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The western route of the South-to-North Water Diversion Project (SNWDP) provides
opportunities to improve agricultural production by altering regional water availability.
This study identifies and evaluates marginal land—defined as undeveloped reserve
cultivated land and low-quality and inefficiently-utilized farmland—within provinces
along the SNWDP route. Using ecological, topographic, climatic, and soil indicators,
we identified 145,062 km2 of marginal land, including 3,626 km2 of reserve cultivated
land and 141,436 km2 of low-quality and inefficiently-utilized farmland, mainly
concentrated in northwestern Xinjiang, with Qinghai having the least. To assess
the grain production potential of these lands, we used maize and wheat as
representative crops. Three modeling approaches—random forest regression,
gradient boosted regression trees, and two-point machine learning (TPML)—were
compared for their predictive accuracy. The TPML model showed the best
performance. For maize, the model yielded a root mean square error (RMSE) of
48.94, a mean absolute error (MAE) of 34.01, and a mean absolute percentage error
(MAPE) of 7.65%. Forwheat, the RMSEwas 23.92, MAE 17.67, andMAPE 6.31%. Results
reveal that maize has a higher production capacity than wheat, and that grain yields
are higher in thewest and lower in the east, with Xinjiang showing the highest average
yields on marginal land. These findings provide a scientific basis for optimizing land
use, improving food self-sufficiency, and supporting regional sustainable
development and national food security.
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1 Introduction

In the face of the uneven distribution of water resources in China, the western route of the
South-to-North Water Transfer Project, as a major inter-basin water transfer project, has
potential benefits that cannot be ignored. Marginal lands have low agricultural production
capacity, economic efficiency, and fragile ecology. This is due to significant soil barriers, severe
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water and heat resource constraints, and topographical limitations.
They include cultivated reserves to be developed and marginal
cultivated lands with poor quality and low use efficiency (Cao et al.,
2021; Shortall, 2013). With population growth and economic
development, the issue of food security has become increasingly
important. Given the constraint of limited cultivated land resources,
the exploitation of marginal lands and the enhancement of food
production capacity have emerged as pivotal strategies for
safeguarding national food security. However, most existing studies
focus on improving yields on currently cultivated land, with limited
attention paid to marginal land that remains underutilized due to
environmental and infrastructural limitations. In particular, few studies
have examined the production potential of marginal land in the
northwest region under complex terrain and resource constraints.

Corn and wheat are currently the most widely used grain yield data
in various studies, and they are not only widely grown and distributed
crops in China (Wang et al., 2014), but also important food and feed
crops. Moreover, the data of corn and wheat are easy to obtain and have
high accuracy. Therefore, corn and wheat were selected to represent
grain in this study. Grain yield data is a direct result of agricultural
production activities, which directly reflects production capacity and can
be used to measure production efficiency. Yield was used to characterize
the actual production capacity of the land. In current studies, corn and
wheat yield focus on predicting the production potential of large-scale
arable land and analyzing the factors influencing yield (Ren et al., 2008;
Zhang et al., 2014; Han et al., 2020; Huang et al., 2015; Song et al., 2016;
Cheng et al., 2022), providing references for formulating agricultural
policies, optimizing cropping structures and improving production
efficiency. However, relatively few studies have been carried out on
marginal lands that have development potential but have not been fully
exploited, particularly in the north-western region.

Due to natural constraints such as arid climate, wind erosion, and
soil salinization, a significant portion ofmarginal land in thewind-blown

and arid/semi-arid regions of Northwest China remains underutilized
and undeveloped, resulting in unfulfilled agricultural potential and an
untapped reserve of arable land. The development ofmarginal land plays
a critical role in safeguarding national food security. This study aims to
fill this research gap by focusing on marginal land in the northwest
region of China—specifically along the western route of the South-to-
North Water Diversion Project—and assessing its grain production
potential using machine learning approaches.

