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Extreme climate events significantly impact vegetation ecosystems in dry regions,
particularly in areas adjacent to the northern foothills of Yinshan Mountain
(NYSM). However, there remains limited understanding of how vegetation
responds to such events. Analyzing the response of vegetation in dry regions
to drought is beneficial for the protection and restoration of the vegetation
ecosystem. This study analyzes the spatiotemporal variation characteristics of
extreme climate events and NDVI. By employing correlation analysis and
geographic detectors, it explores the response of vegetation NDVI to extreme
climate events. The findings indicate a recent decline in extreme temperature
events and a concurrent rise in extreme precipitation events. From 2000 to 2020,
NDVI demonstrated consistent improvement, a trend expected to persist in the
future. Extreme temperature events exhibited a strong negative correlation with
NDVI, whereas extreme precipitation events demonstrated a strong positive
correlation. Furthermore, extreme precipitation events possess greater
explanatory power for NDVI variability compared to extreme temperature
events. The research findings provide a theoretical basis for the different
vegetation types in NYSM to respond to extreme climate events, and they
inform targeted ecological restoration measures based on the varying
responses of different vegetation types to these extreme climate events.
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1 Introduction

As global warming persists, the increasing frequency and intensity of extreme climate
events worldwide have become an undeniable trend. High temperatures and droughts,
driven by extreme heat and precipitation events, significantly and adversely affect
ecosystems and human societies (Mishra and Singh, 2010; Xue et al., 2024). A series of
adverse effects, including ecosystem degradation, land desertification, and heightened
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poverty, driven by future high temperatures and droughts, are
expected to become increasingly prominent (Lesk et al., 2016;
Huang et al., 2016). Moreover, extreme high temperatures reduce
vegetation’s photosynthetic rate, accelerate transpiration, and lead to
excessive water loss, potentially causing vegetation to wither or die
(Zhang et al., 2017). In general, high temperatures and drought
conditions result in reduced productivity, inhibited plant growth
and development, and elevated mortality rates (McDowell et al.,
2008; Ciais et al., 2005; Xiang et al., 2024).

Different vegetation types exhibit distinct physiological
characteristics, resulting in diverse responses and adaptive
mechanisms to drought conditions. Furthermore, the response
patterns of the same vegetation type vary depending on geographical
location. For instance, in the eastern region of the same grassland in
northern China, vegetation activity is more sensitive to high
temperatures and drought compared to the western region (Hua
et al., 2017; Xu et al., 2018). The relationship between temperature
and vegetationNDVI is not consistently negative; it varies depending on
factors influencing vegetation development, such as energy availability
(determined by latitude and altitude), water supply, and seasonal
changes (Karnieli et al., 2010; Yin et al., 2024). Most studies utilize
correlation analysis to examine the response mechanisms of vegetation
changes to extreme events. In contrast, this research integrates Pearson
correlation analysis with the Geodetector model to investigate the
relationships between extreme temperature events, extreme
precipitation events, and vegetation NDVI, as well as to analyze the
response mechanisms of vegetation to extreme climate events.

Situated in the northern Yinshan Mountains, NYSM lies in the
central-northern part of the Inner Mongolia Autonomous Region, an
area characterized by hilly terrain and grasslands. Summers are short,
hot, and dry, with high evaporation rates and annual precipitation
below 400 mm, resulting in aridity and low rainfall as the region’s
dominant climatic features. Research indicates a significant rise in
extreme high-temperature events in Inner Mongolia between
1960 and 2015, alongside an increase in the frequency of extreme
precipitation events in both the eastern and western regions. Vegetation
dynamics in the region are strongly affected by these extreme
precipitation and temperature events (Su et al., 2023; Ya et al.,
2020). This study employs Pearson correlation analysis and the
Geodetector model to examine the relationship between vegetation
in NYSM and extreme precipitation and temperature events. Based on
the findings, the study proposes recommendations for ecological
restoration and management strategies.

