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Growing concerns about heat in urban areas paired with the sparsity of
weather stations have resulted in individuals drawing on data from citizen
science sensor networks to fill in data gaps. In the past decade, a proliferation
of crowd-sourced sensors has provided low-cost local air quality and
temperature, with one brand having over 14,000 sensors deployed in the
United States between 1 January 2017 and 20 July 2021. Although the air
quality data from PurpleAir sensors have been widely studied, less attention
has been paid to reported temperature. Gridded modeled temperature
datasets are widely used in epidemiologic studies. The spatial granularity
of the crowd-sourced sensor data captures local temperature variation which
existing gridded datasets cannot, and can potentially be used to generate
exposure assessments for health research. We compare temperature metrics
reported by the dominantly used crowd-sourced sensor in the United States
with a gridded temperature product, the North American Land Data
Assimilation System (NLDAS)-2, which although not a gold-standard
measure of temperature, is widely used in epidemiologic research. We
evaluate the lag between indoor and outdoor sensor temperatures. We
report associations of the difference between outdoor sensor
temperatures and NLDAS-2 temperatures, an indicator of degradation, and
the duration of sensor operation. Finally, based on the temperature range
recorded by the outdoor sensors vis-a-vis NLDAS-2 temperatures, we
provide a list of 271 (2.5%) sensors potentially misclassified as outdoor and
likely located indoors. We observed that the outdoor sensors agreed well with
NLDAS-2 (R2 > 0.82). This association broke down under warm conditions
(daily average NLDAS ≥21.1oC). Our comparison suggests that a radiative-
correction needs to be applied to use crowd-sourced data reliably. However,
the spatial granularity of the continental sensor network can reduce the
measurement error in exposure assignment compared to the NLDAS-2.
Indoor sensor temperatures lagged hourly NLDAS temperatures by 2 hours
across almost all climate zones. The mean difference in hourly sensor and
NLDAS-2 temperatures increased by 0.57oC for every operational year,
suggesting that careful attention must be paid to degradation. Overall, we
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found that researchers should be aware of the limitations in crowd-sourced
sensor air temperatures when examining extreme heat, or when aggregating
sensor data across multiple years.
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1 Introduction

There is substantial evidence of associations between extreme
heat and human physiological (Basu and Samet, 2002; Curriero
et al., 2002; Guo et al., 2014; Son et al., 2019) and mental health
(Lõhmus, 2018; Thompson et al., 2018; Liu et al., 2021), and
livelihoods (Burke et al., 2015; Burke et al., 2023; Flouris et al.,
2018). However, these associations are often derived from using
temperature data from a single weather station as proxies for
county- or city-level averages (Madrigano et al., 2015a;
Madrigano et al., 2015b). Although this approach relies on actual
measurements, many stations are located at airports which tend to
be far from population-dense parts of cities, have considerably
different surrounding land covers compared to where individuals
reside, and may underestimate temperatures experienced as urban
centers are often substantially warmer than surrounding areas
(Spangler et al., 2019; Weinberger et al., 2019).

In recent years, modeled weather datasets at global and local
levels have been used to estimate exposure to temperature. Modeled
exposure datasets incorporate mixed methods and spatial
interpolation to estimate temperature at resolutions more
relevant to human activities. Although such gridded datasets can
be extremely useful for health-related research, they cannot be fully
validated at locations without monitors and may have large
measurement errors in remote areas or settings of complex
topography or land cover.

With multiple gridded temperature datasets available, recent
efforts have been made to compare metrics from the variety of
modeled temperature outputs. For example, researchers compared
daily weather estimates from two gridded datasets, Parameter-
elevation Regressions on Independent Slopes Model (PRISM) and
Daymet (Spangler et al., 2019). They found that both datasets
provide accurate temperature and the mean heat index at
weather stations, but PRISM outperformed Daymet for
assessments of the maximum daily heat index. A study observed
that the ERA-5 product, in general, was reliably able to capture mean
and extreme temperatures over Europe (Velikou et al., 2022).
Behnke et al. (2016) compared air temperature from products:
the North American Land Data Assimilation System (NLDAS)-2,
PRISM, Daymet, among others, and found that mean temperatures
from each product agreed well.

The rise of crowd-sourced air temperature data, especially in
urban areas, has also been explored as a promising way to improve
ground-based air temperature measurements’ spatial and temporal
coverage (Meier et al., 2017; Feichtinger et al., 2020; Ibsen et al.,
2024) and for generating down-scaled estimates of temperature to
study intra-urban microclimates (Venter et al., 2020; Potgieter et al.,
2021). However, the data quality of such measurements has been an
important topic of concern due to 1) calibration issues, 2) design
flaws such as overheating of the thermometer caused by inadequate

shielding, 3) communication and software errors, 4) incomplete
metadata, 5) unsuitable/unrepresentative installation locations of
general population exposure, 6) instrument aging and poor
maintenance (Bell et al., 2015).

In the present paper, we aim to clarify if crowdsourced air
temperature data can be used to assess the health impacts of heat
exposure by comparing hourly temperature recorded from the
network of PurpleAir sensors (referred to as crowd-sourced
sensors henceforth) in the United States (US) with air
temperature data from a commonly used gridded meteorological
product: the NLDAS-2, which is one of the few products that
provides hourly-data. Although the NLDAS-2 is not a reference or
‘gold standard’ product, it has been extensively used in epidemiologic
research (Rowland et al., 2020; Rowland et al., 2022; Shearston et al.,
2023). We compare the two imperfect temperature datasets to
understand the value highly spatially resolved crowd-sourced
temperature measurements can add to existing exposure
assessments, and understand under what circumstances this
dataset can be used for health-related research.

The PurpleAir network is one of the most widely used low-cost
air quality monitors in the United States (deSouza and Kinney, 2021;
Considine et al., 2022; deSouza et al., 2022). Researchers have used
the PM2.5 measurements from this network for different purposes
(Barkjohn et al., 2022; deSouza, 2022). In addition to measuring fine
particulate matter concentrations, the sensors also records air
temperature. As of 7 July 2021, there were 14,777 PurpleAir
sensors across the contiguous United States (Supplementary
Figure S1–S3). As this network can provide more spatially-
resolved temperature estimates than existing products in the
United States, it is important to evaluate the data from this
network for use in epidemiologic research.