Grain capacity modeling is a quantitative analysis used to predict
grain yields in a given region or over a given period. Machine learning
methods are now widely used to predict yields (Rashid et al., 2021; Fei
et al., 2023; Fu et al., 2021; Guo et al., 2021; Guo et al., 2022; Guo et al.,
2023). Researchers used the similarity of covariates between points to
build models of grain production capacity. Shrestha et al. derived a
linear regression model between the curve of Normalized Difference
Vegetation Index and the yield of corn (Shrestha et al., 2016); Wang
et al. used remote sensing data, meteorological data and soil data as
characteristic variables, analyzed the importance of the variables based
on the RandomForest (RF) algorithm and built a wheat yield prediction
model (Wang L. et al., 2022). Sun et al. predicted winter wheat yield
from the perspective of county-level yield prediction, combining a
convolution neural network and a backpropagation neural network to
predict winter wheat yield (Sun et al., 2022). These methods can handle
high-dimensional variables, but ignore spatial neighbors. Two-point
machine learning (TPML) approach makes full use of spatial
autocorrelation and attribute correlation, which can alleviate the
problem of dimensional catastrophe in local modeling. It avoids the
common factor covariance problem in regression prediction models
and is able to improve more accurate spatial prediction results (Gao
et al., 2022; Wang Y. et al., 2022). To our knowledge, TPML has not yet
been applied to the evaluation of grain productivity onmarginal land in
northwest China, making this study a novel application of the method
in this context.

FIGURE 1
Technology roadmap framework.
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The marginal land evaluation indices and criteria are first
established on the basis of data relating to four aspects: ecology,
topography, climate and soil. Factors influencing grain yield were
selected from soil, meteorology and topography, and grain yield
models were built using RF, gradient-enhanced regression tree
(GBRT) and TPML respectively, comparing the performance of
the three models and selecting the optimal model for predicting corn
and wheat yield on marginal lands. By obtaining the grain yield of
marginal lands in the area covered by the western route of the south-
to-north water diversion, this study makes it possible to identify
marginal lands and assess the grain production capacity in the
region, assisting in optimizing the allocation of land resources and
improving grain self-sufficiency (Figure 1).

2 Materials and methods

2.1 Overview of the study area

The South-to-North Water Diversion Project constructs dams in
the upper reaches of the Tongtian River, a tributary of the Yangtze
River, and the Yalong River and the Dadu River. The water transfer

tunnels through the Ba Yan Ka La Mountain, which is the watershed
between the Yangtze River and the Yellow River, are excavated to
transfer water from the Yangtze River to the upper reaches of the Yellow
River. It will solve the water shortage problem in the Northwest China
and the upper and middle reaches of the Yellow River. The study area
spans several provinces, including Xinjiang Uygur Autonomous
Region, Qinghai province, Gansu province, Ningxia province,
Shaanxi province, Shanxi province and the western region of Inner
Mongolia (Figure 2). The study area is the main extent of water transfer
from the western route of the South-North Water Diversion. The
project plays an important role in ensuring regional water security and
promoting sustainable agricultural development.

The study area is located in northwestern China and has a
variety of climate types, including temperate continental climate and
alpine plateau climate. The terrain is complex, including mountains,
plateaus, basins, grasslands and other types of terrain, with a large
number of ups and downs in the terrain (Figure 3). Although water
resources are relatively scarce, some areas still have rivers and lakes,
and the average annual precipitation ranges from 0 to 1,200 mm
(Figure 4). It has a wide geographic space and rich natural resources,
which are important for irrigated agriculture, industrial production
and ecological protection. The population is unevenly distributed

FIGURE 2
Overview of the study area.
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FIGURE 3
Altitude conditions in the study area.

FIGURE 4
Precipitation conditions in the study area.
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but rich in labor resources, and it is mainly planted with wheat, corn
and other grain crops, making it an important base for grain crop
production. It is an important region in western development
strategy in China and the “One Belt, One Road” initiative, and
the marginal land involved in the project is an area with high
potential for agricultural and food production. At the same time, the
region faces challenges such as fragile ecological environment and
water shortage.

2.2 Data sources

The experience and results of previous researchers in related
fields are reviewed using the literature search method. Through in-
depth analyses and summaries of existing literature, data on
topography, meteorology, soil, land use and food in the study
area are collected using a combination of methods such as
Internet and field surveys, and data are processed with missing
and outlier data, and data are visualized and processed using
ArcGIS software.

