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Introduction: Efficientmanagement of natural resources is a fundamental goal of
the SDGs, aimed at supporting responsible production and consumption
practices. Technological innovation (TI) and digital infrastructure (DI) serve as
crucial tools that influence effective resource management. However, limited
focus has been directed toward assessing the non-linear relationships between
the material footprint (MFP), TI, and DI. This research seeks to provide fresh
perspectives on the influence of TI and DI on MFP, utilising data from resource-
rich economies (RE) spanning 1990 to 2021.

Methods: Given the characteristics of the data, we employ the pooled mean
group-autoregressive distributed lag (PMG/ARDL) model. Furthermore, for
sensitivity analysis, we apply instrumental variables (IV) and methods of
moments quantile regression (MMQR) techniques to address distributional
heterogeneity and endogeneity issues. The investigation is repeated while
accounting for green innovation (GI) to examine the effects of
environmentally-associated TI on MFP.

Results and discussion: The findings reveal that the coefficients of the level and
squared terms of TI and DI are positive and negative in the long run, respectively.
Therefore, TI and DI exhibit a non-linear influence onMFP, suggesting an inverted
U-shaped link between TI, DI, and MFP over the long term. Thus, TI and DI
contribute to a resource curse up to threshold values of 2.827 and 2.081, after
which they enhance resource efficiency in RE, implying that greater investment in
TI and DI yields better outcomes for harnessing resource efficiency than lesser
investment. Lastly, both small and large changes in GI have a robust negative
impact on MFP. These findings carry significant policy implications for enhancing
TI and DI, aimed at fostering responsible natural resource management per SDGs
8 and 12, thus ensuring the efficient and sustainable use of natural resources.
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1 Introduction

The sustainable use of natural resources is a crucial goal,
balancing economic growth with the protection of our
environment (Ali et al., 2023). Nevertheless, this sustainable use
confronts challenges from rapid population growth,
overexploitation, and various other resource-driven economic
expansions (Haider et al., 2021). As a result, resources are being
consumed at an alarming rate, leading to increased global efforts to
protect them. CO2 emissions resulting from the use of material
resources have doubled over the past 20 years (IRP, 2019). This
statement is further supported by the fact that over 30% of global
carbon emissions are derived from resource consumption (Dwivedi
et al., 2022). Thus, the overuse of natural resources adversely affects
nations’ environmental performance (Jin and Huang, 2023).
Furthermore, the excessive reliance on natural resources is
primarily associated with rising global temperatures. It also
depletes the supply of material resources, ultimately resulting in
shortages for future generations (Chen et al., 2022).

Therefore, it is beneficial to preserve natural resources (NRs)
through various methods and strategies. However, sustainable
management of natural resources presents a complex challenge,
requiring a delicate balance between meeting current societal needs
and safeguarding these resources for the future (Liu and Liang,
2024). As a result, the increasing use of material resources within
ecosystems has sparked significant discussion in recent times.
Consequently, environmental advocates are increasingly focused
on reducing the impact of resource use on harmful emissions
and promoting sustainability in ecosystems (Yingchao and Xiang,
2024). Thus, the effective utilisation of natural resources has
emerged as a crucial objective to encourage responsible usage
(Zhou et al., 2024). Therefore, it is essential to utilise NRs
sustainably to uncover solutions that enhance the social,
environmental, and economic performance of countries (Wu
et al., 2021).

The 26th session of the UN Conference of Parties on Climate
Variation stresses the goal of decarbonisation by 2050, with resource
productivity primarily aligned with SDG-12, in light of pressing
environmental challenges. Furthermore, to achieve COP-26
objectives, an extensive decarbonisation procedure for material
utilisation is essential. In this environment, enhancing the
efficiency of natural resource consumption, as shown by the
MFP, is imperative. The MFP considers environmental issues and
the pressures from the final demand of economies. It largely

emphasises the utilisation of resources and the environmental
damage resulting from this utilisation. It thoroughly indicates
nations’ material consumption by considering local effects and
the embodied implications of trade, encompassing both exports
and imports (Karakaya et al., 2021; Ulussever et al., 2024).
Consequently, it has served as an indicator for SDI-8.4, which
focuses on advancing NR efficiency improvements, and SDI-12.2,
which seeks to support the sustainable management of NRs (Lenzen
et al., 2021).

Thus, understanding the influencing factors of MFP is essential
for propelling the shift toward a decarbonised economy via
proficient resource management. Among these elements, TI is
regarded as a crucial tool shaping the advancement of
responsible resource consumption (Hehua et al., 2024; Appiah
et al., 2024). In theory, the connection between managing the
utilisation of resources and TI can be examined through the
lenses of Holdren and Ehrlich (1972) and Commoner et al.
(1972). They postulated that environmental sustainability, often
illustrated by MFP, is influenced by population, affluence, and
technology (Fernández-Herrero and Duro, 2019).

Nonetheless, when viewed through the lens of empirical
investigation, the effects of TI on resource efficiency remain
uncertain. Some scholars contend that TI is essential for
achieving production and optimising resource utilisation, thereby
alleviating MFP (Ulussever et al., 2024; Awaworyi Churchill et al.,
2019). Furthermore, enhancing TI boosts the efficiency of
manufacturing and production processes that utilise fewer
resources. It indicates that elevated TI leads to reduced resource
consumption by minimising reliance on primary commodities,
improving NR efficiency, and fostering environmental
stewardship and sustainable development (Hehua et al., 2024;
Appiah et al., 2024). Conversely, various empirical studies suggest
that TI enhances MFP, which may adversely affect resource
efficiency as it drives economic growth that necessitates greater
resource consumption (Majeed et al., 2022; Ali et al., 2022).
Therefore, exploring the influence of TI on MFP presents
significant opportunities for enhancing the sustainability of NRs.

Moreover, certain experts contend that DI could be crucial in
enhancing NR efficiency. The DI signifies the digital infrastructure
and development within the economy, serving as a fundamental
basis for the growth of information technology and innovation
(Patro and Raghunath, 2021). Nonetheless, regarding the impacts
of DI on MFP, the existing literature is notably lacking, with
minimal empirical discourse, despite the growing attention on
the significance of DI in resource management (Zhou et al.,
2024). Moreover, the evidence concerning the linear connection
between DI and resource consumption management remains
inconclusive.

On one side, DI makes a beneficial impact on resource efficiency
(Mehmood et al., 2023; Ran et al., 2023; Shi et al., 2024), adversely
affecting MFP. The widespread embrace of DI stands as a crucial
tool for boosting resource productivity, as it can significantly
improve a company’s environmental performance and the
effective use of resources (Rajput and Singh, 2019; Feng et al.,
2022). Conversely, while many conventional empirical studies
generally endorse the beneficial impact of DI on resource
efficiency, some researchers contend that DI requires more
energy and resources (Lange and Santarius, 2020) and positively

Abbreviations: AMG, Augmented mean group; CO2, Carbon dioxide; CD,
Cross-sectional dependence; CIPS, Cross-sectionally augmented panel unit
root test; CS-DL, Cross-sectionally augmented distributed lag; DFE, Dynamic
fixed effect; DI, Digital infrastructure; EKC, Environmental Kuznets curve; FDI,
Foreign direct investment; GDP, Gross domestic product; GI, Green
innovation; ICT, Information communication technologies; IRP,
International Resource Panel; IV, Instrumental variables; MMQR, Method of
moments quantile regression; MFP, Material footprint; MG, Mean group; NR,
Natural resource; PCA, Principal component analysis; PMG-ARDL, Pooled
mean group-autoregressive distributed lag; RE, Resource-rich economies;
R&D, Research and development; SDI, Sustainable development goal;
STIRPAT, Stochastic impacts by regression on population, affluence, and
technology; TI, Technological innovation; UN, United Nations; UNEP,
United Nations Environmental Program; WDI, World development indicators.
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contributes toMFP. This perspective suggests a detrimental effect on
resource efficiency (Lange and Santarius, 2020; Kunkel and
Matthess, 2020) and reinforces the notion that DI does not
inherently guarantee an enhancement in resource utilisation
efficiency (Hu and Zhang, 2023). Consequently, the exact
influence of DI on MFP is still predominantly ambiguous and
unexamined.