Moreover, the PurpleAir network is one of the few citizen
science networks with widespread indoor coverage, allowing for
the investigation of home environments’ temperatures. Indoor
temperatures can vary widely across different types of residences,
particularly during heat waves. Previous research has found
increased heat-related health risks for residents living a) on the
top floor, b) in older buildings, and c) in buildings lacking insulation
during heat waves (Quinn et al., 2017). The presence of air
conditioners (ACs) can play a significant role in controlling
temperature variability (Quinn et al., 2017; Romitti et al., 2022).
Our work addresses issues of indoor heat exposure by comparing the
temperature lag between indoor hourly crowd-sourced sensor
temperatures and outdoor hourly temperatures from the NLDAS-
2 product as a first step to define critical windows of exposure to the
temperature in epidemiologic research.

Finally, no study to our knowledge has evaluated degradation in
low-cost temperature sensors. We provide the first associations
between the divergence in hourly outdoor sensor temperatures
from NLDAS-2 with the duration of operation of the sensors.
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We disaggregate our results by climate zone and landcover type
to identify regional and local-scale sources of potential error.
Our analyses can be used to develop protocols to routinely
replace the PurpleAir temperature sensors to ensure the
collection of accurate temperature data. Finally, we also report
the IDs of sensors likely misclassified as ‘outdoor’ when in reality
they may be located indoors. These sensors may need to be
reconsidered for use in analyses of ambient air pollution or
temperature.

2 Data and methods

2.1 PurpleAir

The PurpleAir reports air temperatures using a Bosch-BME280
pressure-temperature-humidity sensor. For this study, data from
14,920 PurpleAir sensors operating in the United States (excluding
US territories) between 1 January 2017 and 20 July 2021 were
downloaded from the API at a 15-min resolution. A small
number of PurpleAir sensors were operational before 2017.
However, given that the number of PurpleAir sensors increased
dramatically from 2017 onwards, we chose 1 January 2017, as the
start date of our analysis.

We removed all records with missing air temperature (T) and
relative humidity (RH) data. We also removed measurements where
T was ≤ −50 °C or ≥100 °C or RHwas >99% as these corresponded to
conditions beyond the sensor operational range, comprising ~2.6%
of all data. The 15-min data were averaged to 1 h intervals. A 75%
data completeness threshold was used (at least 3 15-min
measurements in an hour). This methodology ensures that the
averages used are representative of hourly averages.

We calculated hourly mean T and RH from the 15-min averaged
data from each crowd-sourced sensor. Overall, the dataset included
130,299,670 valid hourly averaged measurements with non-missing
T data corresponding to 14,777 sensors (Supplementary Figure
S1–S3; 29,136,655 measurements from 3,871 indoor sensors and
101,163,015 measurements from 10,906 outdoor sensors).

2.2 North American land data assimilation
system (NLDAS)-2

The NLDAS-2 is an hourly temperature product available at a
0.125o grid throughout the contiguous U.S. It has been widely used
in epidemiologic research (Rowland et al., 2020; Rowland et al.,
2022; Shearston et al., 2023). We merged each hourly PurpleAir
sensor with the corresponding hourly NLDAS-2 data from the grid
cell the sensor fell into. NLDAS-2 was used for this study because it
provides hourly temperature information. More details on the
NLDAS-2 product can be found in S1 in Supplementary
Information.

2.3 Climate zone and landcover

International Energy Conservation Code (IECC) Climate Zones
(https://codes.iccsafe.org/content/IECC2021P1/chapter-3-ce-general-

requirements, last accessed 7 May 2024) represent different T and
RH conditions (Supplementary Figure S1). We joined crowd-
sourced sensors with the corresponding climate zone. Note that
when joining climate zones with the complete dataset of sensor IDs,
a handful of sensors did not fall within a climate zone as they
appeared to be located on water bodies. We removed data
corresponding to these sensors when evaluating climate zone-
specific associations, corresponding to 2.9% of all data records
(Supplementary Figure S2).

We joined each sensor with the corresponding landcover type
using data from the National Land Cover Database (NLCD) for the
year 2021 (Dewitz, 2023), available at 30 m spatial resolution
(https://www.mrlc.gov/data/type/land-cover, Last accessed 7 May
2024) (Supplementary Figure S3).

2.4 Statistical analysis

2.4.1 Comparing crowd-sourced sensor and
NLDAS-2 temperature metrics

We conducted linear regression analyses to assess the
relationship between the crowd-sourced sensor data
(independent variable) and NLDAS-2 data (dependent
variable), disaggregated by sensor location type: indoor and
outdoor), for epidemiologically significant temperature
metrics: hourly temperature, daily mean, minimum, and
maximum temperatures, and nighttime temperature for
different nighttime definitions: 1) Between 4 a.m. and 8 a.m.,
2) Between 6 p.m. and 6 a.m., and 3) Between 9 p.m. and 6 a.m.,
as these exposures are relevant to epidemiologic research (Basu
and Samet, 2002; Murage et al., 2017). Moreover, previous
research has shown that if citizen science weather stations are
exposed to direct sunlight, measurements can be subject to
radiative errors due to solar heating. Comparing nighttime
temperatures allows us to compare the crowd-sourced sensor
with NLDAS-2 measurements without the impact of the
radiative error (Nakamura and Mahrt, 2005).

We report goodness of fit (adjusted R2), slope, intercept of the
regression line of best fit, as well as the root mean square errors
(RMSE). Higher R2 values, lower RMSEs, and slopes closer to one
and y-intercepts closer to zero were considered better estimations of
the observed data.

To evaluate the agreement of the temperature metrics in hot
conditions, we repeated the comparisons under conditions where
the average daily temperature exceeds 21.1°C, a threshold used in
previous research (Atalla et al., 2018; Spangler et al., 2019; Kennard
et al., 2022). We conducted this analysis using only days where the
daily sensor network temperatures were ≥21.1°C; and separately
days where the daily NLDAS-2 temperatures were ≥21.1°C. When
performing these comparisons, we only used one nighttime
temperature metric (between 4 a.m. and 8 a.m.) due to the
similarity between the three nighttime temperatures considered.