Soil, land use and topography data are the basis for the
extraction of marginal land extent and studies on capacity

potential (Csikós and Tóth, 2023). Average annual precipitation
and temperature were calculated for the period 2010–2020 (Table 1).
Grain yield data were used for corn and wheat yields in kg/acre.
With the exception of yield, which is a point data, all other data were
resampled so that the resolution after resampling was 1 km.

2.3 Methods of the research

2.3.1 Random forest regression (RF)
RF is an integrated learning algorithm. It predicts continuous

values by constructing several decision trees. Each tree is built
independently of the original data based on the autonomous
sampling method, and features are randomly selected for splitting
until each decision tree has reached its maximum size (Breiman,
2001). When a new data point is to be predicted, it passes through all
the trees to obtain several predicted values, and the final prediction is
the average of these values.

RF algorithm is capable of handling a large number of input
variables and assessing the importance of variables to analyze the
extent of influence of different factors on grain yield (Archer and
Kirnes, 2008). It is insensitive to missing values and capable of

TABLE 1 Types and sources of data.

Data name Type Year Data source

Land use type CD 2015 https://www.resdc.cn/

DEM LD 2015 https://www.resdc.cn/

Slope LD 2015 Calculated by DEM

Soil data LD 2015 The second national soil survey data

Mean annual precipitation LD — https://www.worldclim.org/

Mean annual temperature LD — https://www.worldclim.org/

Yield LD 2015 Yield investigation

aCD is a categorical variable and LD is a continuous variable.

TABLE 2 Evaluation indicators and criteria for undeveloped reserve cultivated land resources.

Evaluating indicator Reserve cultivated land resources to be developed

Slope ≤15°

Altitude ≤1,500 m

Annual precipitation ≥350 mm

Ecological condition Not in nature reserves, high biodiversity

Soil pollution The soil is pollution-free

Soil pH value 5–7.5

Organic matter content ≥20 g. kg−1

Degree of salinity Light

Soil texture Clay or loam

Land area ≥10 km2

Land use type Grassland, saline-alkali land, sandy land, bare land
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handling unbalanced data sets, and can make full use of grain yield
data (Jeong et al., 2016). Finally, RF has better generalization
performance and can effectively reduce the risk of over-fitting.

2.3.2 Gradient boosting regression tree (GBRT)
GBRT progressively optimize the predictive power of a model by

sequentially building several decision trees. During the iterative
learning process, each tree in the sequence is learned from the
residuals of the previous tree (Elith et al., 2008). It is trained in the
direction of the negative gradient of the loss function, and a strong
learner is generated by linearly combining weak learners over several
training sessions.

GBRT can be implemented for categorical and numerical data
by optimizing different loss functions and offering multiple
hyperparameter tuning options, making function fitting more
flexible. In addition, GBRT can handle missing data and avoid
over-fitting by building simple trees at each iteration.

2.3.3 Two-point machine learning (TPML)
TPML unifies spatial autocorrelation and attribute similarity in a

high-dimensional space, making full use of information from spatial
neighbors and high-dimensional covariates to improve prediction
accuracy. The algorithm first calculates the differences between
target variables and covariates between different pairs of points,
uses the differences to build a model for predicting the differences
between target variables between a particular observation point and
the point to be observed, and then combines information from
nearest neighbors to obtain the final prediction value for the point to
be observed (Gao et al., 2022; Wang Y. et al., 2022).

Unlike traditional supervised learning methods, TPML solves
the problem of dimensionality catastrophe in local machine learning
modeling, avoids the problem of factor covariance in regression
models, and its standard error deviation can provide uncertainty
estimates for prediction results (Wang Y. et al., 2022).