This study investigates the temporal and spatial variation
patterns of extreme climate in NYSM using remote sensing data.
The geographical and temporal characteristics of these variations
were analyzed, the relationship between vegetation NDVI and
extreme climate events was examined, and the future evolution
trend of vegetation was predicted. Additionally, the impact of
extreme climate events on vegetation was evaluated.

2 Materials and methods

2.1 Study area

The NYSM, located in the central part of China’s Inner
Mongolia Autonomous Region, serves as a significant climatic

boundary between the northern and southern regions of Inner
Mongolia (Figure 1). This mountain range comprises the Daqing,
Wula, and Lang Mountains. Situated between 105°19′~119°98′ E
and 40°18′~46°77′N, the NYSM falls within the temperate grassland
climate zone. Its topography is predominantly mountainous and
hilly, with higher elevations in the south and west and lower
elevations in the north and east. Administratively, the area
encompasses the cities of Bayannur, Ulaanqab, Xilin Gol League,
and Chifeng, covering a total area of 300,500 km2.

NYSM, characterized by an arid and semi-arid continental
climate, experiences low precipitation with an annual average
ranging from 100 mm to 350 mm, where the southeast receives
more rainfall while the northwest remains drier. The primary
vegetation in NYSM consists predominantly of grassland, with
unused land being the second most common type. The region’s
climate is arid, characterized by low annual precipitation, which
accentuates the occurrence of extreme climate events. This creates
an ideal natural experimental setting for examining the effects of
extreme climate on vegetation. Furthermore, the area’s natural
environmental conditions are relatively harsh, and its ecosystem
is notably fragile. Extreme climate events can significantly impact
vegetation growth and ecological balance, making the study of their
response mechanisms ecologically and managerially significant.

2.2 Data

2.2.1 Meteorological data
The meteorological data are based on gridded data interpolated

from daily observations of more than 2,400 meteorological stations
of the National Meteorological Information Centre (http://www.
nmic.cn/en/) (Xu et al., 2009). The data are interpolated and
superimposed by the anomaly approach from the climatological
field and the anomaly field, respectively, with a spatial resolution of
250 m for the daily data.

2.2.2 NDVI
This study is based on the Google Earth Engine cloud computing

platform, utilizing the surface reflectance data from Landsat 5,
Landsat 7, and Landsat 8 provided by the United States
Geological Survey (USGS), with a spatial resolution of 30 m. The
imagery data selected spans from 2000 to 2020. The accuracy of this
dataset has been confirmed by Wang (2023), who validated its
applicability in the Inner Mongolia region through field surveys.

2.2.3 DEM
The digital elevation data (DEM) is derived from the geospatial

data cloud, using GDEMV 30M data, which is ASTER‘s satellite
optical data production (https://www.gscloud.cn/search). The data
set has high spatial resolution and can accurately show the
terrain features.

2.3 Methods

2.3.1 Hydrological statistical methods
The pixel-based dynamic extreme value method was employed

to identify extreme temperature and precipitation events for this
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study (Lu et al., 2018). A 21-day period from 2000 to 2020, centered
on the same date, was chosen, making a total of 420 days, and it was
sorted. Based on the ranking results, 90% of temperature and 10% of
precipitation, respectively, were set as thresholds for deciding
extreme events. For example, if the precipitation on the center
date of a year is below the threshold or the temperature is above
the threshold, an extreme event is identified to have occurred on that
date. In the notion, the frequency of extreme climate events is equal
to the cumulative number of extreme event days in a year.

2.3.2 Slope trend analysis
Theil-Sen median trend analysis is employed to examine trend

variations in long-term time series, as its accuracy remains robust
against outliers. The formula is as in Equation 1 (Gong et al., 2024):

β � Median
xj − xi

j − i
( ), j> i (1)

In the formula, β represents the slope. When it is greater than
zero, it indicates that the series shows an upward trend; when it is
less than zero, it indicates that the series shows a downward trend;
Median refers to the median value.