Moreover, while the aforementioned studies explore the linear
relationships between TI and efficient use of resources, as well as DI
and resource management, there has been limited focus on
integrating and assessing the non-linear connections of MFP with
TI and DI. While limited research offers insights into the non-linear
connection between TI and CO2 emissions (Twum et al., 2021; Basty
and Ghachem, 2023), the non-linear connection between TI and
MFP is still underexplored. Likewise, although some current
research supports an inverted U-shaped relationship between
CO2 and DI, as suggested by the EKC hypothesis (Li et al., 2021;
Lange et al., 2020), studies exploring the non-linear connection
between MFP and DI are scarce. Thus, by broadening the EKC
hypothesis, this research seeks to present fresh perspectives on the
non-linear effects of TI and DI on MFP in RE.

The focus of this research is directed toward RE for several
compelling rationales. First, the surge in growth and advancements
in resource-rich countries often generates a significant demand for
the extraction of NR and cutting-edge technologies (Duan and Liu,
2023). NR plays a crucial role in shaping the levels of economic
development, especially within large NR economies (Balsalobre-
Lorente et al., 2018). Second, throughout the last 30 years, these
nations have exhibited a varied growth pattern regarding MFP (see
Supplementary Appendix Figure A1). Nonetheless, every sample
economy exhibited positive growth in MFP as a result of resource
utilisation. Third, the emerging trends confirm that the degradation
of the environment remains a continual challenge in these countries
(Luo andMabrouk, 2022). Furthermore, a significant number of REs
rank among the highest emitting nations globally. For instance,
China, the United States, and Russia rank among the top countries
in CO2 emissions (Hussain et al., 2023).

Therefore, utilising data spanning from 1990 to 2021 and
employing the PMG/ARDL approach, this study aimed to
investigate the non-linear impacts of TI and DI on MFP and
provide a holistic understanding of how technological progress
and DI interact with resource sustainability in RE. Thus, it
addresses the gaps in existing works in the area by examining the
two-fold effects of TI and DI on MFP, encompassing its potential to
increase and mitigate MFP in RE.

The investigation is repeated accounting for GI to examine the
effects of ecologically associated TI on MFP. Furthermore, we
employed the IV method to tackle possible endogeneity concerns.
A sensitivity analysis is additionally performed using the MMQR
procedure to examine the impact of the MFP’s distributional
variation resulting from the nonparametric nature of the data.

This research offers several valuable insights into the existing
body of work. First, examining the TI-related EKC theory and
grasping the non-linear relationships between TI, DI, and MFP
carries significant policy ramifications. While earlier empirical
research has highlighted a partisan perspective regarding the
effects of TI and DI on ecological performance indicators,
whether beneficial or detrimental, this study brings together both

perspectives by illustrating the non-linear influence of TI and DI on
MFP. Consequently, investigating the non-linear effects of TI andDI
provides evidence of the life cycle of TI, DI and the material intensity
of digital transitions and technological innovations. Hence, it
provides detailed evidence on the inverted U-shaped impact of
TI and DI on MFP so that it extends the understanding of the
EKC-type relationship in the context of material resources
productivity, which can enrich the theoretical underpinning of
the relationship between technological and digital innovation and
responsible resources consumption in RE.

Second, the findings of this work will aid RE in developing
policies and practical strategies that enhance the efficiency of
resources in RE while taking into account the interconnections
between TI, DI, and MFP. It offers a comprehensive
understanding of the intricate connections between the TI, DI,
and MFP, yielding fresh policy perspectives aimed at fostering
the creation of effective and viable solutions that enhance the
optimal use of resources to advance SDG. Therefore, the findings
of the study specifically support leveraging TI and DI to promote the
sustainable use of resources, aligning with SDG-8 and SDG-12.

Third, current studies examining the link between natural
resource management and socioeconomic activities have
primarily concentrated on domestic material consumption while
giving little attention to multifactor productivity. This research
utilised the MFP to proxy for NR management due to its
superior accuracy in reflecting policies and strategies to improve
environmental sustainability, as it takes into consideration the
resources engaged in both the consumption of material and
production within the economy (Razzaq et al., 2021).

The remainder of this research is articulated as follows: Section 2
delves into the review of the literature; Section 3 discusses the
theoretical foundations, data, and method of analysis; Section 4
presents the findings of the study; Section 5 presents robustness
analysis, and Section 6 presents discussions and policy suggestions.

2 Review of literature

2.1 TI and NR productivity

Effectively managing NR utilisation is crucial for economic
development and environmental quality. Thus, ensuring the
effective use of NRs is essential for sustaining environmental
quality (OECD, 2008). In this instance, TI can significantly
contribute to the management of NR utilisation. TI denotes the
creation of novel technologies through innovation, encompassing
advancements in materials, methods and processes (Zhao
et al., 2023).

The theoretical foundation for linking MFP and TI is based on a
range of frameworks. An illustration of this is the curse of resources
hypothesis, which underpins the comprehension of the connection
between economic expansion and natural resource consumption. In
the neoclassical growth model, capital and labour are conventionally
regarded as the main drivers of growth. Nonetheless, this perspective
has faced growing opposition, as additional elements, like NRs, have
come to be acknowledged as vital in influencing the growth path of
an economy. The theory of the resource curse posits that an
abundance of natural resources can impede growth in nations
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rich in these resources (Appiah et al., 2024). Moreover, the resource
curse hypothesis delves into additional factors beyond NRs that
could account for the slower growth performance observed in these
nations. Hence, TI is one of the factors supposed to aid in
comprehending this phenomenon (Appiah et al., 2024).

Furthermore, the theoretical connection between TI and MFP
can be demonstrated through Porter and Linde (1995) hypothesis,
which posits that rigorous regulations on the environment motivate
companies to enhance their innovative capacities, especially in GIs,
thereby improving the efficiency of the environment. Conversely,
Goulder and Schneider (1999) contended that although investing in
TI may decrease production or emissions reduction costs, it might
also result in diminished productivity, potentially harming
environmental efficiency. Additionally, the theory of Dutch
disease provides an alternative viewpoint on the negative growth
impacts stemming from natural resource extraction (Saidi and
Omri, 2020). On the other hand, a counternarrative emphasises
the significance of TI, foreign investment, and industrialisation in
alleviating the resource curse (Appiah et al., 2024).

Furthermore, the conceptual connection between TI and MFP
can be grounded in the theoretical frameworks established by
Holdren and Ehrlich (1972) and Commoner et al. (1972), along
with the subsequent mathematical modelling that has found
extensive application in the STIRPAT approach (Fernández-
Herrero and Duro, 2019). This study, grounded in theoretical
principles, offers an in-depth examination of how TI and DI
influence MFP through the lens of the EKC hypothesis.

Building on these theoretical foundations, empirical research
was subsequently carried out (see Table 1). Most of the empirical
works were concerned with investigating the relationship between
environmental performance and TI (Ganda, 2019; Jianguo et al.,
2022; Shabir et al., 2023; Shan and Shao, 2024; Han et al., 2025; Sun
and Qamruzzaman, 2025). A few studies extended the investigation
to examine the non-linear association between environmental
indicators and TI (Bai and Nie, 2017; Twum et al., 2021; Basty
and Ghachem, 2023). Besides, some studies link TI with natural
resource utilisation (Zhang J. et al., 2023; Ulussever et al., 2024;
Razzaq et al., 2022; Miao et al., 2017; Sun et al., 2022; Ozturk
et al., 2023).

Based on the aforementioned empirical and theoretical works,
the following hypothesis is articulated.

Hypothesis 1: (H1): There is an inverted U-shaped relationship
between TI and MFP.

