequencies, the critical

values of the FADF unit root test at 1%, 5%, and 10% significance levels are −3.95, −3.28, and −2.91, respectively. Regarding four frequencies, the critical values of the FADF unit root test at 1%,

5%, and 10% significance levels are −3.60, −3.06, and −2.71, respectively. Regarding five frequencies, the critical values of the FADF unit root test at 1%, 5%, and 10% significance levels

are −3.55, −2.90, and −2.59, respectively (Christopoulos and León-Ledesma, 2010). The critical values of the F-test at significance levels are 6.873, 4.972, and 4.162, respectively (Becker et al.,

2006).
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In Equation 7, mt denotes the vector containing the considered
series, while p + dmax represents the optimal lag of the VAR model
and the maximum order of the integration of the series. The Fourier
terms’ parameters are represented by γ1 and γ2, while k, π, and t
denote the frequencies, pi-values, and trend, respectively. The white
noise error terms are represented by µt. The null hypothesis of the
FTY posing the absence of causality (H0: α1 = . . . = αp = 0) is tested
against the alternative hypothesis (Ha: α1 � . . . � αp ≠ 0).

Results

Before performing the cointegration analysis, short- and long-
run estimations, and causality analysis to find evidence for the EKC,
LCC, and pollution haven or halo hypotheses regarding the Chinese
environmental indicators, a stationary analysis should be executed
to examine whether the considered series are stationary at the level
and determine the degree of integration among the series. The
stochastic properties of the series are crucial for applying
econometric approaches.

To achieve this, the conventional ADF and KPSS unit root tests
with a constant, and a constant and trend, as well as the Fourier ADF

(FADF) introduced by Enders and Lee (2012) and Fourier KPSS
(FKPSS) proposed by Christopoulos and León-Ledesma (2010), are
performed. The unit root tests with a constant, and a constant and
trend are applied. In this study, the primary unit root tests are the
FADF and FKPSS unit root tests, which allow for the consideration
of multiple smooth, unknown, and sharp structural changes if the
trigonometric functions are detected to be significant. The
significance of the trigonometric functions is determined by
comparing the values of the F-test statistics with the critical
values of the F-test. Critical values of the F-test, obtained from
Becker et al. (2006), are shown in the notes of Table 4, and the F-test
statistics are presented in the second set of square brackets. The first
set of square brackets represents the structural changes. If the F-test
statistics exceed the critical values, the FADF and FKPSS results are
interpreted. However, if a controversial case is identified, the
conventional ADF and KPSS unit root tests are considered.

The unit root test results for the series at the level and the first
differences are tabulated in Table 4 and Table 5, respectively.

In the study, the environmental proxies consisting of lnCF,
cropland-LCF, fishing-EF, fishing-LCF, forest-EF, forest-LCF,
grazing-EF, and grazing-LCF are initially examined to determine
their stochastic pattern. When comparing the F-test statistics with

TABLE 5 Unit root test results for the variables at the first differences.

Variable ADF KPSS FADF FKPSS

Constant Constant
and trend

Constant Constant
and trend

Constant Constant
and trend

Constant Constant
and trend

lnCF −6.1346 (0.0000) −6.1507 (0.0000) 0.0879 0.0808 −2.2822 [2,
1.663]

−3.6528 [1,
1.6131]

0.1339 [2,
1.6631]

0.1613 [1, 1.6131]

lnCLCF −5.9851 (0.0000) −5.7035 (0.0002) 0.4279 0.1209 −5.5269 [1,
2.2799]

−5.3252 [5, 0.987] 0.1160 [1,
2.2799]

0.1151 [5, 0.9878]

lnGF −5.8073 (0.0000) −5.9969 (0.0001) 0.5000 0.5000 −6.0303 [5,
0.992]

−6.1835 [5,
0.9748]

0.3023 [5,
0.992]

0.3663 [5, 0.9748]

lnGLCF −5.8018 (0.0000) −6.0336 (0.0001) 0.5000 0.5000 −5.8407 [5,
1.000]

−6.0331 [5,
0.9866]

0.3465 [5,
1.000]

0.3798 [5, 0.9866]

LnFPF −3.9555 (0.0038) −4.5348 (0.0041) 0.5928 0.0618 −4.1722 [1,
5.7200]

−4.9360 [4,
3.2505]

0.0804 [1,
5.7200]

0.1030 [4, 3.2505]

LnFPLCF −4.1028 (0.0025) −4.2133 (0.0095) 0.2496 0.1637 −3.5320 [1,
4.5458]

−4.8880 [4,
3.8379]

0.07434 [1,
4.5458]

0.1387 [4, 3.8379]

LnFF −5.5067 (0.0000) −6.3698 (0.0000) 0.5449 0.1238 −7.6506 [1,
7.3380]

−7.7163 [1,
3.5724]

0.1719 [1,
7.3380]

0.3277 [1, 3.5724]

LnFLCF −5.0568 (0.0002) −6.2892 (0.0000) 0.5668 0.1160 −7.4068 [1,
9.3629]

−7.4070 [1,
3.2292]

0.1284 [1,
9.3629]

0.1282 [1, 3.2292]

lnLNGDP −3.1507**
(0.0303)

−3.3633 (0.0702) 0.2155* 0.1316* −3.5517 [1,
4.3997]

−4.4053 [1,
4.3433]

0.2528 [1,
4.3997]

0.0357 [1, 4.3433]

lnLNFDI −18.5649*
(0.0001)

−19.5483*
(0.0000)

0.5655 0.1536 −2.4739 [1,
2.6538]

−3.5704 [1,
5.8534]

0.29393 [1,
2.6538]

0.0735 [1, 5.8534]

lnLNTRADE −6.1085*
(0.0000)

−6.6962* (0.0000) 0.4816 0.0483** −3.9340 [5,
2.8182]

−7.8624 [5,
2.8182]

0.0535 [1,
2.6082]

0.0505 [5, 2.8182]

lnURB −0.6538 (0.8474) −1.4025 (0.8461) 0.63122 0.1378*
*

0.71487 [2,
8.9062]

−1.98951 [1,
39.9967]

0.6002 [2,
8.9062]

0.0523 [1,
39.9967]

lnFAFGDP −5.3524*(0.0001) −5.4219* (0.0003) 0.22962* 0.0934* −4.4229 [4,
2.1718]

−4.7994 [4,
2.2497]

0.26751 [4,
2.1718]

0.0813 [4, 2.2497]

Note: *, **, and *** are significance levels at the 10%, 5%, and 1% levels, respectively.
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the critical values of the F-tests, it is observed that the trigonometric
terms are significant in all series, except for the results of the FADF
and FKPSS unit root tests with a constant and trend on grazing-EF
and grazing-LCF. However, the findings of the mentioned tests with
a constant confirm the significance of the trigonometric terms in the
considered series.

The FADF and FKPSS unit root tests confirm that lnCF contains
unit roots, and the FADF and FKPSS unit root tests with a constant
show that lnCLCF is not stationary, while the tests with a constant
and trend indicate that lnCLCF is stationary at the level.

Fishing-EF and fishing-LCF have unit roots at the level as a
result of the FADF and FKPSS unit root tests.

With respect to the results obtained from the FADF unit root
test with a constant and the FKPSS unit root tests concerning forest-
EF and forest-LCF, the series are not stationary at the series’ level
values. Grazing-EF and grazing-LCF show a unit root as a result of
the FADF and FKPSS unit root tests with constant, while the ADF
and FKPSS unit root tests with a constant and trend show that the

series is stationary. The FADF and FKPSS unit root tests with a
constant confirm that forest-EF and forest-LCF are not stationary,
whereas the tests with a constant and trend provide controversial
findings, verifying the stationarity of the series.