2.3.3 Vegetation stability and sustainability analysis
The Coefficient of Variation (CV) is a statistical metric that

quantifies the relative dispersion within a dataset. It is calculated as
the ratio of the standard deviation to the mean and is commonly

expressed as a percentage. The formula is as in Equation 2 (Alharbi
et al., 2019):

Cv �
�����������∑n

i�1 xi − �x( )2
�x( )2 n − 1( )

√
(2)

where n is the number of years of study, xi is the NDVI value of the
ith year, and �x is the average NDVI. The larger the Cv, the lower the
NDVI stability.

The Hurst exponent serves as a critical tool for analyzing time
series data, enabling the measurement of long-term memory and
self-similarity within such datasets (Equation 3) (Gu et al., 2023):

RSi � Ri

Si
(3)

where RSi is the Hurst index, Ri is the NDVI range of vegetation, and
Si is the standard deviation of NDVI of vegetation. H value between
0.5 and 1 indicating memory enhancement, that is, a time series
suggesting long-term memory, which is continuous, an H value
between 0 and 0.5 indicating a weakened memory and anti-
persistence, and an H value equal to 0.5 indicating that the time
series can be described by random walk.

2.3.4 Correlation analysis
The Pearson correlation coefficient is employed to quantify the

linear relationship between two variables (Equation 4) (Li Z. K.
et al., 2024):

FIGURE 1
Geographical overview of the NYSM. (A) DEM (B) Land use/cover.
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Rxy � ∑n
i�1 xi − �x( ) yi − �y( )������������������∑n
i�1 xi − �x( )2 yi − �y( )2√ (4)

where Rxy represents the correlation coefficient between NDVI and
drought frequency, x and y represent NDVI and drought frequency,
respectively.

2.3.5 GeoDetector
The geographical detector assesses the extent to which the

independent variable explains the dependent variable by
analyzing the geographical and spatial variability of both
variables (Yin and Lin, 2024). In this study, the frequency of
extreme temperature and precipitation events serves as
independent variables, analyzed using the factor detection
module of the geographic detector, while NDVI is the dependent
variable (Equation 5) (Zhu and Ling, 2024):

q � 1 − ∑L
h�1Nhσ2h
Nσ2

(5)

where q is the explanatory power of the independent variable factor
to the dependent variable; σ2h and σ2 are the total variance and the
influence factor variance; N and Nh are the total number of samples
and the number of driving factor samples, respectively.

3 Results

3.1 Change pattern of extreme
climate events

3.1.1 Features of temporal variation
The long-term average frequency of extreme precipitation

events is 230 days, exhibiting a slight overall growth trend at an

average rate of 0.13 days/year (Figure 2). The highest frequency
occurred in 2003 (247 days), whereas the lowest was recorded in
2007 (222 days).

The extreme temperature events exhibits significant variability
from 2000 to 2020, contrasting with the trend observed in extreme
precipitation events. The multi-year average stands at 14 days,
indicating an overall downward trend with a decline rate of
0.32 days/year. The minimum extreme temperature events
occurred in 2018, followed by 2003, the same year as the peak
extreme precipitation events. Compared to the average frequency,
the maximum frequency in 2010 reached 25 days, reflecting an
increase of 11 days.

3.1.2 Spatial variation characteristics
The extreme climate events in 2000, 2010, and 2020 exhibit a

similar spatial distribution pattern. High-value areas are
predominantly located in the northeastern region of the NYSM,
and the extent of areas exceeding the multi-year average of extreme
events from 2000 to 2020 demonstrates a gradual upward trend
(Figure 3). Specifically, the areas surpassing the multi-year average
accounted for 52.3%, 56%, and 62.4% of the NYSM in 2000, 2010,
and 2020, respectively. Conversely, the central and western regions
of the NYSM are identified as low-frequency zones for extreme
precipitation events.

During the period from 2000 to 2020, areas with frequent
extreme temperature events were distributed in the central and
western regions, of which 38% of the area was higher than the multi-
year average. The northeastern portion of the research region is
characterized by a low-frequency area of extreme temperature
events. Over time, the extent of this low-value area initially
decreases before subsequently increasing. A spatial comparative
analysis of extreme temperature and precipitation events reveals
that the low-value area of extreme precipitation events corresponds
to the high-value area of extreme temperature events. This

FIGURE 2
Temporal and spatial variation characteristics of extreme precipitation and extreme temperature events from 2000 to 2020.
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phenomenon may be attributed to a corresponding reduction in
precipitation within high-temperature regions.