2.3.4 Model validation
Tenfold cross-validation is a method for evaluating the

performance of machine learning models (Lei, 2020). It evaluates
the performance of a model by dividing the dataset into ten parts
and using nine of these as both the training set and the other as the
test set. This methodmakes efficient use of limited data resources for
multiple experiments, improving the accuracy and reliability of

model evaluation (Hengl et al., 2017). Accordingly, three
measures were selected to compare the effectiveness of model
fitting, namely, root mean square error RMSE, mean absolute
error MAE and mean relative error MAPE, with the following
formulae (Equations 1-3):

RMSE �
������������
1
n
∑n
i�1

yi − ŷi( )2√
(1)

MAE � 1
n
∑n
i�1

yi − ŷi
∣∣∣∣ ∣∣∣∣ (2)

MAPE � 100%
n

∑n
i�1

yi − ŷi
yi

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ (3)

where n is the number of samples, yi is the true value of the ith
sample, and ŷi is the predicted value of the ith sample.

3 Marginal land extraction and spatial
distribution

3.1 Marginal land identification

The selection of evaluation indicators is grounded in extensive
literature and national land evaluation standards. For instance, soil
pH, organic matter content, and texture directly correlate with crop
yield and soil fertility, while ecological and topographical factors,
such as altitude and slope, are critical in determining land suitability
for cultivation. The classification standards for each indicator are
established in accordance with existing studies on the growth
conditions of major crops like corn and wheat, ensuring the
scientific rigor and practicality of the evaluation process.

3.1.1 Reserve cultivated land resources to
be developed

Evaluation indicators are selected from four aspects: ecology,
topography, climate and soil, and specific evaluation indicators
include ecological conditions, topographic slope, altitude, annual
precipitation, soil texture, soil pollution status by heavy metals, soil
organic matter content, degree of salinization, soil pH value, plot
area and land use type, a total of eleven indicators (Jiang et al., 2019;
Yao et al., 2021; Lei et al., 2011). The evaluation indices and

TABLE 3 Evaluation indicators and criteria for low-quality and inefficiently-utilized farmland.

Evaluating indicator Reserve cultivated land resources to be developed

Slope >15°

Annual precipitation <350 mm

Ecological condition Low biodiversity

Soil pollution The soil is polluted

Soil pH value pH < 5.0 or pH > 7.5

Organic matter content <20 g. kg−1

Soil texture Sand

Land use type Cultivated land
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classification standards are shown in the table below (Table 2), and
the experimental operation is carried out in ArcMap10.2.

Topographic slope is one of the main factors influencing land
use. It affects soil moisture loss and the ease of development and land
use. The study area has a fragile ecological environment, where soil
erosion and water loss are common, and plots are classified with 15°

as the slope limit. Annual precipitation is one of the indicators that
influence agricultural production, and an appropriate volume of
precipitation favors the production and development of foodstuffs

and improves production capacity and quality. Soil texture is
classified into sand, loam and clay according to the proportion of
particle composition, which is one of the criteria for measuring soil
fertility and grain production capacity, and directly affects the soil’s
ability to retain water and fertilizers. Corn and wheat can be grown
in loam and clay. Soil pH affects the growth of the crop’s root system,
and the most favorable conditions for grain growth are those where
the pH is more than neutral, and the standard is formulated
according to the growing conditions of corn and wheat. Soil

FIGURE 5
The distribution of existing cultivated land.

TABLE 4 Marginal land area of each province.

Province Area of marginal land (km2) Share of marginal land area

Xinjiang 52,204 35.98%

Qinghai 792 0.54%

Gansu 30,539 21.05%

Ningxia 9,751 6.72%

Inner Mongolia 12,250 8.44%

Shaanxi 12,307 8.48%

Shanxi 27,747 19.12%
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organic matter is one of the main sources of soil fertility. Soils with a
high organic matter content are generally more fertile, which favors
crop growth and production capacity; to maintain soil structure
stability, soil organic matter content should be at least 20 g/kg (Or
et al., 2021). The development of reserve arable land resources must
also take into account the cost of development, which is why plots of
at least ten square kilometers are selected for development. The types
of arable reserve land resource use mainly include grassland, saline
land, sandy land and bare land. Grassland needs to be transformed
and restored before it can be converted to arable land, and saline-
alkaline land is currently unused but can be converted to arable land
after treatment and improvement. The arable land reserves to be
developed are an important support for the sustainable development
of Chinese agriculture. Through scientific planning and rational
development, their potential can be fully exploited, contributing to
the country’s food security and economic development.