When examining the outcome of the unit root tests on the
remaining series of the considered independent variables, the first
difference values of the series become stationary.

After performing the stationary analysis, the next step in the
empirical approach is conducting a cointegration analysis to
examine whether the variables considered in the models are
cointegrated or not. If the cointegration relationship between the
variables in the different models is verified, the long- and short-run
effects of the independent variables on the environmental indicators,
including the ecological footprint and load capacity factors of
cropland, fishing grounds, forest products, and grazing land, are
examined to test the EKC and LCC hypotheses, as well as the
pollution halo/haven hypothesis, by considering three control
variables: lnTRADE, lnURB, and lnFAFGDP. The bootstrap

TABLE 6 Results of Fourier bootstrap ARDL cointegration results for the cropland footprint and cropland load capacity factor.

Fourier ARDL cointegration test for cropland EF and cropland-LCF

Model Frequency Minimum AIC FA t FB

lnCF = lnGDP, lnFDI,lnTRADE (Model 1) 1.1 −4.5844 6.9745 −4.6892 8.2284

Critical value 10% 3.4592 −1.3481 3.8453

5% 4.5584 −1.7775 4.8976

1% 7.4543 −2.8340 8.0829

lnCF = lnGDP, lnFDI,lnURB (Model 2) 1.1 −4.9399 3.8648 −2.8861 4.9584

Critical value 10% 2.7878 −1.8992 2.9554

5% 3.7697 −2.3563 4.0115

1% 5.6843 −3.1786 6.7355

lnCF = lnGDP, lnFDI,lnFAFGDP (Model 3) 0.1 −4.5414 3.9015 −1.0434 2.5609

Critical value 10% 5.5707 −3.9862 4.4992

5% 6.4498 −4.3387 5.6667

1% 8.4068 −5.0832 8.3188

lnCLCF = lnGDP, lnFDI,lnTRADE (Model 4) 0.9 −5.2076 6.6399 −4.9804 8.1881

Critical value 10% 5.7189 −3.9221 5.4843

5% 6.8045 −4.3899 6.7020

1% 9.6340 −5.1988 10.3477

lnCLCF = lnGDP, lnFDI,lnURB (Model 5) 1 −5.6326 16.0809 −7.8398 17.0683

Critical value 10% 5.0313 −3.3845 5.8686

5% 6.2843 −3.8508 7.2559

1% 8.4419 −4.8303 10.9189

lnCLCF = lnGDP, lnFDI,lnFAFGDP (Model 6) 1 −5.2686 7.1754 5.2714 8.7501

Critical value 10% 3.5349 −2.1737 4.0057

5% 4.3774 −2.6431 5.1313

1% 6.3314 −3.6017 7.5845
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TABLE 7 Short- and long-run estimations for models 1, 2, 4, 5, and 6.

MODEL 1

lnCF (Model 1) Long run Short run

Variable Coefficient Standard error Probability Coefficient Standard error Probability

lnLNGDP 0.1522 0.0166 0.0000 0.0889 0.1274 0.4904

lnLNFDI 0.0309 0.0143 0.0375 0.0059 0.0120 0.6259

lnTRADE 0.0741 0.0546 0.1827 −0.0111 0.0278 0.6928

Sin 0.0526 0.0176 0.0049 −0.0029 0.0043 0.4980

Cos 0.0900 0.0194 0.0000 0.0103 0.0039 0.0132

EC (-1) - - - −0.6492 0.0781 0.0000

MODEL 2

lnCF (Model 2) Long run Short run

Variable Coefficient Standard error Probability Coefficient Standard error Probability

lnGDP 0.0952 0.2125 0.6569 0.0267 0.1380 0.8474

lnFDI 0.0303 0.0142 0.0402 −0.0183 0.0123 0.1478

lnURB 0.2143 0.5854 0.7164 2.4609 0.8903 0.0092

Sin 0.0354 0.0129 0.0097 −0.0022 0.0042 0.6004

Cos 0.0718 0.0221 0.0025 0.0186 0.0047 0.0004

EC (-1) - - - −0.5169 0.0895 0.0000

MODEL 4

lnCLCF (Model 4) Long run Short run

Variable Coefficient Standard error Probability Coefficient Standard error Probability

LnGDP −0.1038 0.0166 0.0000 0.1303 0.1007 0.2043

lnFDI 0.0083 0.0114 0.468 −0.0032 0.0098 0.7395

lnTRADE 0.0175 0.0360 0.629 0.0334 0.0218 0.1341

Sin 0.0256 0.0194 0.195 0.0052 0.0030 0.0983

Cos −0.0552 0.0169 0.002 0.0127 0.0037 0.0020

EC (-1) - - - −0.5677 0.0942 0.0000

MODEL 5

lnCLCF(Model 5) Long run Short run

Variable Coefficient Standard error Probability Coefficient Standard error Probability

lnGDP −0.0690 0.1326 0.6060 0.2051 0.1134 0.0796

lnFDI 0.0103 0.0100 0.3070 0.0072 0.0105 0.4966

lnURB −0.0936 0.3622 0.7975 −0.7251 0.7073 0.3126

Sin 0.0027 0.0125 0.8299 0.0103 0.0036 0.0078

Cos −0.0593 0.0144 0.0002 0.0060 0.0042 0.1651

EC (-1) - - - −0.5763 0.1007 0.0000

MODEL 6

lnCLCF (Model 6) Long run Short run

Variable Coefficient Standard error Probability Coefficient Standard error Probability

lnGDP −0.4481 0.0876 0.0000 −0.0252 0.1036 0.8091

(Continued on following page)
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Fourier ARDL cointegration analysis is performed for each
considered model.

The bootstrap Fourier ARDL cointegration analysis reports
three statistical values: Fa, t-dependent, and Fb. The null
hypothesis for these three tests indicates the absence of
cointegration and assumes that the test statistics are significant
and greater than the table’s critical values. If this is the case, the
null hypothesis is rejected, and the cointegration relationship
between the variables in the model is confirmed.

In this context, the cropland ecological footprint (CF) and the
cropland load capacity factors (C-LCFs) are the first considered
dependent variables examined in models (1–6). The findings of the
bootstrap Fourier ARDL cointegration analysis are shown in
Table 6. Upon reviewing Table 6, it is concluded that the null
hypothesis for all three tests should be rejected, and the test statistics
are significant and exceed the critical values in all generated models
where C-LCF is the dependent variable. In contrast, the long-run
connection is confirmed in the first and second models, where CF is
the dependent variable, while the null hypothesis is not rejected in
the third model, where lnFAFGDP is used as the control variable.

The Fourier ARDL cointegration analysis confirms the presence
of the cointegrated connection among variables in all models on
lnCF and lnC-LCF, except Model 3. Therefore, the short- and long-
run estimations are investigated using Fourier estimation with the
Fourier functions. The logarithmic forms of the series are considered
in the long-run estimations, and the first difference forms of the
series are employed in the short-run estimations. EC parameters are
obtained from the residual of the long-run estimations, and optimal
lags used in Fourier functions are determined as a result of the
Fourier ARDL cointegration analysis. Suppose the short- and long-
run coefficients of lnGDP are detected as positive and negative,
respectively, or the short-run negative coefficient of lnGDP is higher
than the long-run negative coefficient. In this case, the EKC
hypothesis with lnCF is verified. Regarding the C-LCC
hypothesis, the expected nexus between lnGDP and lnCLCF is
reversed, considering the previously mentioned relationship with
lnCF. The effect of lnFDI on lnCF and lnCLCF is found to be
positive and negative, respectively, confirming the validity of the
pollution haven hypothesis.