This study repeated the comparison of NLDAS-2 and sensor
network temperature metrics disaggregated by climate zone and
landcover type. We used likelihood ratio tests to evaluate
whether climate zone or landcover type were significant
modifiers of the association between crowd-sourced sensor
and NLDAS-2 temperatures.
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2.4.2 Evaluating factors that explained the
difference between the crowd-sourced sensor and
NLDAS temperature metrics

We carried out an Analysis of Variance (ANOVA) test to
determine which factors: sensor temperature (to account for the
possibility that the error was temperature dependent), elevation,
cubic spline of the hour of the day (for the hourly temperature
metric only), month and year, landcover type, and climate region
most explain variation in the difference between outdoor sensor and
NLDAS-2 hourly-temperatures.

2.4.3 Evaluating the lag between indoor and
outdoor temperatures

We compared indoor sensor data with outdoor temperatures
from the corresponding NLDAS-2 grid cell by calculating cross-
correlations between lagged hourly indoor sensor temperatures with
NLDAS-2 measurements as proposed in Leichtle et al. (2023) to
determine the relationship and dependency of indoor and outdoor
temperatures. For an initial evaluation, we evaluated the sample
cross-correlation based on the mean value of all outdoor and indoor
temperature measurements to describe the general temporal
dependency of indoor temperatures on outdoor temperatures.
However, given the strong local variation of urban microclimates,
we repeated this analysis disaggregated by: a) climate zone and b)
landcover type.

2.4.4 Evaluating degradation in the crowd-sourced
temperature sensor network

We evaluated the dependence of the difference between the
hourly outdoor crowd-sourced sensor network and NLDAS-2
temperatures on the duration of operation by regressing the
difference against the duration of operation (unit: hours).
Although the NLDAS-2 data have uncertainties, they are
consistent over time. The difference between the sensor network
and the NLDAS-2 temperatures can thus indicate degradation in the
sensors. In supplementary analyses, we considered the absolute
difference between the two hourly temperatures and the ratio
between the two temperatures: Sensor hourly temperature

NLDAS−2 hourly temperature; although
these degradation metrics are related, they have different physical
interpretations of degradation, which is why we consider them in
separate analyses. Note when considering the ratio, we excluded the
13,381 measurements where the NLDAS-2 hourly temperature
was 0°C.

We used likelihood ratio tests to evaluate if climate zone and
landcover type were significant modifiers of the association between
the difference in temperatures and duration of operation. We report
overall associations between the difference in temperatures and
duration of operation, and climate zone and land-cover specific
associations, by interacting hour of operation with each of these
potential modifiers in turn.

2.4.5 Identifying IDs of crowd-sourced sensors
misclassified as ‘outdoor’

We adapted a widely used method to evaluate potential
misclassifications of crowd-sourced sensors assigned as outdoor
instead of indoor sensors. Indoor sensors will likely show less
diurnal and annual temperature variation than corresponding
outdoor sensors. Therefore, if an outdoor sensor was set up

inside a building, we would expect the monthly averages of daily
minimum air temperature to be significantly lower due to the
thermal inertia of buildings. To evaluate potential
misclassifications of the sensor location, we followed the
methodology discussed by Meier et al. (2017).

a) First, we calculated the standard deviation between monthly
averages of daily minimum air temperatures (Tn) from
outdoor sensors and the NLDAS-2 dataset. For the summer
month of July and the winter month of December, we plotted
mean Tn versus standard deviation of Tn from the outdoor
sensors. We drew an ellipse on the plot, where the axes of the
ellipse were defined as 5 x mean Tn,NLDAS-2, and 5 x standard
deviation of Tn,NLDAS-2. We flagged stations outside the ellipse
and removed them from further analyses, as they were likely
misclassified.

b) We evaluated histograms of mean Tn,NLDAS-2 and the standard
deviation of Tn,NLDAS-2. We defined bin sizes of the histogram
based on minimum and maximum values of mean Tn,NLDAS-2,

and the standard deviation of Tn,NLDAS-2 inside the ellipse, and
a fixed number of ten bins. For every combination of bins in
the histograms of mean Tn,NLDAS-2 and the standard deviation
of Tn,NLDAS-2 (two-dimensional density), the relative
frequency was computed and all sensors inside a two-
dimensional bin with a relative frequency ≤0.01 were
flagged as likely misclassified.

To summarize, all stations outside a specific range were flagged
as potentially misclassified based on their position relative to the
ellipse for summer and winter, respectively in step a). We then
identified sensors that displayed a smaller temperature range relative
to others in step b). The sensors identified using this method need to
be validated in future research.

We used a p-value of 0.05 as the threshold for statistical
significance in this study.

3 Results

3.1 Comparing crowd-sourced sensor and
NLDAS-2 temperature metrics

Results from regressing crowd-sourced sensors (independent)
against the NLDAS-2 (dependent) metrics that have epidemiologic
significance (hourly temperatures, daily mean, daily minimum, daily
maximum, nighttime temperatures) disaggregated by location type
(indoor/outdoor) are displayed in Table 1 and Supplementary
Figures S4–S10.

Overall, we observed good agreement between the different
temperature metrics derived from outdoor sensors with the
corresponding NLDAS-2 data (R2 ranged between 0.77 and 0.86;
RMSE ranged between 5.53°C and 6.27°C; Table 1; Supplementary
Figure S1). The outdoor sensor temperatures were higher than the
NLDAS-2 measurements. Specifically, hourly NLDAS-2
measurements are on average lower than the sensor
measurements by −2.86°C (Table 1; Supplementary Figure S4).
This is supported by the fact that the slopes between sensor and
NLDAS-2 temperatures are <1 (Table 1). We observed this result for
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the other temperature metrics considered. There were more than
twice as many (38,880,140) hourly measurements where the daily
mean sensor measurements were ≥21.1°C, vs. those for NLDAS-2
(18,769,183) (Table 1).