2.2 DI and NR productivity

It is claimed that DI has a considerable impact on NR
management via multiple channels. In principle, DI influences
resources and MFP via the scale effect (the impact of expansion)
and the effects of green efficiency. As DI grows and evolves, its scale
keeps on expanding. Consequently, the expansion on an industrial
scale necessitates a higher input of production inputs (Wang and
Lee, 2022), leading to a rise in MFP. Eventually, the progress of DI
technology and its features will reshape the production processes of
conventional industries. This transition will result in significant
improvements in resource productivity through various sectors,

such as electricity and energy, industry and manufacturing,
and transport.

More importantly, when the level of DI is comparatively low, the
scale effect tends to dominate. Conversely, at significantly higher
levels of digital intelligence, the green efficiency effect becomes more
prominent. As digital intelligence evolves from a lower to a higher
state, its role in resource efficiency moves from negative to positive
(Li et al., 2023). To put it differently, during the initial phase of
digital transformation, the establishment of digital infrastructure
and its usage led to a direct rise in the need for resources and energy
(Cheng et al., 2023), thereby exerting a major impact on the
reduction of MFP. At its advanced phase, DI boosts industrial
productivity and promotes international collaboration through
digital industrialisation, facilitating growth while lowering
marginal costs (Cheng et al., 2023) and reducing NR extraction.

On the aforementioned theoretical basis, several empirical
studies have explored the role of DI in enhancing resource
productivity and promoting environmental quality. Most of the
studies argued that DI promotes environmental sustainability, using
indicators such as load capacity factor, ecological footprint
(Mehmood et al., 2023; Özpolat, 2022), and carbon productivity
(Yu and Liu, 2024). Also, some studies provided evidence of the
linear association between resource consumption and DI (Ran et al.,
2023; Shi et al., 2024; Abid et al., 2023). A few studies provided a
comprehensive analysis of the non-linear association between
environmental quality indicators and DI. For example, Li et al.
(2021), Li et al. (2023), Ahmadova et al. (2022), and Barış-Tüzemen
et al. (2020) found an inverted U-shaped or N-shaped relationship
between DI and environmental quality indicators. Existing empirical
works on the link between DI and environmental performance,
including resource consumption, have been illustrated in
Table 2 below.

Based on the outcomes of the empirical studies and theoretical
underpinnings of the link between DI and resource efficiency, we
develop the following hypothesis.

Hypothesis 2: (H2): DI has an inverted U-shaped impact on MFP.

2.3 Summary and research gaps

First, empirical research on TI mainly focuses on the
relationship between TI and environmental performance (CO2

emissions) (Twum et al., 2021; Ganda, 2019; Jianguo et al., 2022;
Shabir et al., 2023; Shan and Shao, 2024; Han et al., 2025; Sun and
Qamruzzaman, 2025), leaving a significant research gap on the
effects of TI on MFP. Moreover, some existing research works
investigated the effects of TI on resource utilisation management
and efficiency (Razzaq et al., 2021; Miao et al., 2017; Sun et al., 2022;
Ozturk et al., 2023). However, they are mainly concerned with the
linear association between TI and resource consumption, indicating
an important research gap in the area.

Second, investigating non-linear impacts of TI and DI on the
volume of resource flows and consumption, while CO2-based EKC
studies mostly focus on emission reduction without addressing the
volume of resource flows. Therefore, investigating the role of TI and
DI on MFP extending an EKC-type relationship in the context of
material resources productivity is worthwhile. Besides, the CO2-
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focused EKC framework focuses on emission-growth patterns,
whereas investigating the non-linear impacts of TI and DI on
MFP is vital for sound policy formulation to efficiently utilise
resources as MFP focuses on the physical flow of materials,
including extraction, consumption, and waste (Ulussever
et al., 2024).

Third, in addition to investigating the link between TI and MFP,
it is valuable to extend the analysis to the association between
environmental-related technology and MFP to further provide a
comprehensive understanding of the effects of technological
advancement on responsible resource consumption in RE.

Fourth, most of the existing research works except some studies
such as Li et al. (2021), Li et al. (2023), Ahmadova et al. (2022) and
Barış-Tüzemen et al. (2020) that investigated the non-linear
relationship between DI and environmental quality indicators,
research works on the comprehensive non-linear association
between DI and MFP is limited. Investigating how DI affects
MFP helps identify the nature of the relationship and the
threshold where additional digital innovations offer marginal
efficiency gains on resource management, which will be essential
for policy formulation.

Therefore, this study brings new insight by investigating the
non-linear impacts of TI and DI on MFP in resource-abundant
economies and will contribute to concrete evidence regarding the
effects of TI and DI on efficient resource utilisation.

3 Methodology

3.1 Theoretical foundations and model
specification

Effectively managing NR utilisation is crucial for promoting
sustainable economic growth and environmental performance.
Thus, the effective use of NRs is essential for sustaining the
health of the environment and promoting environmentally
friendly growth (OECD, 2008). The theoretical foundation
linking MFP with TI and DI is based on various theoretical
frameworks. For instance, the conceptual link between TI and
MFP can be supported by the hypothesis put forth by Porter and
Linde (1995), which asserts that strict environmental
regulations can lead companies to augment their innovative

TABLE 1 The empirical literature on the MFP-TI nexus.

Authors Period Scope/sample Methodology Findings

Appiah et al. (2024) 1990–2021 OECD AMG and CCEMG The findings indicate that innovation significantly decreases NR
extraction

Hehua et al. (2024) 1995–2019 A sample of Asian countries CS-ARDL TI positively influences resource management

Zhang et al. (2023b) 2010–2021 25 countries Fixed effect, Random effect In higher-income economies, the GI exhibits a more substantial
positive effect on sustainability

Basty and Ghachem
(2023)

2015–2020 OECD countries Parametric and
Semiparametric regressions

Revealed an inverted U-shaped link between CO2 and R&D spending

Twum et al. (2021) 1990–2018 A sample of Asian countries Truncated regression Inverted U-shaped link between environmental efficiency and TI

Razzaq et al. (2021) 1990–2017 Top 11 highly material-
consuming countries

MMQR Mixed impact of GI on MFP

Ganda (2019) 2000–2014 Selected OECD countries System GMM TI improves environmental quality by channelling resources
into R&D

Jianguo et al. (2022) 1998–2018 A sample of OECD
countries

System GMM TI significantly decreases environmental quality

Shabir et al. (2023) 2004–2018 APEC countries AMG and CCMG Environmentally related TI destructively affects CO2 emissions

Shan and Shao (2024) 1990–2020 China Regression GI has a significant mitigating impact on CO2 intensity

Miao et al. (2017) 2001–2015 China Stochastic frontier analysis The introduction of GI funds and green new product development
funds has a notable positive impact on the efficiency of NR utilisation

Sun et al. (2022) 1990–2018 BRICS CS-ARDL Changes in technical efficiency increase resource efficiency

Ozturk et al. (2023) 1990–2020 G-20 nations MMQR GI substantially decreases theMFP across all distributions, though the
extent and significance of its impact vary

Han et al. (2025) 1995–2022 G-20 nations PMG-ARDL TI positively influences renewable energy consumption, in turn
strongly associated with reductions in CO2 emissions

Sun and
Qamruzzaman (2025)

1990–2022 BRICS + T nations ARDL TI reliably mitigates CO2 emissions and ecological footprints

Ahmad et al. (2023) 40 years China Autoregressive distributed lag
method

TI promotes sustainable development by supporting economic
expansion without harmful effects on the environment

Chen et al. (2025) 2014–2018 China Fixed effects model The digital economy exhibits an inverted U-shaped effect on indirect
household carbon emissions
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capacities, mostly in GI, eventually leading to better
ecological efficiency.

Furthermore, the theoretical connections between resource
utilisation and TI, along with the associations among control
variables such as economic growth, population dynamics,
industrial development, and FDI and MFP, are grounded in the
theoretical frameworks established by Holdren and Ehrlich (1972)
and Commoner et al. (1972). These conceptual frameworks have
been extensively applied in mathematical modelling, particularly
within the STIRPAT structure (Fernández-Herrero and
Duro, 2019).