These theoretically expected relationships hold for the
remaining generated models. In light of this explanation, the
short- and long-run estimations for Model 1, Model 2, Model 4,
Model 5, and Model 6 are presented in Table 7.

According to Table 7 presenting Model 1, none of the
considered independent variables have a significant influence on
lnCF, but the coefficient of EC is found to be negative and
significant, and the cosine term is also statistically significant. In
the long-run estimations, the pollution haven hypothesis is
confirmed, indicating that an increase in lnGDP contributes to
higher pressure on cropland degradations. However, the Fourier
term is statistically significant.

TABLE 7 (Continued) Short- and long-run estimations for models 1, 2, 4, 5, and 6.

MODEL 6

lnCLCF (Model 6) Long run Short run

Variable Coefficient Standard error Probability Coefficient Standard error Probability

lnFDI 0.0130 0.0075 0.0893 0.0021 0.0091 0.8185

lnFAFGDP 0.6262 0.1572 0.0003 0.3219 0.1120 0.0069

Sin −0.0623 0.0190 0.0022 0.0087 0.0031 0.0076

Cos −0.0479 0.0105 0.0001 0.0032 0.0037 0.3888

EC (-1) - - - −0.7349 0.1063 0.0000

TABLE 8 Result of the Fourier–Toda–Yamamoto causality analysis on the
cropland footprint and cropland load capacity factor.

Model Wald p-value Bootstrap p-value

lnGDP=> lnCF 1.3125 0.2519 0.2670

lnCF =>lnGDP 1.3970 0.2372 0.2438

lnFDI=> lnCF 0.4134 0.5202 0.5287

lnCF =>lnFDI 0.0092 0.9236 0.9216

lnTRADE=> lnCF 0.0852 0.7704 0.7591

lnCF =>lnTRADE 1.4632 0.2264 0.2384

lnURB=> lnCF 3.2952 0.0695 0.0783

lnCF =>lnURB 4.6333 0.0314 0.0398

lnFAFGDP=> lnCF 2.1049 0.1468 0.1552

lnCF =>lnFAFGDP 50.7815 0.0000 0.0000

lnGDP=>lnC-LCF 0.4896 0.4841 0.4852

lnC-LCF=>lnGDP 1.2131 0.2707 0.2874

lnFDI=>lnC-LCF 0.2982 0.5850 0.5830

lnC-LCF=>lnFDI 1.2346 0.2665 0.2778

lnTRADE=>lnC-LCF 2.5339 0.1114 0.1248

lnC-LCF=>lnTRADE 0.1454 0.7030 0.7053

lnURB=>lnC-LCF 1.1422 0.2852 0.2984

lnC-LCF=>lnURB 0.8855 0.3467 0.3541

lnFAFGDP=>lnC-LCF 3.7507 0.0528 0.0605

lnC-LCF=>lnFAFGDP 8.5515 0.0035 0.0058
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Table 7, which presents the results of Model 2, shows that
lnGDP does not a statistically significant impact on lnCF in the short
and long run. The outcome of Model 2 supports the pollution haven
hypothesis as a 1% increase in lnFDI leads to a 0.030% increases in
lnCF. Furthermore, lnCF is positively influenced by lnURB in the
short run by 2.46%, which implies that lnURB is a factor harming
the cropland-related environment.

When scrutinizing Table 7’s finding concerning Model 4, all
explanatory variables are not statistically significant in the short run.
On the other hand, lnGDP is the only explanatory variable in the
long run, promoting a statistically significant impact on lnCLCF. In
addition, the C-LCC hypothesis is not confirmed because decreasing
cropland quality is associated with increased lnGDP.

Table 7, which presents the results of Model 5, shows the short
and-long-run coefficients of the explanatory variables in lnCLCF.
The result of the short-run estimation claims that lnGDP has an
improved influence on lnCLCF, while the remaining variables are
not statistically significant. Regarding the result of the long-run

estimations, lnCLCF does not correspond with all
explanatory variables.

The final evidence concerning lnCLCF is achieved from Model
6, and the estimations’ outcome is shown in Table 7. The pollution
halo hypothesis holds for China when examining the nexus between
lnFDI and lnCLCF in the long run. At the same time, lnFAFGDP is
detected as an essential improved factor of lnCLCF in the short and
long run. On the other hand, the C-LCC hypothesis does not exist
when focusing on the result of Model 6 as a 1% increase in lnGDP
impairs lnCLCF by a calculated 0.44%.

The result of the Fourier Toda–Yamamoto causality analysis
concerning lnCF and lnCLCF is provided in Table 8. The null
hypothesis indicating the absence of the causality is rejected when
the bootstrap p-values are lower than the significance level. The
causality nexus between the explanatory variables and lnCF is first
interpreted, and later, the lnCLCF is considered. According to
Table 8, the mutual causality link between lnURB and lnCF is
detected at a 10% significance level, and a one-way causality

TABLE 9 Results of Fourier bootstrap ARDL cointegration results for the fishing grounds footprint and fishing load capacity factor.

Fourier ARDL cointegration test for fishing EF and fishing-LCF

Model Frequency Minimum AIC FA t FB

lnFF = lnGDP.lnFDI.lnTRADE (Model 7) 2.1 −3.795909 5.6996 −2.8308 5.4454

Critical value 10% 5.4102 −3.7244 5.9794

5% 6.3531 −4.1698 7.4509

1% 8.9528 −5.3030 11.2155

lnFF = lnGDP.lnFDI.lnURB (Model 8) 0.2 −3.895395 4.7184 −4.0853 5.5665

Critical value 10% 5.9116 −4.0014 4.4642

5% 7.0078 −4.3940 5.6742

1% 10.2234 −5.0382 8.6251

lnFF = lnGDP.lnLNFDI.lnFAFGDP (Model 9) 0.2 −3.795923 5.9233 −4.8059 6.4772

Critical value 10% 5.9085 −4.0362 5.1302

5% 7.1020 −4.5048 6.0765

1% 9.0011 −5.3891 8.7392

LnFLCF = lnGDP.lnFDI.lnTRADE (Model 10) 2.1 −3.793483 6.4746 −3.6866 6.6224

Critical value 10% 4.6724 −3.4119 5.3224

5% −3.4119 −3.9382 6.9585

1% 5.3224 −5.0662 9.6241

lnFLCF = lnGDP.lnFDI.lnURB (Model 11) 0.2 −3.7872 3.2922 3.3521 3.6455

Critical value 10% 5.7876 −3.9277 4.8742

5% 6.8816 −4.3525 6.1115

1% 9.9099 −5.1353 9.2290

lnFLCF = lnGDP.lnFDI.lnFAFGDP (Model 12) 0.1 −3.745291 5.0747 −4.4743 5.2727

Critical value 10% 6.2375 −4.2235 5.0356

5% 7.1981 −4.5991 6.2674

1% 9.5723 −5.5771 8.7222
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TABLE 10 Short- and long-run estimations for models 7, 8, 9, 10, and 12.