3.1.2 Cultivated land of low quality and ineffective
utilization

Specific evaluation indicators include ecological conditions,
topographic slope, annual precipitation, soil texture, soil heavy

metal pollution status, soil organic matter content, soil pH value,
and land use type, totaling eight indicators (Fan et al., 2012;
Wang et al., 2021). Each index layer is classified according to the
standard, and the range of cultivated land with low quality and
low utilization efficiency is obtained through superposition
(Table 3). The experimental operation was carried out
in ArcMap10.2.

Large slopes not only lead to lower soil fertility and nutrient loss,
but also increase the difficulty and cost of farming, reducing the
efficiency of arable land use. The climate of the study area is more
arid, and lower rainfall will limit agricultural production. The need
for more irrigation will also increase the cost of agricultural
production, affecting farmers’ income. Reduced biodiversity is
generally accompanied by a decline in soil fertility, making it
more vulnerable to pests and diseases, upsetting the ecological
balance and lowering the quality of agricultural produce. An
imbalance between soil acidity and alkalinity forces farmers to
invest more in improving soil conditions, increasing production
costs and reducing economic efficiency. Due to the large inter-
particle voids and weak capillary action in sandy soils, nutrient
content is low and prone to leaching. As a result, sand have a low
water and fertilizer retention capacity, and although good aeration
and permeability promote respiration and crop root growth, water
evaporates easily, leading to drought and the need for more water
and timely irrigation.

3.2 Spatial distribution and characteristics of
marginal land

According to the land use type data, 343,299 square kilometers
of cultivated land are available in the study area (Figure 5). It is
mainly concentrated in the northwestern part of Xinjiang Uygur
Autonomous Region, the southeastern part of Gansu province,
Ningxia province, Shaanxi province and Shanxi province. Most
of the existing cultivated land was found to be of low quality and
inefficiently utilized.

The marginal land is mainly concentrated in the northwestern
region of Xinjiang Uygur Autonomous Region, Gansu province,

TABLE 5 The influence factors of grain production capacity.

Data classification Field name Implication

Soil pH pH value of the soil

T_SAND Sand content in 0–30 cm soil layer

T_CLAY Clay content in 0–30 cm soil layer

S_SAND Sand content in 30–100 cm soil layer

S_CLAY Clay content in 30–100 cm soil layer

Weather tem_a Average annual precipitation

pre_a Average annual temperature

Terrain DEM Altitude

Slope Slope

Yield Yield Grain production

TABLE 6 Comparison of the performance of corn capacity models.

Method RMSE (kg/μ) MAE (kg/μ) MAPE (%)

RF 124.16 85.67 16.26

GBRT 150.66 116.31 18.93

TPML 48.94 34.01 7.65

TABLE 7 Comparison of the performance of wheat capacity models.

Method RMSE (kg/μ) MAE (kg/μ) MAPE (%)

RF 135.58 91.68 16.46

GBRT 90.03 71.63 24.77

TPML 23.92 17.67 6.31
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Ningxia province and Shanxi province, with a total area of
145,062 square kilometers. All of the reserve cultivated land
resources to be developed are in Xinjiang Uygur Autonomous
Region, totaling 3,626 square kilometers (Figure 6). Cultivated
land of low quality and inefficient utilization totaled
141,436 square kilometers. Marginal land is unevenly distributed,
mainly in Xinjiang Uygur Autonomous Region, Gansu province and
Shanxi province, with Qinghai province having the smallest
percentage of marginal land (Table 4).

Xinjiang Uygur Autonomous Region is deep inland in China
and has low precipitation, but it has sufficient light and a large
temperature difference between day and night, which is favorable
for the accumulation of sugar in fruit and sugar crops. The
northern region of Xinjiang Uygur Autonomous Region has
better conditions for agricultural production than eastern and
western parts of Xinjiang Uygur Autonomous Region in terms of
light, temperature and precipitation. The high topography and
varied slopes of Qinghai province tend to result in soil and
nutrient loss. Crop options are limited, and those adapted to
this environment tend to be cold- and drought-tolerant crops.
These crops are generally less productive and of poorer quality,
which explains the small amount of marginal land in
Qinghai province.