Among the daily aggregated measures, the daily means of the
outdoor sensors displayed the best agreement R2 (0.86 compared
to 0.79 and 0.72 for the daily min and max, respectively).
However, the bias of the daily mean temperature metric was
higher than the daily minimum and maximum temperatures

(y-intercept: −4.08°C compared with −2.58°C and −3.23°C,
respectively; Table 1; Supplementary Figures S5–S7). The
RMSE of the daily minimum temperature was the lowest:
5.53°C compared to the daily mean (RMSE: 5.82°C) and daily
maximum (RMSE: 8.22°C) (Table 1). The difference in the order
of the RMSE and R2 metrics is likely driven by a subset of high
sensor measurements (sensor daily temperature metrics >50°C,
where corresponding NLDAS-2 temperature metrics are ~25°C;
Supplementary Figures S5–S7).

TABLE 1 Comparing epidemiologically relevant crowd-sourced sensor and NLDAS temperature metrics by regressing purpleAir against the corresponding
NLDAS-2 data.

Outdoor Indoor

n RMSE
(0C)

R2 y-intercept
(0C)

Slope n RMSE
(0C)

R2 y-intercept
(0C)

Slope

Hourly
Averaged

101,163,015 6.27 0.82 −2.86 0.89 29,136,655 14.64 0.21 −14.05 1.04

Daily Mean 4,523,942 5.82 0.86 −4.08 0.95 1,290,959 14.20 0.23 −13.67 1.03

Daily Minimum 5.53 0.79 −2.58 0.88 16.59 0.17 −8.25 0.71

Daily Maximum 8.22 0.77 −3.23 0.87 11.86 0.21 −12.73 1.12

Nighttime Temperature
(4 a.m. and 8 a.m.)

4,423,461 5.61 0.80 −2.85 0.89 1,270,547 16.27 0.18 −8.56 0.74

Nighttime Temperature
(6 p.m. and 6 a.m.)

8,990,394 6.05 0.84 −3.46 0.92 2,569,175 14.22 0.20 −12.96 1.01

Nighttime Temperature
(9 p.m. and 6 a.m.)

8,986,175 5.93 0.85 −3.46 0.92 2,570,851 14.66 0.21 −14.03 1.03

Average daily temperature of crowd-sourced sensor ≥21.1oC

Outhoor Indoor

n RMSE
(0C)

R2 y-intercept
(0C)

slope n RMSE
(0C)

R2 y-intercept
(0C)

slope

Hourly
Averaged

38,880,140 6.97 0.62 −0.10 0.80 28,236,159 14.73 0.21 −18.44 1.20

Daily Mean 1755655 6.52 0.52 −3.30 0.92 1,250,954 14.29 0.23 −18.74 1.21

Daily Minimum 6.41 0.39 1.37 0.69 16.70 0.16 −11.11 0.82

Daily Maximum 8.82 0.41 3.75 0.69 11.90 0.19 −14.94 1.20

Nighttime Temperature
(4 a.m. and 8 a.m.)

1,695,928 6.38 0.40 1.43 0.70 1,231,112 16.38 0.17 −11.74 0.86

Average daily temperature of NLDAS-2 ≥ 21.1oC

Outhoor Indoor

n RMSE
(0C)

R2 y-intercept
(0C)

slope n RMSE
(0C)

R2 y-intercept
(0C)

slope

Hourly
Averaged

18,769,183 5.49 0.67 4.78 0.70 4,045,045 7.71 0.06 9.05 0.54

Daily Mean 849,065 4.85 0.46 8.99 0.56 182,302 5.95 0.04 17.63 0.25

Daily Minimum 4.82 0.47 5.82 0.58 10.53 0.04 11.43 0.25

Daily Maximum 7.16 0.30 17.09 0.40 4.88 0.03 25.48 0.23

Nighttime Temperature
(4 a.m. and 8 a.m.)

816,991 4.80 0.46 7.32 0.54 175,933 9.83 0.07 10.66 0.32
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We observed good agreement between the nighttime temperature
metrics between the outdoor sensors and NLDAS-2 measurements (R2

ranged between 0.80 and 0.85; RMSE ranged between 5.61°C and 6.05°C;
Table 1; Supplementary Figure S8–S10). Poorer agreement between
sensor network and NLDAS-2 metrics was observed on days with
higher mean temperatures (average daily sensor or NLDAS-2 ≥ 21.1°C;
Table 1; Supplementary Figures S11–S19).

Unsurprisingly, the hourly indoor sensor network
measurements displayed poorer agreement (RMSE: 14.64°C, R2:
0.21) than outdoor measurements. The bias of the indoor sensor
network temperature metrics compared to the NLDAS-2 had higher
absolute values and was negative (y-intercept comparing hourly
measurements was −14.05°C; Table 1; Supplementary Figure S4).

The agreement between sensors andNLDAS-2 temperaturemetrics
during days when daily averaged sensor temperatures ≥21.1°C, were
similar, but poorer, compared with the overall results (Table 1;
Supplementary Figures S11, S12, S14, S16, S18). There was no
agreement (R2 ~ 0) between indoor sensor metrics and NLDAS-2,
likely because indoor spaces in this dataset were regulated (kept cool)
during hot days. Indeed, we observed that the bias of indoor sensor
temperature metrics compared to NLDAS-2 on these days is positive,
suggesting that NLDAS-2 temperature metrics are higher during these
days. Importantly, we also observed a much poorer agreement between
outdoor sensor and NLDAS-2 metrics on days where daily NLDAS-2 ≥
21.1°C (Table 1; Supplementary Figures S11, S13, S15, S17, S19).

Likelihood ratio tests revealed that climate and land cover were
significant modifiers of the association between sensor and NLDAS-
2 temperature metrics. When evaluating these agreements
disaggregated by climate zone, we observed that the best
agreements between hourly outdoor sensor and NLDAS-2
metrics were in humid environments (mixed-humid: R2: 0.88,
hot-humid: R2: 0.87), with the poorest agreement for marine

climates (R2: 0.70; Figure 1). Note, however, that the plurality of
measurements (36,194,357 measurements, 35.8%) observed were in
marine environments compared with the hot-humid
(3,089,309 measurements, 3.1%) and mixed-humid
(6,435,901 measurements, 6.4%) environments (Supplementary
Table S1). Similar results were observed when evaluating
agreements with other temperature metrics (Supplementary
Figures S20–S28; Supplementary Table S2).