MODEL 7

lnFF(Model 7) Long run Short run

Variable Coefficient Standard error Probability Coefficient Standard error Probability

lnGDP −0.0475 0.2329 0.8395 0.1882 0.0572 0.0023

lnFDI 0.3230 0.1303 0.0177 −0.0339 0.0188 0.0794

lnTRADE −0.7689 0.5324 0.1568 0.1571 0.0469 0.0020

Sin −0.0953 0.2122 0.6559 −0.0127 0.0063 0.0522

Cos 0.1847 0.1670 0.2754 −0.0283 0.0066 0.0001

EC (-1) - - - −0.0523 0.0112 0.0000

MODEL 8

lnFF(Model 8) Long run Short run

Variable Coefficient Standard error Probability Coefficient Standard error Probability

lnGDP 0.7152 0.3275 0.0354 0.3552 0.2148 0.1074

lnFDI 0.0031 0.0236 0.8954 −0.0187 0.0196 0.3473

lnURB −8.6525 1.8131 0.0000 −2.4624 1.8131 0.1834

Sin 9.6463 1.4213 0.0000 −0.0039 0.0649 0.9519

Cos −0.4621 0.5908 0.4391 0.1672 0.0970 0.0941

EC (-1) - - - 0.0000

MODEL 9

lnFF (Model 9) Long run Short run

Variable Coefficient Standard error Probability Coefficient Standard error Probability

lnGDP −0.6014 0.3696 0.1119 −0.1840 0.2351 0.4390

lnFDI −0.0174 0.0377 0.6477 −0.0155 0.0221 0.4898

lnFAFGDP −0.0727 0.1012 0.4768 −0.5478 0.2433 0.0307

Sin 4.6277 1.0596 0.0001 −0.0381 0.0168 0.0300

Cos 1.4998 0.6345 0.0233 0.1118 0.0211 0.0000

EC (-1) - - - −0.2174 0.0860 0.0161

MODEL 10

lnFLCF (Model 10) Long run Short run

Variable Coefficient Standard error Probability Coefficient Standard error Probability

lnGDP −0.1138 0.0270 0.0002 −0.2492 0.1078 0.0268

lnFDI −0.0090 0.0254 0.7234 0.0013 0.0320 0.9672

lnTRADE −0.7430 0.0954 0.0000 −0.3524 0.0906 0.0004

Sin 0.1478 0.0256 0.0000 0.0145 0.0117 0.2224

(Continued on following page)
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connection operating from lnCF to lnFAFGDP is also indicated.
Regarding the results on the causality nexus between the explanatory
variables and lnCLCF, a mutual causality connection between
lnFAFGDP and lnCLCF is verified.

The demand and supply sides of the fishing stocks are crucial for
sustainability because the marine ecosystem plays a vital role in
providing fisheries while regulating and balancing all ecosystem
segments. The FGF related to the demand side of the marine
ecosystem, while the fishing grounds-load capacity factors (FG-
LCFs) reflect its supply side, and the effects of economic growth and
LNFDI are examined, considering foreign lnTRADE,
lnURBanization, and lnFAFGDP as control variables. According
to the stochastic properties of the variables confirming the same
cointegrated order I (1), the bootstrap Fourier ARDL cointegration
analysis is employed on the fishing-related models. The outcome of
the cointegration analysis is displayed in Table 9. According to
Table 9, the cointegration relations hold for models 9 and 10 due to
the rejection of the null hypothesis of three tests at a 10% significance
level. In contrast, t-dependent and Fb test statistics reveal the validity
of the long-run movement in models 8 and 12. Furthermore, the Fa
test statistics are only significant for Model 7 at a 10% significance
level. The absence of the cointegration connections is found for
Model 11 due to three tests.

After confirming the validity of the long-run movement in all
fishing-based models except Model 11, short- and long-run
estimations are applied to the considered models. Table 9
presents the findings on Model 7, revealing that all independent
variables are statistically significant at a 10% significance level in the
short run. In contrast, only lnLNTRADE has a substantial impact on
fishing-EF in the long run, contributing to a reduction in fishing-

TABLE 10 (Continued) Short- and long-run estimations for models 7, 8, 9, 10, and 12.

MODEL 10

lnFLCF (Model 10) Long run Short run

Variable Coefficient Standard error Probability Coefficient Standard error Probability

Cos −0.0746 0.0185 0.0003 0.0298 0.0120 0.0182

EC (-1) - - - −0.3940 0.1321 0.0052

MODEL 12

lnFLCF (Model 12) Long run Short run

Variable Coefficient. Standard error Probability Coefficient Standard error Probability

lnGDP 0.5083 0.3299 0.1317 0.2123 0.2419 0.3862

lnFDI 0.0134 0.0364 0.7155 0.0200 0.0237 0.4059

lnFAFGDP 0.4890 0.1112 0.0001 0.6541 0.2665 0.0192

Sin −11.9049 2.4334 0.0000 0.1960 0.0356 0.0000

Cos −14.5229 2.5342 0.0000 −0.1505 0.0257 0.0000

EC (-1) - - - −0.2047 0.0942 0.0366

TABLE 11 Result of the Fourier–Toda–Yamamoto causality analysis on the
fishing grounds and fishing load capacity factor.

Model Wald p-value Bootstrap p-value

lnGDP=>lnFF 1.0359 0.5957 0.6059

lnFF=>lnGDP 0.9633 0.6178 0.6299

lnFDI=>lnFF 6.5903 0.0371 0.0587

lnFF=>lnFDI 0.1970 0.9062 0.9082

lnTRADE=>lnFF 2.4840 0.2888 0.3166

lnFF=>lnTRADE 9.6806 0.0079 0.0194

lnURB=>lnFF 2.8651 0.2387 0.2682

lnFF=>lnURB 2.5212 0.2835 0.3171

lnFAFGDP=>lnFF 0.3191 0.8525 0.8586

lnFF=>lnFAFGDP 1.1567 0.5608 0.5722

lnGDP=>lnFLCF 1.4704 0.4794 0.4993

lnFLCF=>lnGDP 0.9097 0.6345 0.6379

lnFDI=>lnFLCF 7.0168 0.0299 0.0522

lnFLCF=>lnFDI 0.2211 0.8953 0.8933

lnTRADE=>lnFLCF 2.7852 0.2484 0.2755

lnFLCF=>lnTRADE 9.6948 0.0078 0.0199

lnURB=>lnFLCF 2.9643 0.2272 0.2521

lnFLCF=>lnURB 2.6240 0.2693 0.3010

lnFAFGDP=>lnFLCF 0.4106 0.8144 0.8121

lnFLCF=>lnFAFGDP 1.0362 0.5957 0.6105
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related degradation. However, lnTRADE exacerbates fishing-related
degradation in the short run, which is calculated as 0.15%, while the
pollution halo hypothesis is valid. Furthermore, an increase in
lnLNGDP contributes to higher pressure on the fishing
ecosystem in the short run. However, the Fourier terms and EC
are statistically significant only in the short run. Table 10 presents
the result of Model 8, indicating that fishing-EF is not statistically
associated with the considered independent variables in
the short run.

As for the long-run estimations, fishing-EF is positively and
negatively induced by lnLNGDP and lnURB, respectively.
According to the outcome of the long- and short-run estimation
concerning Model 9, lnLNGDP and lnLNFDI statistically matter for
fishing-EF in the short and long run, while lnFAFGDP promotes a
favorable impact on the fishing-related ecosystem in the short run,
which is calculated as 0.54%. However, Table 10 confirms the
significance of the Fourier terms in the short and long run and
the theoretical expectation of EC. When considering the demand

and supply sides of the fishing ecosystem, Table 10 shows evidence
of Model 10 in which lnLNTRADE is used as a control variable
under the F-LCF and the pollution haven or halo hypothesis. When
examining the results of Table 10, F-LCF is not statistically
influenced by lnLNFDI in the short and long run.