Also, the STIRPAT framework serves as the theoretical
foundation for this research, aimed at assessing the effects of DI
on the MFP. Yu et al. (2023) extended the STIRPAT specification by
incorporating household size and urbanisation. Moreover, various
extended STIRPAT frameworks were also produced for the context
of NR management in earlier studies (Hussain et al., 2020; Jiang
et al., 2022). Furthermore, the theoretical foundation for the

relationship between TI and NR utilisation can be determined
through a set of guidelines aimed at addressing the appropriate
SDGs, which seeks to resolve ecological and economic challenges,
particularly enhancements in the resource efficiency of SDI-8 and
the sustainable management of the NRs of SDI-12.

Based on this theoretical framework, this research offers an in-
depth examination of how TI and DI influence MFP through the
lens of the EKC theory. This hypothesis suggests that the MFP
exhibits an inverted U-shaped relationship with both the TI and DI.
In the initial phases of TI and DI, MFP rises. However, once a certain
threshold of TI and DI is surpassed, this trend shifts, resulting in a
decline in MFP.

To put it differently, a high (low) TI correlates with a low (high)
level of MFP. Also, a large (small) change in DI can be associated
with a reduced (increased) MFP level. Thus, the MFP stated in
Equation 1 is expected to be positively affected by the TI at the initial
stages (α1 � ∂logMFP/∂logTI> 0) and adversely affected after the
inflection point (α3 � ∂logMFP/∂logTI2 < 0). Likewise, theMFP in

TABLE 2 The empirical literature on the DI-MFP nexus.

Authors Period Scope/sample Methodology Findings

Ran et al. (2023) 2006- 2020 China The input-output method The digital economy can greatly advance industrial green
transformation by enhancing the efficiency of NR consumption

Mehmood et al.
(2023)

1990- 2018 G8 CS-ARDL estimator TI and DI benefit the natural ecological health

Shi et al. (2024) 2010- 2020 China Slacks-Based Measure DI advancements improve resource efficiency

Li et al. (2023) 2007-2015 91 countries OLS U-shaped relationship between CO2 and ICT

Özpolat (2022) 1990- 2015 G-8 economies AMG method Internet usage is linked to a decreased ecological footprint

Yu and Liu (2024) 2000-2020 136 countries Fixed-effects and mediation
models

Promoting DI significantly boosts carbon productivity, mainly by
advancing TI

Abid et al. (2023) 1990- 2019 G10 economies CS-ARDL ICTs negatively affect MFP, indicating a vital role in mitigating
resource depletion

Ahmadova et al.
(2022)

2014–2019 47 countries The panel smooth transition
regression model

U-shaped relationship between DI and environmental performance

Barış-Tüzemen et al.
(2020)

1980–2017 Turkey ARDL N-shaped non-linear relationship between DI and CO2

Hou et al. (2024) 1998–2021 BRICS nations CS-ARDL Improvement in DI helps control resource depletion

He et al. (2024) China Regression and IV DI lowers energy consumption and fosters sustainable development

Razzaq et al. (2022) 1990- 2018 China Quantile ARDL approach infrastructure development significantly increased the MFP

Xu and Li (2022) 2013- 2019 China A panel threshold model After a certain development threshold, DI influence on innovation
starts to experience diminishing returns

Mu et al. (2025) 2011-2022 China Tobit model digital transformation significantly enhances green innovation
potential

Tian et el. (2025) 2011- 2022 China System GMM and OLS The digital economy positively influences the utilisation efficiency of
mineral resources

Gariba et al. (2024) 2018- 2023 EU Structural equation modeling Public DI positively affects TI, fostering sustainability progress

Salahuddin et al.
(2016)

1985–2012 Australia ARDL Internet usage has no long-run effect on CO2 emissions

Bashir et al. (2024) 1996- 2021 Top-ten resource-
consuming economies

CS-ARDL DI promotes environmental sustainability

Yang et al. (2024) 1990 to
2021

South Asian countries DI contributes to higher green growth.
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Equation 1 can be positively impacted by the DI initially
(α2 � ∂logMFF/∂logDI> 0) and adversely affected after the
threshold value (α4 � ∂logMFP/∂logDI2 < 0).
logMFPi,t � α0 + α1logTIit + α2logDIit + α3logTI

2
it + α4logDI

2
it

+ αnXit + ηit (1)

MFP represents the material footprint to represent NR
utilisation efficiency; TI is technological innovation, measured by
patent counts. DI is represented by a composite index constructed
through PCA, X controls explanatory variables such as GDP per
capita gross (GDPc), population size (P) to proxy the demographic
dynamics of the countries, level of industrialisation (Ind) proxied by
value-added of industry sector per GDP, and FDI is represented by
net FDI inflows. αs is a set of coefficients and η indicates the
stochastic term. T is for the years (1990–2021), and i is a sample
RE 1. . ..13.

Equation 1 incorporates control variables such as GDP per
capita, population, and additional variables within the STIRPAT
framework, which may influence MFP (Fernández-Herrero and
Duro, 2019). The rise in GDP per capita, industrialisation, and
population growth boost MFP, adversely affecting NR
productivity. FDI can influence the MFP both negatively and
positively.

3.2 Data

This study utilises data for 18 RE for the period 1990 to
2021 based on data availability.1

3.2.1 Dependent variable
MFP was utilised to proxy NR management. MFP signifies

trade-adjusted NR management and measures resource usage
stemming from domestic activities (Appiah et al., 2024; Ozturk
et al., 2023). Moreover, the MFP signifies the overall global material
extraction linked to a nation’s ultimate domestic demand. It
comprises fossil fuels, biomass, metal ores, and nonmetal ores.
Employing MFP provides an all-encompassing view of a
country’s material consumption, extending past just domestic
material usage. The MFP considers both the impacts on territory
and the inherent effects of trade, encompassing both imports and
exports (Karakaya et al., 2021). Data is sourced from the UNEP
(IRP) Database.

3.2.2 Target variables
Two key variables have been identified: TI and DI. The total

number of patents (with two families) is used as an indicator of
TI, as an increase in patent numbers indicates the variety of
research and development efforts and technological assets
present in an economy (Jianguo et al., 2022; Obobisa et al.,
2022; De los Santos-Montero et al., 2020; Ma et al., 2022;

Dam et al., 2024). We borrow data from the OECD database,
which is the number of patents related to a country’s technical
advancement (with two families).

DI represents the digitalisation capabilities of nations. Some
empirical works used individuals using the internet as % of the
population to represent DI (Yang et al., 2024; Zhou and Feng, 2024)
and fixed broadband subscriptions (per 100 people) to represent
digital infrastructure (Ahmed et al., 2024). However, this study used
aggregate indicator of DI calculated using three DI-related factors:
mobile cellular subscriptions, fixed telephone subscriptions, and the
proportion of individuals who access the internet to capture various
aspects of digital applications. The PCA is employed to compute the
aggregate DI index, utilising data from the World Bank’s WDI
database. The findings are reported in Supplementary Appendix
Table 6A in Appendix A.

3.2.3 Control variables
To account for the influence of additional control variables on

MFP, we incorporate real GDP, population, FDI inflow, and
industrialisation, utilising data from the WDI database. The
variables considered include per capita GDP and population,
following the approaches presented by Karakaya et al. (2021).
Industrialisation denotes the extensive growth of industries,
defined by value added per GDP, which is incorporated as a
control variable following the research conducted by Appiah
et al. (2024). Supplementary Appendix Table A1 presents the
definitions and data sources for all variables. Table 3 below
presents the essential statistical summaries of variables.