When evaluating the agreement between outdoor PurpleAir and
NLDAS-2 temperature metrics, disaggregated by landcover type, we
observed the best agreements in wetlands (R2 ~ 0.9; <1% of all
measurements) and deciduous forests (R2 ~ 0.9; <1% of all
measurements). Most of the measurements were on developed
low (26,612,991, 26.3% of all measurements), medium
(35,245,868, 34.8% of all measurements), and high intensity
(12,065,927, 11.9% of all measurements) landcover. The lowest
agreement observed was in developed high- and medium-
intensity areas (R2: 0.81), compared with low-intensity areas (R2:
0.83) (Supplementary Figures S29, S30; Supplementary Table S1).
Comparison between the sensor network and NLDAS-2 for other
temperature metrics disaggregated by landcover type were similar
(Supplementary Figures S31–S44; Supplementary Tables S2–S4).

3.2 Evaluating factors that explain the
difference between crowd-sourced sensor
and NLDAS temperature metrics

The results from the ANOVA analysis revealed that most of the
difference (~66–80%) between outdoor hourly crowd-sourced
sensor data and NLDAS-2 temperature remained
unexplained (Table 2).

FIGURE 1
Heatmap representing the relationship between (A) Outdoor and (B) Indoor crowd-sourced sensor hourly temperatures and the corresponding
NLDAS-2 measurements, disaggregated by climate zone. The fitted regression line, equation, and regression fit (R2 value) are also displayed.
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TABLE 2 Sum of Squares (Explained variation (%) in the difference between outdoor crowd-sourced sensor and NLDAS-2 temperature metrics.

Hourly temperature Daily mean Daily minimum Daily maximum Nighttime (4 a.m.–8 a.m.)

Sum of
squares

% explained
variation

Sum of
squares

% explained
variation

Sum of
squares

% explained
variation

Sum of
squares

% explained
variation

Sum of
squares

% explained
variation

Crowd-sourced sensor
Temperature Metric

99,905,749 6.7% 560,540 1.3% 3,828,101 7.0% 7,243,617 7.2% 2,825,856 5.7%

Landcover 2,211,927 0.1% 118,091 0.3% 134,484 0.2% 380,758 0.4% 107,830 0.2%

Climate 69,354,154 4.6% 2,316,156 5.5% 1,998,971 3.7% 5,912,609 5.9% 1,925,864 3.9%

ns (Local hour, 3) 5,288,094 0.4% - - - - - - - -

Month, Year 210,674,001 14.1% 4,794,653 11.5% 4,916,024 9.0% 19,174,048 19.1% 5,384,891 10.8%

Elevation 16,833,572 1.1% 650,270 1.6% 497,927 0.9% 1,162,007 1.2% 424,638 0.9%

% Impervious surface 220,668 0.0% 13,799 0.0% 12 0.0% 70,684 0.1% 2,132 0.0%

Residuals 1,090,531,031 72.9% 33,420,120 79.8% 43,317,997 79.2% 66,610,134 66.2% 39,182,319 78.6%
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For the hourly temperature metric, month-year (seasonality),
sensor temperature, climate zone, and elevation (m) explained a
significant 14.1%, 6.7%, 4.6%, and 1.1% of the variation, respectively.
Landcover type, a natural cubic spline of the local hour of the day, %
of impervious surface, each explained a small (<1%) but a significant
portion of the overall variation.

Similar results were observed for the difference in nighttime
temperatures. For the daily temperature metrics, month-year
(seasonality) explained between ~9 % and 19% of the total
variation in the difference between the sensor network and
NLDAS-2 data. Seasonality explained a larger % in variation in
the difference between the daily maximum temperatures.

3.3 Evaluating the lag between indoor and
outdoor temperatures

Our cross-correlation analysis revealed that overall, indoor
crowd-sourced sensor hourly temperatures lagged the NLDAS-2

temperatures by 2 h (Supplementary Figure S45; Table 3), i.e., the
highest correlations were observed between NLDAS-2 temperatures
and sensor temperatures 2 hours later. We observed that this lag
period was robust to disaggregating the data by climate zone
(Supplementary Figure S46), except for the marine and very-cold
climate zones where the indoor sensor measurements lagged the
NLDAS-2 by three, and 4 hours, respectively. The 2-h lag held true
when restricting measurements considered to the fall and winter
(heating periods). We note that in the spring and summer (cooling
season), a lag of two and 3 hours yielded similar correlations. In the
spring, a lag of 3 hours performed marginally better than a lag of
2 hours. We note that the correlation between indoor and outdoor
temperatures was unsurprisingly lowest in the winter when heaters
are used (Table 3).

The 2-h lag between the indoor sensor hourly measurements
and the NLDAS-2 data was also robust to disaggregating landcover
type (Supplementary Figure S47), except for barren land where we
observed no lag; open water where the lag observed was 3 hours;
woody wetlands, where lags of three and 4 hours provided the same

TABLE 3 Correlations between all hourly NLDAS-2 measurements and lagged indoor PurpleAir data (ranging between 0–5 h), and measurements
disaggregated by climate zone and landcover type.

Lag (correlation)

All 0 (0.459); −1 (0.472); -2 (-0.479); −3 (−0.478); −4 (0.470); −5 (0.457)

Season

Spring (March - May) 0 (0.371); −1 (0.394); −2 (−0.406); -3 (-0.408); −4 (0.399); −5 (0.380)

Summer (June - Aug) 0 (0.383); −1 (0.409); -2 (-0.422); -3 (-0.422); −4 (0.410); −5 (0.386)

Fall (Sep - Nov) 0 (0.457); −1 (0.473); -2 (-0.479); −3 (−0.477); −4 (0.467); −5 (0.450)

Winter (Dec - Feb) 0 (0.179); −1 (0.184); -2 (-0.185); −3 (−0.181); −4 (0.172); −5 (0.160)

Climate

Cold 0 (0.449); -1 (0.452); -2 (0.452); −3 (0.449); −4 (0.445); −5 (0.436)

Hot-Dry 0 (0.512); −1 (0.528); -2 (0.535); −3 (0.533); −4 (0.522); −5 (0.505)

Hot-Humid 0 (0.445); −1 (0.450); -2 (0.451); −3 (0.449); −4 (0.444); −5 (0.437)