At the same time, F-LCF is deteriorated by a 1% increase in
lnLNTRADE in the short and long run, detected as 0.35% and
0.74%, respectively. However, the F-LCC hypothesis is valid in
Model 10 because the unfavorable impact of lnLNGDP on F-LCF
reduces over time. According to the findings of Table 10, which
presents the results of Model 12, lnLNGDP and lnFDI are not
statistical determinants of F-LCF in the short and long run.
Moreover, the short- and long-run lnFAFGDP coefficients are
measured at 0.65% and 0.48%, respectively, which underlines the
enriched role of lnFAFGDP in F-LCF. However, the Fourier terms
are statistically significant as a result of the short- and long-run
estimations, and EC is measured at a negative and significant level of
5%. In light of this explanation, the short- and long-run estimations

TABLE 12 Fourier bootstrap ARDL cointegration results for the forest products’ footprint and the forest-load capacity factor.

Fourier ARDL cointegration test for forest EF and forest-LCF

Model Frequency Min AIC FA t FB

lnFPF = lnLNGDP.lnLNFDI.lnLNTRADE (Model 13) 3.7000 −4.6892 6.5569 −4.6518 8.6892

Critical value 10% 3.9888 −2.5828 4.4958

5% 4.9011 −3.0030 5.4588

1% 7.9694 −3.9432 7.9297

lnforestgef = lnLNGDP.lnLNFDI.lnURB (Model 14) 0.2000 −4.6434 5.0266 −4.1912 0.7161

Critical value 10% 7.0138 −4.6065 6.1990

5% 8.0316 −5.0475 7.5167

1% 11.1301 −5.8205 11.6973

lnFPF = lnLNGDP.lnLNFDI.lnFAFGDP (Model 15) 0.1000 −4.4755 5.0849 −4.0471 2.1725

Critical value 10% 5.6466 −3.4990 4.6689

5% 6.7089 −3.9501 5.5918

1% 9.1709 −4.8463 7.7344

Lnforest LCF = lnLNGDP.lnLNFDI.lnLNTRADE (Model 16) 0.6000 −4.7592 8.2082 −5.5071 6.6290

Critical value 10% 4.1196 −3.1357 3.6303

5% 5.0280 −3.5437 4.6009

1% 6.9707 −4.3881 7.5028

LnFPLCF = lnLNGDP.lnLNFDI.lnURB (Model 17) 1.300000 −4.6505 6.4286 −4.5145 8.1194

Critical value 10% 4.5601 −3.1542 4.5172

5% 6.0241 −3.8256 6.3060

1% 10.4679 −5.3180 11.5466

LnFPLCF = lnLNGDP.lnLNFDI.lnFAFGDP (Model 18) 1.200000 −4.6161 4.4778 −4.1568 5.5034

Critical value 10% 6.1161 −4.3115 7.3607

5% 7.0372 −4.6932 8.4191

1% 9.0281 −5.2012 11.4998
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TABLE 13 Short- and long-run estimations for models 13, 15, 16, and 17.

MODEL 13

lnFLCF (Model 13) Long run Short run

Variable Coefficient Standard error Probability Coefficient Standard error Probability

lnLNGDP 0.1621 0.0759 0.0393 0.1259 0.0605 0.0450

lnLNFDI 0.0807 0.0440 0.0745 0.0031 0.0205 0.8807

LNTRADE −0.8573 0.1728 0.0000 −0.0886 0.0484 0.0754

Sin −0.0272 0.0659 0.6818 0.0054 0.0070 0.4448

Cos 0.0127 0.0655 0.8470 −0.0108 0.0065 0.1085

EC (-1) - - - 0.0531 0.0309 0.0944

MODEL 15

lnFLCF (Model 15) Long run Short run

Variable Coefficient Standard error Probability Coefficient Standard error Probability

lnLNGDP 0.1522 0.1337 0.2620 −0.0121 0.1050 0.9087

lnLNFDI 0.0094 0.0147 0.5258 0.0083 0.0097 0.4016

LNTRADE 0.2093 0.0451 0.0000 0.1159 0.1094 0.2967

Sin −3.7565 0.9866 0.005 0.1015 0.0146 0.0000

Cos −7.9155 1.0275 0.0000 −0.0320 0.0109 0.0060

EC (-1) - - - −0.3564 0.0664 0.0000

MODEL 16

LnFPLCF (Model 16) Long run Short run

Variable Coefficient Standard error Probability Coefficient Standard error Probability

lnLNGDP −0.1183 0.0279 0.0001 −0.2037 0.0743 0.0096

lnLNFDI −0.0370 0.0178 0.0446 −0.0033 0.0122 0.7882

lnLNTRADE 0.3100 0.0693 0.0001 0.1045 0.0267 0.0004

Sin 0.1095 0.0640 0.0952 0.0146 0.0081 0.0826

Cos 0.0068 0.0337 0.8400 0.0053 0.0051 0.3032

EC (-1) - - - −0.3180 0.0654 0.0000

MODEL 17

LnFPLCF (Model 17) Long run Short run

Variable Coefficient Standard error Probability Coefficient Standard error. Probability

lnLNGDP −0.5617 0.06290 0.0000 −0.1390 0.1320 0.2996

lnLNFDI 0.0171 0.01544 0.2726 0.0120 0.0105 0.2607

lnLNTRADE 1.2804 0.13504 0.0000 0.1727 0.3690 0.6426

Sin −0.1065 0.01616 0.0000 −0.0036 0.0038 0.3501

Cos 0.0310 0.02132 0.1542 −0.0182 0.0039 0.0001

EC (-1) - - - −0.2993 0.0723 0.0002
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concerning Model 7, Model 8, Model 9, Model 10, and Model 12 are
provided in Table 10.

Table 11 presents the evidence concerning the causality link
between the explanatory variables and fishing-related indicators.
The findings indicate that fishing-EF is caused by lnLNFDI, and, in
turn, fishing-EF induces lnLNTRADE. Moreover, lnLNFDI is also
an inducing factor of fishing-LCF.

Table 12 documents the bootstrap Fourier ARDL cointegration
test result of the generated models in which the forest products’
footprint and the forest-load capacity factors are the dependent
variables. Examining the outcome of the analysis for Model 13, it is
concluded that the measured test statistics for Fa, t-dependent, and
Fb are greater than the critical values at a 5% significance level, and
all three hypotheses are not accepted. This finding proves the
cointegration relationship among lnFPF, lnLNGDP, lnLNFDI,
and lnLNTRADE. Regarding Model 14, the calculated test
statistics of three hypotheses induce all three null hypotheses to
be accepted, and the cointegration connection between the variables
in Model 14 is not confirmed. When inquiring about the outcome
related to Model 15, the test statistics of Fa and Fb are not greater
than the critical values. In contrast, the calculated t-dependent
statistics are significant at a 5% significance level. Therefore, the
long-run movement holds for Model 16. Regarding the Fourier
bootstrap ARDL cointegration results for Model 16, Fa and
t-dependent measured test statistics exceed the critical values at

all significance levels, while the Fb test statistics are significant at a
5% significance level, and all three null hypotheses of the tests are
rejected. The long-run relationship is confirmed for Model 16.
Considering the result for Model 17, it is underlined that all
three null hypotheses are not accepted at a 5% significance level
and that the validity of the cointegrated connection is important for
the variables in Model 17. Finally, when considering the outcome of
Model 18, it is concluded that Fa t-dependent and Fb test statistics
are not sufficient to reject the null hypothesis. The validity of the
cointegrated relationship is not verified in Model 18.