4 Grain production capacity prediction
of marginal land

Capacity forecasting plays an essential role in optimizing the
distribution of agricultural production, allocating resources and
monitoring crop growth in real time. The spatial distribution of
grain capacity is influenced by spatio-temporal conditions such as
soil properties, climatic conditions, terrain topography and spatial
heterogeneity (Cheng et al., 2022). The resolution of the predicted
food production capacity is 1 km grid. This section is implemented
using RStudio.

4.1 Influence factors for selecting capacity

The production capacity of corn and wheat is affected by a
variety of factors such as soil pH, soil texture, climatic conditions
and topographic conditions, so the influence factors of grain
production capacity are selected from soil, meteorology and
topography, and the grain production capacity model is
constructed separately (Table 5).

Correlation analysis of the factors was carried out on corn
and wheat data respectively, and different degrees of correlation

FIGURE 6
The distribution of marginal land.
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were found between these factors (Figures 7, 8). Soil top layer
sand content and soil bottom layer sand content are highly
positively correlated, soil top layer clay content and soil
bottom layer clay content are highly positively correlated, the
degree of positive correlation between average annual
temperature and average annual precipitation is high at
around 0.5, and the degree of correlation of all other
influencing factors is very low.

4.2 Build grain production capacity model

Two hundred sample points were randomly selected from all the
sampling points, for which RF, GBRT and TPMLmethods were used
to model food production capacity. The ten-fold cross-validation
method was used to evaluate the performance of the model. All the
samples were divided into ten groups, and one group was
sequentially selected as the test data and the remaining nine
groups were used as the training data. Comparing the
performance of the three models it is found that the error of the
model constructed by TPML is much smaller than that of the model
constructed by the other two methods (Table 6, 7). Therefore, a
dataset with a sample size of 200 is chosen to construct a grain
production capacity model using TPML to estimate the production
capacity of corn and wheat on marginal land.

4.3 Predict production capacity on
marginal land

In general, the production capacity of corn is higher than that of
wheat, whichmay be related to the strong resistance and adaptability
of corn, which can grow under various climatic and soil conditions.
The production capacity of both shows a spatial trend higher in the
west and lower in the east, with higher production capacity for corn
and wheat in the western regions of Gansu province and Xinjiang
Uygur Autonomous Region than in other regions (Figures 9, 10).
The corn production capacity was higher in the eastern part of
Gansu province and Ningxia province than in Shaanxi province and
Shanxi province, while wheat production capacity showed the
opposite trend, probably due to more abundant precipitation in
Shaanxi province and Shanxi province.

The average grain production capacity of marginal land in each
province in the study area is notmuch different, and the total production
capacity is mainly affected by the size of marginal land area (Figures 11,
12). Except that the average grain production capacity of Xinjiang Uygur
Autonomous Region is slightly higher, the average production capacity
of corn in other regions is between 500–600 kg/μ, and the average
production capacity of wheat is about 300 kg per mu. The total grain
production capacity of Xinjiang Uygur Autonomous Region is much
higher than that of other regions. It is mainly due to its vast cultivated
land resources and abundant light conditions (Shi et al., 2014). It is

FIGURE 7
Correlation between independent variables of corn.
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mainly based on plains and basins and is suitable for the cultivation of
various grain crops. The total grain production capacity of Qinghai
province is the lowest, because themarginal land area is small, the terrain
is undulating, and the precipitation is small. It is difficult to form a large-
scale grain production base, and the production capacity is naturally low,
which also increases the cost and risk of agricultural production.

In Xinjiang Uygur Autonomous Region and Gansu province,
the climate and soil advantages of the region should be further
utilized, the planting structure should be optimized, and the
productivity and quality of crops should be improved. In
Xinjiang Uygur Autonomous Region, Gansu province and the
eastern region of Ningxia province, the support and management
of corn planting should be strengthened to improve the production
capacity and market competitiveness of corn. At the same time, in
view of the low productivity of wheat, it is possible to explore the
cultivation of other crops adapted to local conditions or take
improvement measures to increase the productivity of wheat. In
contrast, in Shaanxi province and Shanxi province, the planting of
wheat should be strengthened.