Marine 0 (0.434); −1 (0.455); −2 (0.467); -3 (0.468); −4 (0.460); −5 (0.442)

Mixed-Dry 0 (0.567); −1 (0.575); -2 (0.578); −3 (0.576); −4 (0.570); −5 (0.559)

Mixed-Humid 0 (0.476); −1 (0.477); -2 (0.476); −3 (0.473); −4 (0.467); −5 (0.460)

Very Cold 0 (0.524); −1 (0.544); −2 (0.559); −3 (0.570); -4 (0.575); −5 (0.574)

NA 0 (0.479); −1 (0.495); -2 (0.501); −3 (0.499); −4 (0.489); −5 (0.472)

Landcover

Barren Land (Rock/Sand/Clay) 0 (0.736); −1 (0.729); −2 (0.713); −3 (0.688); −4 (0.659); −5 (0.630)

Cultivated Crops 0 (0.360); −1 (0.369); -2 (0.373); -3 (0.373); −4 (0.369); −5 (0.361)

Deciduous Forest 0 (0.652); −1 (0.655); -2 (0.656); −3 (0.654); −4 (0.650); −5 (0.644)

Developed, High Intensity 0 (0.390); −1 (0.399); -2 (0.403); −3 (0.400); −4 (0.392); −5 (0.385)

Developed, Low Intensity 0 (0.471); −1 (0.487); -2 (0.494); -3 (0.494); −4 (0.487); −5 (0.473)

Developed, Medium Intensity 0 (0.458); −1 (0.473); -2 (0.480); -3 (0.480); −4 (0.473); −5 (0.458)

Developed, Open Space 0 (0.496); −1 (0.510); -2 (0.517); −3 (0.516); −4 (0.509); −5 (0.495)

Emergent Herbaceous Wetlands 0 (0.692); −1 (0.699); -2 (0.702); −3 (0.701); −4 (0.696); −5 (0.688)

Evergreen Forest 0 (0.424); −1 (0.432); -2 (0.435); −3 (0.434); −4 (0.428); −5 (0.418)

Grassland/Herbaceous 0 (0.544); −1 (0.559); -2 (0.565); −3 (0.564); −4 (0.555); −5 (0.540)

Mixed Forest 0 (0.584); −1 (0.600); -2 (0.607); −3 (0.604); −4 (0.592); −5 (0.572)

Open Water 0 (0.313); −1 (0.323); −2 (0.328); -3 (0.329); −4 (0.325); −5 (0.317)

Pasture 0 (0.567); −1 (0.573); -2 (0.576); -3 (0.576); −4 (0.573); −5 (0.567)

Shrub/Scrub 0 (0.513); −1 (0.524); -2 (0.528); −3 (0.526); −4 (0.518); −5 (0.505)

Woody Wetlands 0 (0.597); −1 (0.602); −2 (0.605); -3 (0.608); -4 (0.608); −5 (0.604)

The bold values indicate the hourly lag for which the highest correlation between lagged indoor- and outdoor temperature measurements were observed.
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correlations. For developed, low intensity, developed, medium
intensity, cultivated crops, and pasture lands, a 3-h lag window
appeared to have the same performance as a 2-h lag (Table 3).

3.4 Evaluating degradation in the PurpleAir
temperature sensor

We observed significant associations between the simple
difference in the hourly outdoor crowd-sourced sensor and
NLDAS-2 temperatures with duration of operation corresponding
to 6.5 × 10−5 °C/h of operation, or 0.57 °C/year of operation. This
means that on average, across all 10,906 outdoor sensors, the sensor
network overpredicted hourly temperature compared to NLDAS-2
hourly temperatures by an additional 0.57oC annually.

Likelihood ratio tests indicated that land cover and climate zones
were significant modifiers of the association between the difference
in temperatures and hours of operation (Table 4). Maximum
degradation occurred in cold climates: 0.54 °C/year of operation,
with the least degradation in very cold climates: 0.17 °C/year of
operation. Maximum degradation occurred on pasture land: 0.89 °C/
year of operation, with minimum degradation: 0.37 °C/year of
operation in shrubland.

We observed significant associations between the absolute
difference, and the ratio of the crowd-sourced sensor and
NLDAS-2 hourly temperatures with the duration of operation
corresponding to 5.85 × 10−5 °C/h of operation or 0.51 °C/year of
operation, 2.96 × 10−5/hour of operation or 0.26/year of operation
(Table 4). For the metric, absolute difference, just like for the metric:
difference, maximum degradation occurred in cold climates: 0.50 °C/
year of operation, while minimum degradation occurred in very cold
climates: 0.17 °C/year of operation; maximum degradation occurred
in pasture land: 0.83 °C/year of operation with minimum
degradation in shrubland: 0.35 °C/year of operation
(Supplementary Table S5). For the metric, the ratio, the majority
of the disaggregated degradation metrics were not significant and
the 95% CI widely overlapped with 0 (Supplementary Table S5).

3.5 Identifying IDs of crowd-sourced
sensors misclassified as “outdoor”

When determining which crowd-sourced sensors were
mistakenly classified as ‘outdoor’, Step a) identified 13 sensors
displaying smaller temperature variations relative to the NLDAS
variation, which likely indicated that they were indoors

TABLE 4 Associations (95% CI) between degradation metrics: difference (disaggregated by climate zone and landcover), absolute difference, and the ratio
between hourly outdoor crowd-sourced sensor and NLDAS-2 temperatures and duration of operation (hour of operation and year of operation).