Following the validity of the cointegration relationship between
the variables in Model 13, the study’s objective is to examine the
EKC hypothesis and the pollution halo/haven, along with
considering the effect of lnLNTRADE on the FPF. FMOLS
estimations with the Fourier function investigate the short- and
long-run coefficients of lnLNGDP, lnLNFDI, and lnLNTRADE on
the FPF. The result of the FMOLS estimations is displayed in
Table 13. When observing the result on the short run of the
FMOLS estimations, the EKC hypothesis with the FPF is not
verified because an increase in lnLNGDP impairs the forest
degradation, and the long-run coefficient of lnLNGDP is greater
than its short-run coefficient. The coefficient of lnLNFDI is not
statistically significant in the short run. In contrast, a 1% increase in
lnLNFDI is associated with a 0.08% increase in forest degradation,
which verifies the presence of the pollution haven. Moreover, forest
degradation increases with an increase in lnLNTRADE, and the
negative effect of lnLNTRADE on forest degradation is more
pronounced in the long run. In addition, the cointegrated
connection holds for Model 15, where lnFAFGDP is employed as
a control variable under investigation for the EKC and pollution
halo/heaven hypotheses. The result of the FMOLS estimations with
the Fourier function is provided in Table 13. The coefficients of
lnLNGDP and lnLNFDI are statistically insignificant in the short
and long run. At the same time, lnFAFGDP exacerbates in the long
run. The forest products’ load capacity factors (FP-LCFs) are
employed to test their LCC (FP-LCF) hypothesis. The FP-LCF
hypothesis can be examined in models 16 and 17, where the
long-run movement among the variables is confirmed. The
outcome of Model 16 is presented in Table 13, and the forest-
related quality is influenced by lnLNGDP measured at 0.20%, while
the worst effect of lnLNGDP on the FP-LCF is calculated as 0.11%.
The FP-LCF hypothesis exists in China. In the long run, lnLNFDI
reduces the forest quality, and the pollution haven hypothesis is
presented. However, lnTRADE is an improved factor in enhancing
FP-LCF. The FP-LCC and pollution haven/halo hypotheses are
investigated considering lnURB as a control variable in Model
17. The finding of the FMOLS estimation on Model 17 is shown
in Table 13. As revealed in the short-run result, FP-LCF is
statistically not induced by lnLNGDP, lnLNFDI, and lnURB. The
coefficient of lnLNFDI is also reported as insignificant in the long
run, but lnLNGDP and lnLNTRADE are statistically appropriate to
interpret. A 1% increase in lnLNGDP corresponds to a 0.56%
decrease in the FP-LCF, while lnURB leads to an increase in the
FP-LCF, calculated as 1.28%. In light of this explanation, the short-
and long-run estimations for Model 13, Model 15, Model 16, and
Model 17 are provided in Table 13.

The findings from the Fourier–Toda–Yamamoto causality
analysis concerning the nexus between explanatory variables and

TABLE 14 Results of Fourier–Toda–Yamamoto causality analysis for the
forest products’ footprint and forest load capacity factor.

Model Wald p-value Bootstrap p-value

lnGDP=>lnFPF 0.7360 0.6921 0.6918

lnFPF=>lnGDP 0.3380 0.8445 0.8423

lnFDI=>lnFPF 1.4106 0.4940 0.5140

lnFPF=>lnFDI 4.1192 0.1275 0.1572

lnTRADE=>lnFPF 0.0970 0.9527 0.9547

lnFPF=>lnTRADE 0.2849 0.8672 0.8674

lnURB=>lnFPF 1.4269 0.4900 0.5119

lnFPF=>lnURB 1.6487 0.4385 0.4617

lnFAFGDP=>lnFPF 0.1510 0.9273 0.9276

lnFPF=>lnFAFGDP 3.5589 0.1687 0.1871

lnGDP=>LnFPLCF 1.0007 0.6063 0.6077

LnFPLCF=>lnGDP 0.5133 0.7737 0.7657

lnFDI=>LnFPLCF 1.9894 0.3698 0.3782

LnFPLCF=>lnFDI 3.4394 0.1791 0.2072

lnTRADE=>LnFPLCF 0.0052 0.9974 0.9975

LnFPLCF=>lnTRADE 0.2118 0.8995 0.8996

lnURB=>LnFPLCF 1.3680 0.5046 0.5161

LnFPLCF=>lnURB 1.5888 0.4518 0.4726

lnFAFGDP=>LnFPLCF 0.2544 0.8805 0.8771

LnFPLCF=>lnFAFGDP 3.5650 0.1682 0.2102
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forest-related environmental indicators are presented in Table 14.
These findings indicate that the forest-EF and forest-LCF are not
statistically induced by all explanatory variables.

Other environmental indicators concerning the food supply,
land, and marine sustainability are the grazing land footprint (GLF)
and the grazing land-load capacity factors (G-LCF). Another
objective of the study is to examine the effect of economic
growth and LNFDI, along with control variables, on GLF and
G-LCF. The stationary analysis reveals that all variables become
stationary at the first differences; in other words, they are integrated
at I (1). Then, the bootstrap Fourier ARDL cointegration test is also
processed to examine the validity of the cointegration connection.
When evaluating all results shown in Table 15 for the models
numbered from 19 to 24, it is highlighted that the null
hypothesis, meaning the absence of the long-run relationship
between the variables of Fa, t-dependent, and Fb, is rejected at a
10% significance level because the test statistics at the absolute value
are greater than the critical values.

As the long-run connection is verified for all grazing land
footprint and grazing-load capacity factor-based models, the
long- and short-run effect of the independent variables on
grazing-EF and grazing-LCF is examined using FMOLS
estimators with Fourier terms. Table 16 presents the result
concerning Model 19, and the outcome of the estimation shows
that lnLNGDP and Fourier terms are not statistically significant in
the short and long run. In contrast, the pollution haven hypothesis is
confirmed in the long run at a 5% significance level, whereas the
coefficient of LNFDI is found to be insignificant in the short run.
The role of lnTRADE in grazing-related environmental degradation
has varied over time. A 1% increase in lnTRADE in long and short
run induces approximately a 0.43% decrease and a 0.093% increase
in grazing-related environmental degradation. However, the value of
EC is positive and statistically insignificant.

Table 16 discloses the outcome of the estimation of Model 20.
According to Table 16, the EKC hypothesis is not verified because
the long- and short-run effect of lnLNGDP on the grazing-EF is

TABLE 15 Fourier bootstrap ARDL cointegration results for the grazing land footprint and the grazing land load capacity factor.

Fourier ARDL cointegration test for grazing land EF and grazing land-LCF

Model Frequency Minimum AIC FA t FB

lnGF = lnLNGDP.lnLNFDI.lnLNTRADE (Model 19) 3.3000 −3.9760 9.3483 −6.0316 9.1693

Critical value 4.9739 −3.6524 5.5525

5.9771 −4.1401 7.0995

8.8917 −4.8894 10.4572

lnGF = lnLNGDP.lnLNFDI.lnURB (Model 20) 3.4000 −4.0318 7.4307 −4.7893 6.6680

Critical value 5.3529 −3.4154 5.9763

6.3079 −3.8512 7.3924

9.2134 −4.7361 9.5588

lnGF = lnLNGDP.lnLNFDI.lnFAFGDP (Model 21) 3.5000 −3.9419 9.5325 −5.7537 9.3326

Critical value 4.2269 −3.0014 4.5698

5.0053 −3.3960 5.6281

7.0504 −4.5723 7.5871

LnGLCF = lnLNGDP.lnLNFDI.lnLNTRADE (Model 22) 3.4000 7.6687 −5.4259 9.5334 9.5334

Critical value 5.4631 −3.8650 6.3795

6.4901 −4.3505 7.6864

8.7411 −5.1366 10.3782

LnGLCF = lnLNGDP.lnLNFDI.lnURB (Model 23) 4.0000 −4.1185 6.3381 −4.3437 6.9051

Critical value 4.9633 −3.5214 5.3829

5.9599 −4.0253 6.4754

7.8747 −4.9983 9.1800

LnGLCF = lnLNGDP.lnLNFDI.lnFAFGDP (Model 24) 3.6000 3.9762 8.3986 −5.4696 10.5403

Critical value 5.0166 −3.4073 5.8897

5.6991 −3.7286 6.9191

7.5871 −4.4744 9.6377
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TABLE 16 Short- and long-run estimations for models 19, 20, 21, 22, 23, and 24.