3.2 Variation characteristics of NDVI

3.2.1 Time variation characteristics of NDVI
Between 2000 and 2020, the vegetation quality of NYSM

exhibited a progressive greening trend (Figure 4). The annual

average NDVI was 0.35, with an average growth rate of 0.003.
Over this period, the NDVI exceeded the multi-year average for
10 years, reaching a peak of 0.44 in 2018, followed by 0.43 in 2012.
The lowest NDVI value, recorded at 0.29 in 2009, was also observed
in 2001 and 2007 at 0.30.

3.2.2 Spatial variation characteristics of NDVI
An analysis of the spatial variation trend in vegetation NDVI

revealed a general upward trend, with areas exhibiting growth

FIGURE 3
Spatial variation characteristics of extreme climate events from 2000 to 2020. (A) 2000 (B) 2010 (C) 2020 (D) 2000–2020 (E) 2000 (F) 2010
(G) 2020 (H) 2000–2020.

FIGURE 4
Time variation and anomaly characteristics of NDVI from 2000 to 2020.
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accounting for 85% of the NYSM (Figure 5). The central and
northeastern regions of NYSM, however, showed a decline in
NDVI, constituting 14.8% of the total area. Overall, between
2000 and 2020, a greening trend was observed in the vegetation
surrounding the NYSM.

According to the analysis of vegetation NDVI growth stability,
areas with a coefficient of variation below 0.2 constitute 51.9% of the
NYSM, predominantly located in its western and northeastern
regions. This indicates that vegetation development in these areas
is highly stable, resilient to extreme climate events, and exhibits
significant tolerance to adverse climatic conditions. In contrast, the
central region of the NYSM comprises the majority of areas with a
relatively high coefficient of variation, suggesting that vegetation in
this region is more vulnerable to extreme events.

Areas with a vegetation NDVI standard deviation below 0.04 are
predominantly located in the western part of the study area,
accounting for 18.3% of the NYSM. This indicates minimal
vegetation variability in this region, likely due to the prevalence
of unused land and sparse vegetation distribution, which results in a
low standard deviation. In contrast, the northeastern region,
comprising 13% of the NYSM, contains the majority of areas
with a standard deviation exceeding 0.1, reflecting significant
vegetation heterogeneity.

3.2.3 Future trends of NDVI
Across most of the NYSM, vegetation displayed a continuous

state, with areas having a Hurst value greater than 0.5 comprising
12.17% of the region (Figure 6), while those with a Hurst index
below 0.5 accounted for 87.83%. Combined with an analysis of
vegetation NDVI trend changes (Table 1), the results revealed that
10.21% of the region showed consistent improvement, primarily in
the northeast, the western Gobi region, and the southern vegetation
restoration area. Conversely, 10.86% of the vegetation exhibited
anti-sustainable degradation, predominantly in the Hunshandake
Sandy Land and sporadically in the northeast of the NYSM. Random
changes were observed in 0.53% of the area, while continuous
degradation accounted for 1.9%. Notably, 76.5% of the region
demonstrated anti-continuous improvement, nearly encompassing
the entire NYSM.

3.3 Analysis of the relationship between
extreme climate events and NDVI

3.3.1 Correlation analysis between extreme climate
events and NDVI

The frequency of extreme precipitation events exhibits a positive
correlation with NDVI (Figure 7). Within the NYSM, which is
predominantly concentrated in the central and northeastern regions,
areas showing a positive correlation constitute 93.7%. Notably, the
northeastern region includes areas with correlation values exceeding
0.5. Conversely, the negative correlation between extreme
precipitation event frequency and NDVI is primarily observed in
the western region, representing 6.3% of the NYSM. Correlation
analysis reveals that 25.5% of the NYSM passed the significance test,
while 74.6% did not. These findings indicate that, although not
highly significant, extreme precipitation events exert a measurable
influence on vegetation.