3.3 Method of analysis

Most empirical investigations primarily rely on short-run panel
estimates, including static panel data methods. However, these
methods often produce inadequate results due to the data’s
nonstationarity. Furthermore, these methods primarily
concentrate on short-term relationships, and neglecting these
drawbacks may result in inaccurate regression outcomes. As a
result, there is a growing focus on panel data models in which
the number of time series data observations is equal to or greater
than the number of the panels (Borojo et al., 2023). In many of these
procedures, the central emphasis lies in assessing long-term

TABLE 3 Statistical summary.

Variable Obs Mean Std. dev. Min Max

MFPit 574 2.42E+09 5.22E+09 2.30E+07 3.50E+10

TIit 566 5355.919 16565.500 0.200 88963.300

DIit 566 0.026 1.403 −1.799 3.323

GDPcit 569 20075.320 21479.890 531.898 77812.700

FDIit 568 31.418 69.264 −25.000 510.000

Pit 576 1.96E+08 3.76E+08 1,800,000 1.40E+09

Indit 568 36.025 10.830 17.508 68.187

GIit 547 21.393 83.737 0.007 791.661

1 Sample RE: Algeria, Brazil, Chile, India, Iran, United Arab Emirates,

Venezuela, Peru, Oman, Russia, China, Saudi Arabia, Mexico, Viet Nam,

Australia, Canada, United States and Norway.
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relationships and the speed of long-run adjustments (Pesaran
et al., 1999).

We use the PMG/ARDL technique to investigate the short-
and long-term roles of the TI and DI on the MFP. This method
exhibits a strong ability to manage the dynamic heterogeneity
inherent in the adjustment process while also suggesting
potential pathways to long-term equilibrium convergence.
Additionally, it provides consistent estimates across countries
(Pesaran et al., 1999). Also, it effectively controls long-term
cointegration between variables, irrespective of their
integration sequence and certifies that long-term coefficients
are consistent across country sets while accounting for
changes in intercepts, short-run dynamics and error terms.
Thus, this approach is useful since it yields long- and short-
term coefficients, regardless of whether the variables are a mix of
the I (1) and I (0) series (Pesaran and Pesaran, 1997).

Thus, having economies, i = 1, 2, 3, . . . , N, and time, t = 1, 2, 3,
. . . , T, a long run PMG/ARDL (m, n, n . . . , n) approach is presented
in Equation 2:

MFPi,t � ∑
p

z�1
κiMFPi,t−z +∑

n

z�1
ϑiTIi,t−z +∑

n

z�0
αiDIi,t−z +∑

n

z�0
δiTI

2
i,t−z

+∑
n

z�0
ωiDI2i,t−z +∑

n

z�0
βiXi,t−z + ηit

(2)
where MFPi,t is the material footprint and MFPi,t-1 is the lag of
MFP. TIi,t and DIi,t are target variables. Xi,t represents control
covariates (GDPc, FDI, P, Ind). κij is the estimate of the lag of MFP;
ω, δ, ϑ, β, and α are coefficients; m and q are the lag size of the
dependent and independent variables, respectively; and ηit is
the error term.

Equation 2 is rearranged to define the long-run and short-run
cointegration connection employing Equation 3:

ΔMFPi,t � ∑
p

z�1
κiMFPi,t−z +∑

n

z�1
ϑiTIi,t−z +∑

n

z�0
αiDIi,t−z +∑

n

z�0
δiTI2i,t−z

+∑
n

z�0
ωiDI2i,t−z +∑

n

z�0
βiXi,t−z + ∑

m−1

j�1
σ iz*ΔMFPi,t−z

+∑
n

z�1
ϑ′*izΔTIi,t−z +∑

n

z�0
α′*izΔDIi,t−z +∑

n

z�0
δ′*izΔTI2i,t−z

+∑
n

z�0
ω′*izΔDI2i,t−z +∑

n

z�0
β′*izΔXi,t−z + yi,t + εit

(3)
Details of the coefficients of both long and short-run estimates in

Equation 3 are depicted in Equations 4-11.

κi � − 1 −∑m

z�1κiz( ) (4)
ϑi � ∑n

z�0ϑiz, αi � ∑n

z�0αiz, δi � ∑n

z�0δiz,ωi � ∑n

z�0ωiz, βi

� ∑n

z�0βiz (5)

σ iz
* � − ∑

m

q�z+1
σ iq, z � 1, 2, 3, ...,m − 1 (6)

ϑiz
* � − ∑

n

q�z+1
ϑiz, z � 1, 2, 3, ..., n − 1 (7)

αiz
* � − ∑

n

q�z+1
αiq, z � 1, 2, 3, ..., n − 1 (8)

δiz
* � − ∑

n

q�z+1
δiq, z � 1, 2, 3, ..., n − 1 (9)

βiz
* � − ∑

n

q�z+1
βiq, z � 1, 2, 3, ..., n − 1 (10)

ωiz
* � − ∑

n

q�z+1
ωiq, z � 1, 2, 3, ..., n − 1 (11)

Moreover, sensitivity analysis is conducted to investigate
the influence of distributional heterogeneity. Therefore,
controlling heterogeneity in the resource footprint is
essential. After we test for normality assumption using
Jarque and Bera’s (1987) strategy to obtain reliable
information on variable dispersion, we apply the MMQR
method (Machado and Santos Silva, 2019).

Moreover, it is essential to tackle the issues related to reverse
causality. Concerns of reverse causality might arise when there is a
possibility of reverse causality between the dependent variable and
the covariates affecting the dependent variable. Therefore, the IV
procedure is employed to overcome the endogeneity arising from
reverse causation between MFP, TI and DI. Following the
approaches used by Li et al. (2021) and Shan and Shao (2024),
we employ the first-order lagged value of both the level and
quadratic terms of the target variables as IV.

Moreover, to ensure robustness, additional tests are conducted
by using R&D expenditures per GDP and its square term as
instruments for TI and its square term. Similarly, the number of
fixed telephone subscriptions per 100 people in 1982 and its square
term are employed as instruments for DI (Lin and Huang, 2023).We
used fixed telephone subscriptions in 1982 on the notion that the
development of DI builds upon traditional ICT, with fixed
telephones being one of the foundational infrastructures. Since
the cross-sectional data of this indicator does not directly
correspond to the panel data used in this study, the IV variables
are constructed by multiplying the number of fixed telephone
subscriptions per 100 people in 1982 by a time dummy variable
(Lin and Huang, 2023).

TABLE 4 CD and CIPS results.

CIPS results CD test results

Variables Level 1st difference CD-test

MFPi,t 0.356 −6.990*** 53.201***

TIit 3.091 −7.520*** 44.912***

DIt 0.410 −4.732*** 63.194***

GDPcit −0.837 −2.720*** 40.532***

FDIit −1.167 −9.198*** 32.442***

Pit −2.150 −5.529*** 53.433***

Indit −1.921** −6.343*** 20.301***

Note: ***, ** indicate significance at 1% and 5%.
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4 Findings and discussions

4.1 CD and unit root tests

A CD test was carried out, revealing that the CD is notably
significant at the 1% level (Table 4). Also, it has been proposed in
prior studies that second-generation unit root tests like the CIPS can
be utilised to investigate the stationarity characteristics of variables
when confronted with cross-dependence. Consequently, due to the
characteristics of the data, we carried out the CIPS (Pesaran, 2007).
The results presented in Table 4 indicate that the variables exhibit a

combination of orders, I (0) and I (1), which directs the application
of the PMG/ARDL method to examine the influence of the TI and
DI on the MFP.

4.2 Cointegration analysis

We employed the cointegration assessment strategies proposed
by Westerlund (2007) and Pedroni (2004) to find out the
cointegration connections. The findings demonstrate the presence
of cointegration across all specifications (Table 5). Linear association

TABLE 5 Cointegration outcomes.

Pedroni Westerlund

Models Modified Phillips-P. t Phillips-P. t Aug. D.-F. t

(1) 3.474*** −3.011*** −2.972*** −1.584*

(2) 3.684*** −3.125*** −3.062*** −2.337***

(3) 4.329*** −2.631*** −2.659*** −2.060**

Note: ***, ** and * Show significance at 1%, 5% and 10%.