MODEL 19

lnGF (Model 19) Long- run Short run

Variable Coefficient Standard error Probability Coefficient Standard error Probability

lnLNGDP −0.077 0.0666 0.2530 −0.0462 0.0513 0.3744

lnLNFDI 0.0958 0.0385 0.0173 0.0026 0.0179 0.8829

lnLNTRADE −0.4287 0.1515 0.0074 0.0930 0.0420 0.0336

Sin −0.0093 0.0574 0.8716 0.0095 0.0056 0.1006

Cos 0.0576 0.0582 0.3290 0.0042 0.0057 0.4571

EC (-1) - - - 0.0067 0.0305 0.8274

MODEL 20

lnGF (Model 20) Long run Short run

Variable Coefficient Standard error Probability Coefficient Standard error Probability

lnLNGDP 0.7748 0.034498 0.0000 0.5743 0.2315 0.0181

lnLNFDI 0.0243 0.0067 0.0009 0.0003 0.0170 0.9853

lnURB −2.2730 0.0749 0.0000 −1.6633 0.6480 0.0147

Sin 0.0013 0.0097 0.8894 0.0028 0.0066 0.6730

Cos 0.0015 0.0100 0.8817 0.0041 0.0066 0.5404

EC (-1) - - - −0.5650 0.1350 0.0002

MODEL 21

lnGF (Model 21) Long run Short run

Variable Coefficient. Standard error Probability Coefficient Standard error Probability

lnLNGDP 0.0148 0.0077 0.0618 0.2174 0.0840 0.0140

lnLNFDI 0.0099 0.0057 0.0902 0.0054 0.0107 0.6119

lnFAFGDP −0.0815 0.0021 0.0000 −0.4543 0.1445 0.0034

Sin −0.0010 0.0080 0.8940 0.0075 0.0040 0.0743

Cos −0.0147 0.0081 0.0798 −0.0065 0.0041 0.1281

EC (-1) - - - −0.8689 0.0951 0.0000

MODEL 22

LnGLCF (Model 22) Long run Short run

Variable Coefficient Standard error Probability Coefficient Standard error. Probability

lnLNGDP −0.0312 0.0139 0.0306 −0.0344 0.0599 0.5697

lnLNFDI −0.0134 0.0080 0.1034 0.0145 0.0193 0.4564

lnLNTRADE 0.0362 0.0316 0.2590 −0.0438 0.0496 0.3830

Sin −0.0007 0.0119 0.9477 −0.0091 0.0065 0.1660

Cos 0.0081 0.0122 0.5116 0.0003 0.0066 0.9560

EC (-1) - - - −0.2981 0.1322 0.0305

MODEL 23

lnGLCF (Model 23) Long run Short run

Variable Coefficient Standard error Probability Coefficient Standard error Probability

lnLNGDP −0.1562 0.0227 0.0000 −0.4893 0.1692 0.0065

lnLNFDI −0.0058 0.0043 0.1945 −0.0107 0.0127 0.4031

(Continued on following page)
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found to be impaired. Expanding economic activities in the long run
induces more pressure on the grazing land than in the short run. The
pollution haven hypothesis holds for China in the long run, while
lnURBanization plays a pivotal role in mitigating environmental
degradation.

Moreover, the coefficient of EC is negative and significant at a
1% significance level, while Fourier terms are not statistically
significant in the short and long run. Regarding lnFAFGDP
being used as a control variable, the cointegration analysis
confirms the long-run movement between variables, so short-
and long-run estimations are performed. The outcome of the
FMOLS estimation with the Fourier terms is presented in
Table 16. According to Table 16, the EKC hypothesis is verified
as the long-run coefficient of lnLNGDP is lower than that of the
short-run at a 10% significance level. However, lnLNFDI
deteriorates the environmental quality in the long run, which
supports the presence of the pollution haven hypothesis. At the
same time, an increase in lnFAFGDP promotes an enriched impact
on environmental quality in the short and long run.

Table 16 reveals the short- and long-run effects of the considered
determinants on G-LCF. When considering the results of Model 22,
it is concluded that only lnLNGDP is statistically significant, and a
1% increase in lnLNGDP leads to a 0.031% decrease in G-LCF.
Furthermore, Table 16 discloses the evidence concerning Model 23,
and the G-LCC hypothesis is demonstrated because the adverse
impact of lnLNGDP on the G-LCF seems to have shrunk over time.
G-LCF is not statistically associated with lnLNFDI in the short and
long run. However, lnURB plays an essential role in enhancing
G-LCF. The result of Model 24 is similar to the finding of Model 23;
in other words, the G-LCC hypothesis is also verified, and the
neutrality hypothesis with the nexus between LNFDI and G-LCF is
detected. Furthermore, a 1% increase in lnFAFGDP in the short and
long run leads to an improvement in G-LCF, measured as 0.29 and

0.011, respectively. In light of this explanation, the short- and long-
run estimations concerning Model 19, Model 20, Model 21, Model
22, Model 23, and Model 24 are provided in Table 16.

The results of Fourier–Toda–Yamamoto causality analysis for
the grazing land footprint and grazing load capacity factor are
documented in Table 17. The causality connection between the
considered independent variables and grazing-related
environmental indicators is detected as a one-way causality link
operating from lnURB to G-EF, and G-EF induces lnLNTRADE.
Moreover, the results of Fourier Toda–Yamamoto analysis on
G-LCF indicate that lnURB causes G-LCF and lnLNTRADE is
influenced by G-LCF.

Discussion and conclusion

This study analyzes the effect of economic growth and foreign
direct investment on the SDG targets Zero Hunger (2), Life Below
Water (14), and Life on Land (15) by examining relevant sub-
components of ecological footprint and load capacity factors have
been analyzed within the framework of EKC and LCC hypotheses in
China. Cropland, fishing, forest, and grazing land are considered
environmental areas, and foreign trade (lnTRADE), urbanization
(lnURBAN), agriculture, forestry, and fishing are considered control
variables. To achieve this objective, the study employs Fourier
bootstrap ARDL cointegration analysis and FMOLS estimators,
expanded with the Fourier function.

The CF and C-LCF are the first environmental indicators
considered for the study’s objective. The long-run relationship
holds for all models except Model 3 on CF, where lnFAFGDP is
used as a control variable under the EKC hypothesis. When
examining the results concerning the nexus between lnFDI and
lnCF, the pollution haven hypothesis is verified in the long run.

TABLE 16 (Continued) Short- and long-run estimations for models 19, 20, 21, 22, 23, and 24.