A negative association was observed between the NDVI and
extreme temperature events. This negative correlation explained a
substantial portion of the NDVI variation, covering nearly the entire
NYSM with an area ratio of 98.8%. Compared to precipitation, the
significance test results more clearly demonstrate a significant
relationship between the NDVI and extreme temperature events.
Specifically, 47.8% of the NYSM failed the significance test, while the
remaining areas, constituting more than half, passed.

The analysis of correlations between vegetation NDVI and
extreme climate events across different land use types indicates
that the six land use types predominantly exhibit significant positive
correlations with extreme precipitation events, with no significant
negative correlations observed. Conversely, extreme temperature
events demonstrate negative correlations with most land use types,
with significant negative correlations ranging from 21.9% to 60.1%
across these types. Notably, no significant positive correlations are
observed between extreme temperature events and land use
types (Figure 8).

3.3.2 The ability of extreme climate events to
explain the NDVI

The geographic detector’s factor detector was employed to
analyze the effects of extreme temperature and precipitation
events on vegetation NDVI in the NYSM (Table 2). Between

FIGURE 5
Characteristics of NDVI trend, variation coefficient and standard
deviation from 2000 to 2020. (A) Slope (B) coefficient of variation (C)
standard deviation.
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2000 and 2020, the frequency of extreme precipitation events
exhibited higher explanatory power for NDVI (0.45–0.52)
compared to that of extreme temperature events (0.44–0.49).
Both types of extreme events demonstrated significant

explanatory power for NDVI, as evidenced by their passing the
significance level test (p < 0.05) (Xu et al., 2019). Moreover, the
relatively high explanatory power of extreme precipitation events
underscores their substantial influence on NDVI.

FIGURE 6
Hurst value change and future trend characteristics of NDVI. (A) Hurst value (B) future trend.

TABLE 1 Characteristics of Hurst index based on NDVI trend analysis.

Hurst Slope Future changes Implication

>0.5 >0 Continuous improvement The future’s change is consistent with the past’s, indicating a trend toward upwards

<0.5 >0 Anti-continuous improvement The future’s change is contrary to the past’s, indicating a trend toward downwards

>0.5 <0 Continuous degradation The future’s change is consistent with the past’s, indicating a trend toward downwards

<0.5 <0 Anti-continuous degradation The future’s change is contrary to the past’s, indicating a trend toward upwards

=0.5 >0 or<0 Random variation The change trend in the future is not obvious

FIGURE 7
Spatial variation characteristics of correlation. (A) Correlation coefficient of NDVI and precipitation (B) Significance of NDVI and precipitation (C)
Correlation coefficient of NDVI and temperature (D) Significance of NDVI and temperature.
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This study examines the response of NDVI to extreme climate
events across various land use types (Table 3). The explanatory
power of extreme precipitation and temperature events on the

NDVI of the six land use types is statistically significant (p <
0.05). Notably, extreme climate events exhibit the strongest
explanatory power for the NDVI of grassland and unused land,
with q-values exceeding 0.5. Specifically, the explanatory power of
extreme precipitation events on the NDVI of cultivated land, forest
land, and grassland surpasses that of extreme temperature events.
Conversely, the explanatory power of extreme precipitation events
on the NDVI of water bodies, construction land, and unused land is
lower than that of extreme temperature events.

4 Discussion

4.1 Response of vegetation NDVI to extreme
climate events

Since the early 21st century, the frequency and intensity of
extreme climate events have exhibited a gradual upward trend,
significantly affecting the structure and functionality of global
vegetation ecosystems (Li H. et al., 2024). This study identifies
that areas with high occurrences of extreme precipitation events
are predominantly located in the northeastern part of the study area,
whereas regions with high occurrences of extreme temperature
events are primarily distributed in the central and western parts.
These findings align with those of Tong et al. (2019), who reported
that regions with elevated extreme precipitation index values are
concentrated in northeastern Inner Mongolia, while areas with high
extreme temperature index values are mainly found in the
western regions.