TABLE 6 Effects of the TI and DI on the MFP.

Variables (1) (2) (3)

Panel (A): Long run outcomes

logTIit 0.094*** (0.022) 0.147*** (0.043) −0.065*** (0.014)

logDIit 0.215*** (0.035) 0.176*** (0.018) 0.154*** (0.025)

logTIit
2 −0.026*** (0.004)

logDIit
2 −0.037*** (0.010)

logGDPcit 0.028 (0.033) 0.430*** (0.037) 0.411*** (0.026)

logFDIit 0.037*** (0.009) 0.049*** (0.011) 0.051*** (0.009)

logPit 0.280*** (0.025) 1.384*** (0.013) 1.423*** (0.015)

logIndit 0.360*** (0.108) 0.291*** (0.058) 0.373*** (0.086)

Panel (B): Short run results

ECM −0.191*** (0.039) −0.204*** (0.060) −0.198*** (0.058)

logTIit 0.005 (0.078) 0.107 (0.222) −0.014 (0.016)

logDIit 0.004 (0.015) −0.008 (0.084) 0.031 (0.091)

logTIit
2 −0.014 (0.018)

logDIit
2 0.035 (0.030)

logGDPcit 0.416*** (0.151) 0.436*** (0.154) 0.415*** (0.152)

logFDIit 0.015** (0.006) 0.016** (0.007) 0.020** (0.008)

logPit 0.061 (0.373) 0.509 (0.423) 0.778 (1.129)

logIndit −0.047 (0.073) 0.015 (0.086) −0.017 (0.084)

Cons 2.379*** (0.471) −2.116*** (0.627) −2.160*** (0.629)

Observations 467 467 467

Note: ***and ** stand for 1% and 5% level of significance. In parenthesis is the Standard deviation.

Frontiers in Environmental Science frontiersin.org09

Li and Borojo 10.3389/fenvs.2025.1522305

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1522305


analysis is represented by Model (1), whereas Model (2) and Model
(3) control both the level and quadratic terms of TI and DI,
respectively.

4.3 Effects of the TI and DI on the MFP

The Pearson correlation results are reported in Supplementary
Appendix Table A3 in Appendix A. Before the application of the
PMG/ARDL method, a Hausman test is applied to determine the
appropriate Model among the PMG, MG, and DFE methods. The
results revealed that the PMG approach provides a more effective
estimate compared to the MG and DFE methods (Supplementary
Appendix Table A4 in Appendix A). Consequently, we utilise the
PMG approach to assess both the linear and non-linear effects of the
TI and DI on the MFP. Model 1 illustrates the linear connection
between the target variables and MFP. After that, we incorporate the
square terms of TI and DI into Models 2 and 3, respectively. The
results are reported in Table 6. The Table consists of two sections:
Panel A displays the long-term outcomes, while Panel B reports the
short-term findings.

The long-run coefficients for all control variables are congruent
with both theoretical and empirical shreds of evidence. Furthermore,
the findings underscore that the error correction terms hold
statistical significance and are negative, confirming the existence
of a robust long-term relationship among the variables.
Furthermore, the significance of the error correction terms
reflects the speed at which short-run deviation converges to the
long-term equilibrium (Table 6). The findings indicate that GDP per
capita significantly boosts the MFP in RE, suggesting that economic
growth negatively impacts resource management and encourages
resource extraction. The results related to the outcomes of Xu et al.
(2024), who contended that per capitaGDP has a negative impact on
the efficiency of resource utilisation.

Furthermore, the findings suggest that industrialisation exerts a
significant positive impact on MFP, underscoring its detrimental
effect on the management of natural resources. These outcomes
align with the research of Fang and Chang (2023). Likewise,
population size positively influences MFP, which corroborates the
conclusions of Xuan et al. (2023), who observed a direct correlation
between population growth and natural resource consumption. As
the population grows, resource usage intensifies, thereby
contributing to an increase in MFP. Likewise, the results in
Model (1) of Table 6 demonstrate that FDI has a positive long-
term and short-term effect on MFP.

Focusing on the key variables, the results in Column (1) reveal a
positive linear relationship between MFP and TI in both the short
and long term. Specifically, a 1% rise in TI leads to a 0.094% increase
inMFP in RE over the long term. Similarly, the findings indicate that
DI exerts a strong positive linear impact on MFP in the long run,
where a 1% increase in the DI index leads to a 0.215% rise in MFP.

On the other hand, the outcomes inModel (2) suggest that while
the estimator for the square of TI is significantly negative, the TI
itself remains positive, indicating an inverted U-shaped relationship
between TI andMFP. Using the estimates fromModel (2) in Table 6,
we can calculate the inflection point, which in the long run is 2.827
(0.147/2*0.026). This implies that TI does not reduce MFP when it is
below the threshold of 2.827 in natural logarithmic terms. However,

once TI surpasses 2.827, it starts to lower NR consumption and
meaningfully mitigates MFP. These results demonstrate that TI can
enhance sustainable resource productivity after crossing the
inflection point. This suggests that as the rebound impacts of TI
grow, economies begin shifting strategies towards greater
investment in green technologies, which helps limit NR
consumption and has a negative impact on MFP.

Additionally, the quadratic term of DI is introduced in Model
(3) to explore whether DI has a non-linear impact on MFP. The
long-term results reveal that while the DI coefficient is positive, the
quadratic term is negative and statistically significant at the 1% level.
These findings confirm that DI and its square term are strongly
positive and negative, revealing a pronounced inverted U-shaped
link between DI andMFP. This implies that DI can only reduceMFP
once it surpasses a certain threshold. Based on the results, the
inflection point is calculated from Model (3) of Table 6, standing
at 2.081 [0.154/(2*0.037)]. This means that when the DI index is
below 2.081, DI increases MFP, but once the DI exceeds this value, it
begins to reduce MFP. Thus, the results confirm the existence of an
inverted U-shaped relationship between DI and MFP. Graphical
representation of the inverted U-shaped impacts of DI and TI on
MFP is depicted in Figures S1,S2 in Supplementary material.

4.4 Effects of GI on MFP

To look further into the effect of the GI, a specific element of the
TI, the exercise is conducted further by using the GI in the analysis
instead of using the TI. Table 7 presents the obtained results. A linear
relationship between the GI and MFP is reported in Column (I).
Column (II) includes GI and its squared term.

The findings indicated that innovations related to the
environment have an adverse impact on MFP in the long run.
Likewise, the long-term estimate of the square of GI is negative and
robust, indicating that small and major improvements in GI
adversely influence NR utilisation and notably diminish MFP
over the long term.

5 Sensitivity analysis

Sensitivity analyses are conducted to account for the
distributional heterogeneity of MFP and potential
endogeneity issues.

5.1 Distributional heterogeneity concerns

The analysis of robustness begins with an exploration of how the
distributional variation of MFP and the nonparametric
characteristics of the data affect the outcomes. Thus, handling
the heterogeneity in the MFP is crucial. The normality test by
Jarque and Bera (1987) is performed to find insights into the
distributional nature of the variables. The results revealed that
the data did not follow a normal distribution (Supplementary
Appendix Table A2 in Appendix A). This demands the use of a
nonparametric method, namely, MMQR, incorporating fixed effects
(Machado and Santos Silva, 2019). The results are presented in
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Table 8. It consists of three separate panels. Panel (A) shows the
findings of the linear association between MFP, TI and DI, while
Panel (B) illustrates the non-linear (an inverted U-shaped)
connection between TI and MFP. The final Panel presents the
findings regarding the inverted U-shaped relationship between
the DI and the MFP.

In alignment with the baseline findings presented in Table 6, the
coefficient of TI demonstrates a positive linear influence on MFP
throughout all quantiles. Moreover, the DI has a positive role in the
MFP in all quantiles. The findings presented in Panel (B) and Panel
(C) reveal that the estimates for the level and square of TI and DI are
positive and negative. These outcomes suggest that an inverted
U-shaped connection occurs between TI and MFP, as well as
between DI and MFP.