MODEL 23

lnGLCF (Model 23) Long run Short run

Variable Coefficient Standard error Probability Coefficient Standard error Probability

lnURB 0.3076 0.0494 0.0000 1.2490 0.4695 0.0117

Sin 0.0022 0.0064 0.7320 0.0083 0.0046 0.0826

Cos −0.0112 0.0065 0.0918 −0.0040 0.0049 0.4279

EC (-1) - - - −0.7265 0.1046 0.0000

MODEL 24

lnGrazinlcf (Model 24) Long run Short run

Variable Coefficient Standard error Probability Coefficient Standard error Probability

lnLNGDP −0.0536 0.0072 0.0000 −0.2076 0.09397 0.0338

lnLNFDI −0.0042 0.0053 0.4352 −0.0117 0.01227 0.3442

lnFAFGDP 0.0111 0.0020 0.0000 0.2951 0.15998 0.0735

Sin 0.0094 0.0077 0.2266 −0.0008 0.00478 0.8649

Cos 0.0090 0.0076 0.2425 0.0099 0.00473 0.0431

EC (-1) - - - −0.7835 0.10662 0.0000
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Furthermore, lnCF is not influenced by lnTRADE, while lnURB
promotes an increased impact on lnCF in the short run. The
pressure on the cropland-related environment factors is
accelerated by lnGDP, so the EKC hypothesis on lnCF does not
hold for China as a result of analysis on all models. Regarding the
outcome of lnC-LCF, it is underlined that the C-LCC hypothesis
does not exist, and lnGDP impairs the C-LCF in models 4 and 6. In
addition, the role of lnFDI, lnTRADE, and lnURB in lnC-LCF are
found to be insignificant, while lnFAFGDP plays an enriched role in
cropland sustainability. Although the study mainly concentrates on
the indicators related to Life on Land to provide policy direction
concerning Zero Hunger and other SDG targets, the sustainable
marine ecosystem also plays a pivotal role in the success of SDGs.
According to the evidence obtained from the investigation on the
considered models, lnURB and lnFAFGDP are found to mitigate
fishing degradations, whereas the effect of lnFDI on lnFF varies over
time—negative in the short run, confirming the pollution halo
hypothesis, and positive in the long run, verifying the pollution
haven hypothesis. In addition, fishing degradation is accelerated by
an increase in lnGDP, which induces the rejection of the F-EKC
hypothesis. The F-LCC hypothesis is confirmed when considering
the estimations found in Model 10, but the results in Model
12 indicate an insignificant connection between lnGDP and lnF-
LCF. Moreover, lnFDI also does not matter for fishing sustainability.
However, fishing sustainability is improved by lnFAFGDP. The FP

and FP-LCF are essential indicators, especially in Life on Land, SDG
Target 15, and others. As a consequence of the investigation of six
models based upon lnFP and lnFP-LCF, it is revealed that the EKC
hypothesis is not valid as the short and long run of lnGDP accelerate
lnFP, and lnFAFGDP and lnFDI are identified as other impaired
factors. As for the evidence on lnFP-LCF, lnURB and lnTRADE are
improved factors in forest sustainability, and FP-LCC hypothesis is
also confirmed. At the same time, the negative connection between
lnFDI and lnFP-LCF inModel 16 is detected. The GF and G-LCF are
China’s final considered environmental indicators in terms of
providing guidelines on a sustainable food supply chain. Along
with the method applied to remaining environmental indicators, six
different models are considered, i.e, three models related to GF and
the remaining three models related to G-LCF; these models examine
the control variables within the framework of the EKC, LCC, and
pollution haven or halo hypotheses. When examining the effect of
lnFDI and lnGDP on GF, the pollution haven hypothesis is verified
in all three models, while the EKC hypothesis is not confirmed. In
the long run, all control variables comprising lnURB, lnTRADE, and
lnFAFGDP promote a favorable influence in mitigating grazing
degradations. In contrast, when scrutinizing the dynamic role of
lnLNGDP in G-LCF, the G-LCC hypothesis holds for China, while
lnFDI and lnTRADE do not influence the G-LCF. Moreover, lnurn
and lnFAFGDP play a pivotal role in improving G-LCF.

Accompanying the summary of the empirical findings on all
considered models, the reliable policy directions aim to mitigate the
pressure of human activities on the CF, FF, FP-F, and GF and
enhance the biocapacity of the considered environmental indicators.
LCF plays a vital role in various SDGs, including Zero Hunger (2),
Life Below Water (14), and Life on Land (15) and indirectly
contributes to the remaining SDGs. With respect to the function
of lnFDI in Chinese sustainability, the pollution haven hypothesis is
verified for most of the considered models. China is one of the
leading FDI-inflow hubs in the world. Still, the legal framework,
norms, regulations, and attitude toward the environment are not
sufficient to support the evidence on the pollution haven hypothesis
in the study. Policymakers may reshape and enact FDI-related
policies that provide subsidies, tax exemptions, and facilities for
profit transfer, management, and production for firms enacted with
modern management methods and cutting-edge technologies. In
addition, exemptions on electricity and energy costs and reducing
the red tape are vital policy measures to counteract the negative
effects of FDI on the environment. When the lnGDP influences the
environmental indicators, the Chinese economic structure is not
harmonized with sustainability. China’s economic welfare is
achieved at the cost of environmental degradation, characterized
by high energy intensity, a significant share of nonrenewable energy
resources in total energy, and the use of polluting technologies and
production methods. Improving energy efficiency, enhancing
renewable energy transitions, and public and government
partnerships to stimulate greener technology and energy are
essential policies transforming polluted economic performance
into sustainability. On the other hand, the role of lnTRADE is
detected as an improved factor for Chinese sustainability, which
implies that China has been transforming from labor-intensity and
low-tech goods into capital-intensity and high-tech goods such as
semiconductors. Urbanization process and income from fishing and
agriculture sectors are found to be enriched factors in China. In

TABLE 17 Results of Fourier–Toda–Yamamoto causality analysis for the
grazing land footprint and grazing load capacity factor.

Model Wald p-value Bootstrap p-value

lnGDP=>lnGF 0.7128 0.3985 0.4136

lnGF=>lnGDP 0.0217 0.8829 0.8879

lnFDI=>lnGF 1.4826 0.2234 0.2373

lnGF=>lnFDI 0.0197 0.8883 0.8902

lnTRADE=>lnGF 0.0232 0.8790 0.8780

lnGF=>lnTRADE 7.1248 0.0076 0.0118

lnURB=>lnGF 3.5246 0.0605 0.0716

lnGF=>lnURB 0.3696 0.5432 0.5397

lnFAFGDP=>lnGF 2.2448 0.1341 0.1475

lnGF=>lnFAFGDP 0.8139 0.3670 0.3770

lnGDP=>grazinglc 0.6360 0.4252 0.4311

LnGLCF=>lnGDP 0.0140 0.9059 0.9043

lnFDI=>LnGLCF 1.4491 0.2287 0.2414

LnGLCF=>lnFDI 0.0139 0.9062 0.9071

lnTRADE=>LnGLCF 0.0000 0.9946 0.9958

LnGLCF=>lnTRADE 6.5999 0.0102 0.0169

lnURB=>LnGLCF 3.5026 0.0613 0.0699

LnGLCF=>lnURB 0.3086 0.5785 0.5808

lnFAFGDP=>LnGLCF 2.1511 0.1425 0.1494

LnGLCF=>lnFAFGDP 0.5654 0.4521 0.4505
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order to maximize the benefits of these fields, policy initiatives
should be prioritize green and cutting-edge technologies,
management strategies, and production methods, such as
employing shallow geothermal energy in agriculture, heating and
cooling systems, and pro-environmental building methods across all
sectors of the Chinese economy.

Furthermore, the study encountered limitations that have yet
not been addressed. First, the study provides only the evidence for
China regarding related areas’ sustainability, whereas focusing on
wide-panel samples or different aspects of the importance of local
cases should be investigated. Moreover, varied social, political, and
macroeconomic indicators are other options for further studies.
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