The difference in grain production capacity between maize
and wheat is influenced by a combination of factors, including
length of fertility, photosynthetic efficiency, threat of pests and
diseases, root development, level of mechanization, and
ecological protection policies. Maize is more efficient in
photosynthesis under high temperatures and intense light, has

a well-developed root system and is tolerant of barrenness, and is
suitable for growth in arid and semi-arid areas of the Northwest,
while wheat has a more advantageous production capacity in
mild and humid environments. The frequency and extent of pests
and diseases also have a significant impact on crop productivity,
and regions with less precipitation help reduce the threat of corn
pests and diseases. In addition, higher levels of mechanization on
contiguous land in the Northwest help boost corn production
capacity, while wheat cultivation is relatively weak in hilly areas
due to lower levels of mechanization. Ecological conservation
policies that limit the scale of maize cultivation in some areas and
encourage the cultivation of drought-tolerant crops such as
wheat further exacerbate the difference in production capacity
between the two. Therefore, in the process of marginal land
development, it is necessary to take into account crop growth
characteristics, environmental conditions and policy guidance in
order to optimize crop layout, maximize food production
capacity and achieve sustainable development of the ecological
environment.

In the process of agricultural production, economic benefits
should also be considered. The benefits of planting corn and wheat
depend on many factors, including climatic conditions, soil quality,
planting technology and food supply. Corn usually has higher
productivity potential and is widely used in feed, industrial raw
materials and food. Wheat is mainly used for flour processing and

FIGURE 8
Correlation between independent variables of wheat.
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food production. The price of grain crops is affected by many factors
such as market supply and demand, international trade policy and so
on, and the price fluctuates. At the same time, it is necessary to
consider the planting cost, including the input of seeds, fertilizers,
pesticides and labor. The planting cost will vary greatly in different
regions with different climate, topography and soil conditions
(Wang and Tian, 2017). In terms of the production cost of corn
planting, the northwest region is often higher than the national
average. The corn production in Gansu province is the highest in the
country, and the corn production cost in Shanxi province is
relatively high. In terms of the production cost of wheat planting,
the production costs of Xinjiang Uygur Autonomous Region,
Qinghai province, Shaanxi province and Shanxi province are
lower than the national average, and the production costs of
Gansu province and Inner Mongolia are the highest.

Corn planting can also improve soil structure, reduce soil
erosion and soil erosion. Corn straw can be used as organic
fertilizer to increase soil organic matter content (Zhang et al.,
2010). Wheat has a relatively small demand for water resources,
which helps to maintain soil health and fertility and maintain
biodiversity. Interplanting wheat with corn can improve the
utilization rate of land resources, strengthen the light
transmittance, reduce the use of chemical fertilizers and
pesticides, and help protect the ecological environment.

Therefore, in the actual agricultural production, the monitoring
and analysis of environmental factors such as climate and soil should
be strengthened. According to the local natural conditions,
economic conditions and social conditions, the suitable crop
varieties and planting methods are selected. Scientific planting
plans and management measures should be adopted to achieve
optimal production capacity and economic benefits and promote the
sustainable development of agricultural production.

5 Discussion

We determine exploitable cultivated land reserves and low-quality,
low-utilization-efficiency cultivated lands in the coverage areas of the
western route of the South-to-North Water Diversion Project through
the identification of marginal lands. TPML is used to predict the
production capacity of different food crops on marginal lands,
providing a scientific basis for agricultural production.

However, there are limitations due to the insufficient selection of
factors in this study. While we focused on marginal lands with
suitable cultivation conditions, factors like land accessibility,
economic viability, and farming conditions were not considered,
as actual yield data for marginal lands was lacking. This means the
results are based solely on natural conditions. In practice, factors

FIGURE 9
Production capacity of corn on marginal land.
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such as economic returns, population distribution, and ecological
conditions should be considered.

To improve the accuracy of predictions, more evaluation factors
such as irrigation conditions, proximity to water sources, and roads
could be incorporated into the model. Additionally, integrating
multiple methods or adopting more advanced machine learning
approaches could enhance the model’s performance. It is also
essential to develop a more refined evaluation system for
different types of marginal land, considering their specific
characteristics and constraints.