5.2 Endogeneity concerns

We employed the IV technique to solve the reverse causality
between the target variables (TI and DI) and MFP. Following the
works of Li et al. (2021) and Shan and Shao (2024), we employed the
first-order lags of the level and squared values of the TI and DI as
instrumental variables. The Wu‒Hausman test for reverse causality
shows no evidence of endogeneity, thereby affirming the presence of
exogeneity in the linear model specification. However, the second
Model presents some endogeneity challenges. The outcomes

reported in Table 9 support the evidence found in the baseline
results presented in Table 6.

Moreover, we further conducted a robustness test utilising
expenditures on R&D per GDP and its square term to
instrument TI and its square term. Besides, the number of fixed
telephone subscriptions per 100 people in 1982 and its square are
used as instruments for DI, and its square term follows the works of
Lin and Huang (2023). The results reported in Supplementary
Appendix Table A5 support the baseline findings in Table 4,
though there are several missing values for R&D data.

6 Discussion and practical implications

Efficient management of NR use is fundamental for promoting
both economic growth and environmental sustainability. Ensuring
that NRs are utilised effectively plays a vital role in preserving
environmental quality and advancing sustainable development
(OECD, 2008). With this perspective in mind, examining the
influence of TI and DI on MFP, an indicator of trade-adjusted
NR management, is valuable (Ozturk et al., 2023). Consequently,
this study uses panel data from 13 RE over the period from 1990 to
2021 to investigate the non-linear impacts of TI and DI on MFP.

The findings of this study reveal a long-run inverted U-shaped
relationship between TI and (MFP). This relationship is reflected in
the positive estimates for TI’s level terms and the negative estimates

TABLE 7 Impacts of GI on MFP.

Variables (I) (II)

Panel (A): Long run results

logGIit −0.072*** (0.028) −0.077*** (0.026)

LogGI2it −0.033*** (0.010)

logDIit 0.261*** (0.024) 0.259*** (0.016)

logGDPcit 0.273*** (0.032) 0.279*** (0.030)

logFDIit 0.016 (0.013) 0.021* (0.011)

logPit 0.730*** (0.011) 0.783*** (0.009)

logIndit 0.253*** (0.076) 0.273*** (0.072)

Panel (B): Short-run results

ECT −0.224*** (0.052) −0.244*** (0.054)

logGIit 1.281 (2.778) 5.943 (4.033)

logDIit 0.004 (0.175)

logGI2it 0.005 (0.084) 0.013 (0.082)

logGDPcit 0.433*** (0.166) 0.315* (0.167)

logFDIit 0.013*** (0.004) 0.006 (0.007)

logPit 0.220 (0.415) 0.496 (0.481)

logIndit −0.006 (0.095) 0.067 (0.088)

Constant 0.807*** (0.183) 0.577*** (0.129)

Observations 458 458

Note: *** and ** stand for 1% and 5% level of significance. In parenthesis is the Standard deviation.
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for its squared terms, suggesting that a higher degree of investment
in TI is ultimately more beneficial than a lower degree of investment
in RE in the long run. While initial increases in TI drive up resource
extraction and expand the resource footprint beyond a certain
threshold, TI fosters sustainable resource management, leading to
a decline in MFP. Thus, TI acts as a “resource curse” up to a critical
point, after which it transforms into a “resource blessing,”
promoting sustainable resource use.

These findings can be loosely explained that the results suggest a
dual-phase effect of TI on the MFP. Initially, TI tends to increase the
MFP as it drives greater exploitation of NRs, reflecting economies of

scale. However, once TI surpasses a certain threshold, it begins to act
as a powerful instrument for improving the efficient utilisation of
NRs by reducing MFP. This can be justified as in the early stages of
TI adoption, increased mineral extraction enabled by advanced
technology may lead to a significant rise in MFP. Eventually, as
TI evolves and matures, its resource-saving impacts become more
pronounced, leading to a gradual decrease in MFP and reduced
NR depletion.

The non-linear association between TI and MFP can also be
explained by the fact that long-term advancements in TI yield a
higher input-to-output ratio of innovation and scientific resources,

TABLE 8 The effects of the TI and DI on the MFP (MMQR).

Variables Location Scale Q0.25 Q0.50 Q0.75 Q0.90

Panel A: Linear relationship

logTIit 0.048*** (0.014) 0.009 (0.008) 0.040** (0.017) 0.049*** (0.014) 0.056*** (0.015) 0.061*** (0.017)

logDIit 0.127*** (0.023) −0.031*** (0.012) 0.159*** (0.029) 0.125*** (0.023) 0.099*** (0.022) 0.082*** (0.024)

Control variables Y Y Y Y Y Y

Obs 507 507 507 507 507 507

Panel B: Non-linear association between TI and MFP

logTIit 0.084*** (0.026) −0.038*** (0.011) 0.120*** (0.029) 0.083*** (0.026) 0.050* (0.026) 0.028 (0.027)

logDIit 0.053*** (0.013) −0.001 (0.007) 0.054*** (0.015) 0.053*** (0.013) 0.053*** (0.014) 0.052*** (0.016)

logTIit
2 −0.002 (0.002) 0.004*** (0.001) −0.005** (0.002) −0.003* (0.002) −0.002 (0.002) −0.004 (0.003)

Control variables Y Y Y Y Y Y

Obs 507 507 507 507 507 507

Panel C: Non-linear association relationship between DI and MFP

logTIit 0.058*** (0.015) 0.002 (0.008) 0.056*** (0.018) 0.059*** (0.014) 0.061*** (0.015) 0.062*** (0.016)

logDIit 0.071*** (0.014) −0.012 (0.008) 0.082*** (0.017) 0.070*** (0.013) 0.060*** (0.014) 0.054*** (0.015)

logDIit
2 −0.020*** (0.005) 0.001 (0.003) −0.021*** (0.007) −0.020*** (0.005) −0.020*** (0.005) −0.019*** (0.005)

Control variables Y Y Y Y Y Y

Observations 507 507 507 507 507 507

Note: *** and ** stand for 1% and 5% level of significance. In parenthesis is the Standard deviation.

TABLE 9 Effects of the TI and DI on the MFP (IV).

Variables (1) (2) (3)

logTIit 0.391*** (0.048) 0.777*** (0.081) 0.390*** (0.048)

logDIit 0.473*** (0.102) 0.254*** (0.090) 0.472*** (0.102)

logTIit
2 −0.028*** (0.006)

logDIit
2 −0.086** (0.040)

Control variables Y Y Y

Wald test 20,844.12*** 2,781.58*** 3,111.44***

R2 0.903 0.910 0.902

First stage test 291.77*** 355.001*** 533.87***

Wu-Hausman (p value) 0.188 0.277 0.019

Note: *** and ** stand for 1% and 5% level of significance. In parenthesis is the Standard deviation. Y, Yes.
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which is crucial for enhancing TI, optimising resource productivity,
and diminishing resource overutilisation through amore sustainable
array of production approaches. This progression not only paves the
way for the development of alternative renewable resources but also
mitigates the overexploitation and excessive utilisation of finite
natural resources. Consequently, TI plays a pivotal role in
preserving ecological sustainability and mitigating the ecological
footprint (Bai and Nie, 2017). Thus, TI significantly shapes the
dynamics of resource consumption in REs, enhancing resource
efficiency, lowering overall resource usage, and markedly
reducing MFP.

Additionally, from a theoretical perspective, our research
presents a number of intriguing implications. This study’s
findings broaden and enhance the EKC hypothesis, shedding
light on the complex relationships between economic growth and
environmental indicators. This leads to a non-linear relationship
between the TI and MFP. Thus, TI could significantly influence the
sustainability of NR usage through a range of mechanisms. It
promotes the growth of more resource-savvy methods and aids
in establishing a sustainable production framework. Furthermore,
the TI harnesses the recycling and repurposing of resources,
supporting the mitigation of the depletion of resources.
Furthermore, TI can potentially propel the advancement of
alternative and renewable resources, thereby diminishing reliance
on limited materials and resources (Liu and Liang, 2024).