Our study reveals that vegetation has progressively greened from
2000 to 2020, a trend likely attributable to afforestation initiatives,
such as the conversion of farmland to forest, which have been
actively promoted in Inner Mongolia in recent years. This finding
aligns with the research of Gong et al. (2020). Moreover, the results
demonstrate that 93.7% of the study area exhibits a positive
correlation betweenNDVI and extreme precipitation events.
Given that NYSM is situated in an arid to semi-arid region
characterized by low and sporadic annual rainfall, extreme
precipitation events may temporarily enhance soil moisture,
thereby fostering vegetation growth. Notably, a significant
positive correlation between extreme precipitation and NDVI in
forested areas accounts for 41.9% of the total study area.
Furthermore, geographic detector analysis indicates that the
explanatory power of extreme precipitation is lower for forested
areas compared to grasslands and unused land. This discrepancy
arises from the deeper root systems of forests, which enable access to
deeper soil moisture reserves, supporting their growth and

FIGURE 8
Correlation between NDVI and extreme climate events across
different land use types.

TABLE 2 Detection results of vegetation impact factors in the NYSM.

Index 2000 2010 2020

q p q p q p

The frequency of extreme precipitation
events

0.52 0 0.53 0 0.45 0

The frequency of extreme temperature
events

0.49 0 0.44 0 0.45 0
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development. In contrast, grasslands and unused lands rely
primarily on shallow soil moisture. Under prolonged drought
conditions, extreme precipitation events can sustain the growth
and development of herbaceous plants, such as those in grasslands.
This conclusion is consistent with the findings of Li H. et al. (2024).
Additionally, geographic detector results suggest that the
explanatory power of extreme precipitation and temperature for
NDVI in croplands and water bodies is relatively low. This may be
attributed to the ample water supply available to water body
vegetation and the significant influence of human activities, such
as irrigation, on croplands. Consequently, the NDVI of croplands
and water bodies exhibits reduced sensitivity to extreme climate
events (Tian et al., 2015).

4.2 Uncertainty and future prospects

Although the accuracy of the NDVI dataset used in this study
has been validated by Wang (2023), confirming its suitability for
assessing vegetation changes in Inner Mongolia, some unavoidable
errors may persist. Future research could improve the accuracy of
the remote sensing dataset through methods such as field surveys or
parameter calibration (Huang et al., 2021). Given that the spatial
resolution of NDVI is 30m, while meteorological data resolution is
250 m, we standardized the resolution to a common level for
analyzing the correlation between extreme climate events and
NDVI. However, this approach may constrain our ability to
examine the impact of extreme climate events on NYSM’s NDVI
at a finer scale of 30 m or less.

This study examines the impact of NDVI on extreme climate
events across six land use types, revealing that croplands
demonstrate lower sensitivity to such events. Future research
could leverage machine learning techniques to further investigate

the degree to which crops are influenced by extreme climate events,
thereby enabling farmers and policymakers to implement timely
measures tomitigate these impacts (Guo et al., 2021; Guo et al., 2022;
Guo et al., 2023).

5 Conclusion

This study employs NYSM as a case study to examine the
spatiotemporal variations in vegetation and extreme climate
events between 2000 and 2020. Building on this analysis, it
investigates the effects of extreme precipitation and extreme
temperature events on NDVI. The key findings of the research
are as follows:

(1) Extreme precipitation events exhibit a year-by-year increasing
trend, whereas extreme temperature events show a gradual
decline over time. The spatial distribution of high-frequency
zones for extreme precipitation events and low-frequency
zones for extreme temperature events is similar, with both
predominantly located in the northeastern region of NYSM.

(2) Over the years, the vegetation in NYSM has demonstrated a
gradual greening trend, with the NDVI values in the western
and mid-northern regions remaining relatively stable and
showing minimal variation.

(3) The increase in extreme precipitation promotes vegetation
greening, whereas the rise in extreme temperatures generally
suppresses it. Moreover, the influence of extreme
precipitation on vegetation is more pronounced compared
to that of extreme temperatures.
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