Hour of operation Year of operation

Difference

All 6.48 × 10−5°C (6.47 × 10−5°C, 6.49 × 110–5 °C) 0.57 °C (0.57°C, 0.57 °C)

Climate

Cold 6.15 × 10−5 °C (6.13 × 10−5°C, 6.17 × 10−5 °C) 0.54 °C (0.57°C, 0.57 °C)

Hot-Dry 5.04 × 10−5 °C (5.02 × 10−5°C, 5.06 × 10−5 °C) 0.44 °C (0.44°C, 0.44 °C)

Hot-Humid 2.78 × 10−5 °C (2.73 × 10−5°C, 2.84 × 10−5 °C) 0.24°C (0.24°C, 0.25°C)

Marine 5.41 × 10−5 °C (5.39 × 10−5°C, 5.42 × 10−5 °C) 0.47°C (0.47°C, 0.47°C)

Mixed-Dry 5.83 × 10−5 °C (5.77 × 10−5°C, 5.88 × 10−5 °C) 0.51°C (0.51°C, 0.52°C)

Mixed-Humid 5.39 × 10−5 °C (5.35 × 10−5°C, 5.43 × 10−5 °C) 0.47°C (0.47°C, 0.48°C)

Very Cold 1.91 × 10−5 °C (1.78 × 10−5°C, 2.04 × 10−5 °C) 0.17°C (0.16°C, 0.18°C)

Landcover

Barren Land (Rock/Sand/Clay) 8.31 × 10−5 °C (8.02 × 10−5°C, 8.60 × 10−5 °C) 0.73°C (0.70°C, 0.75°C)

Cultivated Crops 5.97 × 10−5 °C (5.86 × 10−5°C, 6.08 × 10−5 °C) 0.52°C (0.51°C, 0.53°C)

Deciduous Forest 5.22 × 10−5 °C (5.13 × 10−5°C, 5.31 × 10−5°C) 0.46°C (0.45°C, 0.47°C)

Developed, High Intensity 5.59 × 10−5 °C (5.56 × 10−5°C, 5.61 × 10−5 °C) 0.49°C (0.49°C, 0.49°C)

Developed, Low Intensity 7.09 × 10−5 °C (7.07 × 10−5°C, 7.11 × 10−5 °C) 0.62°C (0.62°C, 0.62°C)

Developed, Medium Intensity 6.31 × 10−5 °C (6.30 × 10−5°C, 6.33 × 10−5 °C) 0.55°C (0.55°C, 0.55°C)

Developed, Open Space 6.17 × 10−5 °C (6.15 × 10−5°C, 6.20 × 10−5 °C) 0.54°C (0.54°C, 0.54°C)

Emergent Herbaceous Wetlands 6.42 × 10−5 °C (6.19 × 10−5°C, 6.66 × 10−5 °C) 0.56°C (0.54°C, 0.58°C)

Evergreen Forest 7.22 × 10−5 °C (7.16 × 10−5°C, 7.27 × 10−5 °C) 0.63°C (0.63°C, 0.64°C)

Grassland/Herbaceous 6.31 × 10−5 °C (6.24 × 10−5°C, 6.38 × 10−5 °C) 0.55°C (0.55°C, 0.56°C)

Mixed Forest 5.75 × 10−5 °C (5.65 × 10−5°C, 5.85 × 10−5 °C) 0.50°C (0.49°C, 0.51°C)

Open Water 4.62 × 10−5 °C (4.45 × 10−5°C, 4.79 × 10−5 °C) 0.40°C (0.39°C, 0.42°C)

Pasture 1.02 × 10−4 °C (1.01 × 10−4°C, 1.03 × 10−4 °C) 0.89°C (0.88°C, 0.90°C)

Shrub/Scrub 4.27 × 10−5 °C (4.21 × 10−5°C, 4.33 × 10−5 °C) 0.37°C (0.37°C, 0.38°C)

Woody Wetlands 8.16 × 10−5 °C (7.93 × 10−5°C, 8.39 × 10−5 °C) 0.71°C (0.69°C, 0.73°C)

Absolute Difference 5.85 × 10−5 °C/h (5.84 × 10−5 °C/h, 5.86 × 10−5 °C/h) 0.51 °C/yr (0.51 °C/yr, 0.51 °C/yr)

Ratio 2.96 × 10−5/hr (1.90 × 10−5/hr, 4.02 × 10−5/hr) 0.26/yr (0.17/yr, 0.35/yr)
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(Supplementary Figure S48). Using Step b), we further identified
258 sensor IDs displaying smaller variations (Supplementary Figures
S49, S50). Figure 2 displays the locations of all 271 (out of 10,906;
2.5%) potentially misclassified sensors.

4 Discussion

Overall, outdoor crowd-sourced temperature compared
favorably (R2 > 0.82) with corresponding NLDAS-2 temperature
data for the different temperature metrics considered (hourly
temperatures, daily mean, minimum, maximum temperatures,
and nighttime temperatures), suggesting that outdoor sensor
temperatures could potentially be used as exposure assessments
in epidemiologic research.

Of all the temperature metrics considered, the best agreement
(R2: 0.86) between the outdoor sensor and NLDAS-2 temperatures
was observed for the daily mean temperature metric (Table 1).
Surprisingly, the agreement was slightly lower when comparing
nighttime temperatures (R2: 0.80–0.85) where the radiative error in
temperature measurement (described in more detail below) is
expected to be less (Table 1).

The RMSE observed when comparing the sensor network and
NLDAS-2 temperatures is between 5 and 7oC and higher than that
observed in previous research (Table 1). Bell et al. (2015) compared
measurements made by seven crowdsourced weather stations with a
professionally managed station in Birmingham, UK over a year.
They observed a mean bias between sensors ranging from - 0.5oC to
2.1oC (RMSE was not reported). Other research that evaluated the

performance of other crowdsourced temperature sensors such as the
Netatmo vis. a.vis. reference stations observed that the sensors
exhibited a warm bias between 1 and 6oC across different sites in
London in the summer (Chapman et al., 2017).

One of the reasons for the poor RMSE compared to other studies is
that the crowd-sourced sensors appear to overpredict temperatures on
hot days compared to NLDAS data, suggesting that outdoor sensors
cannot reliably assess warm temperatures for epidemiologic research
(Table 1). Specifically, on days where the daily-averaged NLDAS
temperatures were ≥21.1oC, the R2 when comparing daily-averaged
NLDAS and sensor-network data was 0.46. This bias could be due to
the location of the temperature sensor within the sensor unit. During
extreme heat, the units themselves could retain excess heat from
exposure to solar radiation. This excess heat is likely re-radiated to
the sensor resulting in an overprediction of outdoor temperatures.
Similar effects have been seen with other covered air temperature
sensors deployed in specific research settings (Terando et al., 2017).
Researchers have stressed the importance of correcting for systematic
radiative error in low-cost sensors for their use in different applications
(Bell et al., 2015; Chapman et al., 2017). Future experiments are needed
to bias-correct the sensor temperature sensors by co-locating them with
accurate reference monitors and using additional local climatic
information onwind speed, relative humidity, shade, and solar radiation.