The positive coefficients of the linear relationship between TI
andMFP deviate from the findings of Ulussever et al. (2024), Appiah
et al. (2024) and Razzaq et al. (2021), who contend that TI exerts
significant mitigating effects on MFP and substantially reduces NR
extraction. In contrast, the findings and outcomes of this research
align with the research conducted by Dam et al. (2024), which
indicates that TI has a significant enhancing impact on ecological
sustainability over the long term in E−7 states. Therefore, from the
perspective of the empirical works, this research contributes novel
insights into the non-linear relationship between TI and MFP.

Therefore, in the resources management context, understanding
non-linearity aids policymakers in designing adaptive and flexible
strategies that accommodate varying effects over time. For instance,
promoting technologies with proven long-term efficiency while
mitigating potential short-term resource spikes. Initial phases of
innovation might involve resource-intensive R&D, which could
increase consumption before achieving efficiency. Understanding
these transitional phases helps in evaluating the actual long-term
benefits of innovation.

Furthermore, concerning the relationship between GI and MFP,
the results of this study reveal that the linear and squared terms of GI
exhibit negative coefficients. This indicates that even minor or
significant variations in GI substantially decrease MFP in RE.
These findings are consistent with the conclusions of Ozturk
et al. (2023), who asserted that GI has a considerable mitigating
effect on resource footprints. Additionally, the results aligned with
the work of Koseoglu et al. (2022), which examined the link between
ecological footprint and GI. The findings also conform to theoretical
expectations, as GI fosters advancements in technology and
equipment within resource-dependent industries, thereby
enhancing resource utilisation efficiency. Moreover, it encourages
the production of environmentally sustainable products, resulting in
notable positive environmental externalities (Hao et al., 2022).

Moreover, this research offers fresh insights into the connection
between DI and MFP. The findings show that the DI and its square
exhibit strong positive and negative effects, respectively, suggesting
an inverted U-shaped relationship between the DI and MFP.
Therefore, the initial adoption of DI can promote material
consumption due to the demand for digital infrastructure and
devices. Once it is at the maturity stage, it can enhance efficiency
through several mechanisms such as smart resource management,
dematerialisation, and circular economy practices, mitigating
resource consumption and adversely affecting MFP. Therefore,
DI is capable of diminishing the MFP once it attains a specific
threshold. Consequently, during the early phase of digital
innovation, a greater allocation of resources is essential to
establish a digital framework, leading to heightened natural
resource usage and MFP. As DI continues to evolve, its influence
on economic activities increasingly becomes more pronounced,
fostering growth through the scale effect.

The findings are well-founded, as the widespread adoption of DI
emerges as a powerful tool for improving resource efficiency. DI
enhances the effective utilisation of resources by enabling robust
monitoring and facilitating responsible management practices.
Furthermore, it empowers businesses to implement smart
equipment control and remote monitoring within their
production systems, significantly reducing resource waste (Feng
et al., 2022). Additionally, DI aids in optimising resource
allocation and minimising waste throughout supply chains and
production processes. Consequently, advancements in DI not
only bolster resource efficiency but also promote sustainability in
the consumption of natural resources.

Theoretically, the results contribute to the existing framework
linking DI and MFP, per the EKC hypothesis. The outcomes of this
study can be interpreted through two primary channels by which DI
affects resources and MFP: scale expansion and enhancements in
green efficiency. As DI booms, its scale effect amplifies the demand for
production inputs and resources (Wang and Lee, 2022), leading to an
initial increase in MFP. Over time, innovations in digital intelligence
can revolutionise conventional industries, streamline manufacturing
processes, and greatly improve efficiency in operations and resource
utilisation across various sectors, including energy, industrial
manufacturing, electricity and transportation sectors. Consequently,
MFP rises initially but may subsequently decline as the digital
economy matures, supporting the theoretical Model and
reinforcing the EKC hypothesis (Li et al., 2021). However, some
empirical studies, including those by Shi et al. (2024), Özpolat (2022),
and Abid et al. (2023), argue that advancements in DI foster more
efficient utilisation of natural resources, thereby reducing MFP. This
study, however, adds a unique dimension to the literature by
identifying an inverted U-shaped impact of DI on MFP.

Finally, regarding short-run findings, both TI and DI have
insignificant effects on MFP. These findings can be loosely
interpreted that shifting from traditional methods to advanced TI
and digital solutions will take time. More specifically, it might take
time for businesses and industries to adapt to new DI processes and
new technologies. Besides, adapting business models to integrate TI
and DI can delay the realisation of resource savings in the short run.
The short-run outcome of this study is consistent with the results of
Wang et al. (2025), who found the negligible impact of TI and DI on
sustainable development indicators in the short run.
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The outcomes of this research offer valuable insights for
policymakers in RE and underscore practical policies and
strategies for progressing sustainable digital innovation and TI in
RE to mitigate MFP. Several evidence-based policy suggestions are
forwarded to tackle the challenges associated with achieving the
SDGs related to sustainable resource production and consumption.
Notably, the results reveal an inverted U-shaped influence of TI on
MFP, indicating that TI can serve as a pivotal catalyst for enhancing
natural resource management. Thus, this study advocates for the
promotion and more investment in TI as a means to catalyse
progress towards the sustainable consumption and production
objectives outlined in the SDGs, particularly in enhancing
resource productivity as specified in SDG 12.

Second, the findings of the study significantly support focused
policy strategies because understanding the non-linear trajectory
assists policymakers in developing strategies for the evolving impact
of TI on material resource use. Sustainable monitoring of TI
adoption level of economies to predict the inflection point where
TI starts to mitigate MFP and to ensure policy support that aligns
with both the increasing consumption of resources and mitigating
resource usage phases is worthwhile. Thus, RE should develop
phase-specific policy interventions addressing the dynamic nature
of resource use due to TI.

Third, the results suggest that both minor and major
fluctuations in GI negatively impact MFP in RE over the long
term. Consequently, it is essential to integrate GI policies and
strategies into the technological development and innovation
process to limit resource utilisation and enhance efficiency in
resource consumption within these economies. Governments in
RE should support businesses, industries, and institutions in
developing environmental technologies that improve resource
efficiency by providing grants and financial and technical support.

Fourth, this study reveals an inverted U-shaped relationship
between DI and MFP. As such, REs should allocate more resources
towards improving DI and expediting DI projects to alleviate MFP.
Additionally, governments and policymakers in RE should keep
formulating more dynamic, context-aware, and future-focused
policies to promote investment in digital technology by
considering the early-stage material resources consumption effect
and gradual resource consumption mitigating effect of DI.
Additionally, policies should involve integrating resource
efficiency into digital transformation strategies from the start to
mitigate unsustainable material consumption patterns of early
adoption of DI.

Lastly, policymakers should focus on guiding material resource
consumption during the early stages of TI and DI in RE. During the
mature stages of the TI and DI, policies should encourage promoting
TI and DI to optimise resource allocation while promoting
responsible production and consumption of resources.

In conclusion, while this research provides significant
theoretical, empirical, and practical insights, it also has a few
limitations that future research work will address. First, the
analysis is confined to data from RE to assess the effects of TI
and DI on MFP, offering practical policy implications for countries
abundant in natural resources. However, future studies could
broaden the scope to encompass a more extensive sample of
nations. Second, our DI indicator was constructed using mobile
cellular subscriptions, fixed telephone lines, and the number of

individuals using the internet. Future research should take into
account the rapid advancements in DI, particularly artificial
intelligence, the Internet of Things and others, which were ruled
out from the DI index derivation because of data limitations. Lastly,
future research should control the regional, economic, and
demographic heterogeneity of countries as countries vary in
economic, demographic, and regional dimensions.
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