Research on marginal land development and utilization in the
coverage area of the western route of the South-to-North Water
Diversion Project is still limited. Future work should focus on
analyzing limiting factors more deeply, which will guide the
formulation of targeted strategies for land development. A more
detailed approach involving regional zoning and exploration of crop
systems suited to local conditions will improve productivity and
sustainability. Ecological protection must be prioritized, and risks
related to ecological, economic, and social factors must be
properly managed.

In this context, it is also important to understand the
relationship between land degradation and the development of
unused land in northwest China. This should not be seen simply
as expanding cultivated land, but as a strategic response to land

degradation, population outmigration, and resource constraints.
Development in northwest China must be based on
comprehensive assessments of resources, ecological sensitivity,
and agricultural feasibility, ensuring that it aligns with
sustainability and food security goals.

Future research could incorporate dynamic simulations based
on evolving water resource development plans to assess the long-
term benefits of the South-to-North Water Diversion Project on
regional grain productivity. This would provide valuable insights
into the relationship between water resources and agricultural
production. Additionally, the impact of policies, particularly
those related to the South-to-North Water Diversion Project,
should be considered in future studies to understand how
changes in infrastructure, water allocation, and regulations may
influence the development of marginal land.

6 Conclusion

The study identified 145,062 square kilometers of marginal
land in the Western Route of the South-to-North Water
Diversion Project area, including 3,626 square kilometers of
reserve arable land and 141,436 square kilometers of low-
quality and inefficiently-utilized farmland. The marginal land

FIGURE 10
Production capacity of wheat on marginal land.
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is primarily concentrated in the northwestern part of Xinjiang
Uygur Autonomous Region and Gansu Province, with the
smallest areas found in Qinghai Province. The productivity of
maize on marginal land is generally higher than that of wheat,
with a spatial distribution pattern of higher yields in the west and
lower yields in the east. The average grain production capacity on
marginal land in Xinjiang is higher than in other regions, with
maize yields typically ranging from 500 to 600 kg per mu, while
wheat yields average around 300 kg per mu.

The results of the study provide some insights into future
land management and agricultural production practices. In
Xinjiang Uygur Autonomous Region, Gansu Province and
Ningxia Hui Autonomous Region, where grain production
capacity is high, it is recommended to further optimize the
maize planting structure and combine irrigation and soil
improvement measures to enhance yields. In Shaanxi and
Shanxi provinces, suitable high-yielding wheat varieties are
promoted to take full advantage of local natural conditions.

FIGURE 11
Average grain production capacity of marginal land.

FIGURE 12
Total grain production capacity of marginal land.
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Future research could focus on the long-term impacts of
marginal land development on ecosystems and water
resources, explore the potential of multi-crop rotation or
replanting patterns in enhancing marginal land productivity,
and refine methods for identifying and assessing marginal land
productivity through remote sensing monitoring and field
surveys in order to improve the adaptability of the models
and the accuracy of their predictions. Through locally
adapted agricultural management and policy guidance, we
will promote the rational development and sustainable
utilization of marginal land and provide strong support for
guaranteeing national food security and promoting regional
economic development.

This study employs the TPML model to evaluate the grain
production capacity of marginal land. The model demonstrates
its effectiveness in enhancing the accuracy of spatial distribution
predictions. However, the assumptions and limitations of the model
may introduce uncertainties that affect the reliability and
generalizability of the results. The TPML model relies on the
assumptions of spatial autocorrelation and attribute similarity,
suggesting that points in close proximity or with similar
environmental conditions exhibit similar attributes. In regions
with high spatial heterogeneity or complex environmental
conditions, these assumptions may not fully hold. Furthermore,
the model is highly sensitive to the selection of auxiliary variables,
meaning that inaccuracies or biases in key variable data can
significantly impact prediction outcomes. As a result, the
applicability of this study’s findings to other regions or under
different environmental conditions remains to be further
validated. In areas characterized by diverse land use types and
complex terrain, adaptive adjustments to model parameters and
structures may be necessary to improve its generalization capability
and predictive accuracy.
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