Another potential reason for the relatively high RMSE observed
in this study is the mismatch in the spatial scale of the NLDAS-2
temperatures (12 km × 12 km) compared to the point sensor
temperature data. Most sensors were deployed in urban areas
that have highly heterogeneous land cover (Supplementary Table
S3). Research has shown that temperature varies significantly across

FIGURE 2
Potentially misclassified outdoor sensors (271) that are likely indoors. The sensor IDs are listed on the map.
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local climate zones that have spatial resolutions of ~100 m -
10,000 m (Stewart and Oke, 2012). Recent work has found that
an urban land cover at a 60 m2 resolution contributes between 15%
and 56% of intraurban temperature variation at high temperatures
(Ibsen et al., 2024). The crowd-sourced sensors thus capture the local
variation in temperature, which NLDAS-2 is too coarse to capture.

Indeed, we found that climate zone and landcover type were
significant modifiers of the relationship between outdoor (and
indoor) sensor temperature measurements and NLDAS-2 data.
Unsurprisingly, based on our hypothesis above, the poorest
agreement between the sensor network and NLDAS-2 was
observed in high- and medium-intensity developed areas (R2 ~
0.82) in urban areas where most sensors were located (Figure 1). The
best agreement between outdoor sensors and NLDAS temperatures
was observed for humid climates (R2 ~ 0.87) and the poorest
agreement in marine climates (R2 ~ 0.70; where most of the
sensor network were located). The relatively small number of
sensors in non-developed land cover areas (<2%) makes drawing
robust conclusions on the impact of such land cover on PurpleAir
temperature sensor performance difficult (Supplementary Table S3).

A third reason for the poor RMSE compared to other studies could
be a combination of heterogeneous land cover and the poorer
performance of the crowd-sourced sensors at high temperatures.
Our ANOVA analysis indicates that 6.7% of the variation in the
difference between the sensor temperature and the NLDAS-2
temperatures was explained by sensor temperatures recorded, as
opposed to 0.1% by land cover and 4.6% by climate zone. Higher
temperatures are observed in urban areas due to the urban heat island
effect. The interaction between temperature and land cover is complex
as the higher temperatures recorded are both a reflection of the local
environment, but also coincide with a greater potential error.

However, the strong R2 (0.86) between the sensor network and the
NLDAS temperature datasets suggests that crowd-sourced sensors
adequately capture the regional trends in temperature that the
NLDAS-2 dataset provides, and they likely capture intra-urban
temperature variations that the NLDAS-2 is too coarse to capture.
Overall, our results indicate that after systematic radiative error
correction, the high spatial resolution of the crowd-sourced sensor
networks can provide added value in developing exposure assessments
for epidemiologic research in the future, especially when using local
daytime mean air temperature as the exposure of interest.

Unsurprisingly, the indoor sensor network sensors showed
poorer agreement with the NLDAS-2 temperatures than the
outdoor sensors (Table 1). Given that outdoor temperatures are
widely assigned as exposure, despite Americans spending a
substantial amount of time indoors, such a comparison provides
an estimate of the measurement error based on existing exposure
assignments. Indoor sensor hourly temperatures lagged the NLDAS
temperatures by 2 hours across climate zones, seasons, and
landcover types, suggesting that this lag be considered in
epidemiologic research investigating the relationship between
temperature and health outcomes. For smaller geographic areas
where data are available, future research can consider the impact of
building type and the use of heating and cooling by users on these
findings. Future research can also consider using indoor-outdoor
sensor pairs where available to confirm our results.

We observed that the mean difference between hourly outdoor
sensor and NLDAS-2 temperatures increased by 0.57oC for every

operational year, suggesting that degradation should be an important
consideration in themaintenance of these devices.We also observed that
the rates of degradation varied significantly by climate zone and
landcover type, with the highest rates of degradation observed in cold
climates. This result highlights how when using crowdsourced air
temperature data in epidimological studies, research must take into
account the age and location of the sensors being used. By taking a
“kitchen-sink” approach and aggregating as much available sensor data
as possible, researchers run the risk of erroneously adding a
heteroscedastic pattern to their results.

Finally, we also list IDs of 271 (~2.5%) crowd-sourced sensors
that have been potentially misclassified as ‘outdoors’when they were
in reality located indoors. Using the methods described in our work,
data from these sensors may need to be investigated in analyses
focused on integrating sensor networks air pollution data with other
datasets to obtain down-scaled air pollution products in the
United States (Lu et al., 2021; Lu et al., 2022). Like other studies,
we found that a rigorous data quality assessment is necessary for
using this dataset in different applications.

This is the first study that has comprehensively evaluated the air
temperature data reported by the U.S. national crowd-sourced sensor
network focusing on using these data in epidemiologic studies to assess
the impact of temperature on health outcomes. As a necessary first step,
this work is not without limitations.More research is needed to compare
crowd-sourced sensor temperature data with ground-based ‘gold-
standard’ monitors to evaluate the use of this data for other
applications, such as determining local temperature variations and in
urban climate research. Furthermore, due to the coarse spatial scale, the
NLDAS-2 dataset does not adequately capture the within-city urban
heat island effect. In the future, research would benefit by comparing the
temperature from crowd-sourced sensors in dense, urban areas, with
more spatially resolved temperature products such Daymet or PRISM.

5 Plain language summary

Extreme heat threatens human health. Temperature data from a
single weather station is often used as a proxy for city- or county-level
averages. However, such stations tend to be in sparsely populated
locations near airports and may underestimate temperatures
experienced in urban centers. Although modeled weather datasets
have been used in recent years to estimate exposures at the local and
global levels, these data cannot be validated at locationswithoutmonitors.
These datasets may have large errors in settings of complex topography.
The rise of crowd-sourced sensors can potentially improve the
spatiotemporal coverage of ground-based air temperature
measurements for developing exposure assessment for health research.
Accordingly, we provide results of the first comparison of temperature
reported by 14,777 crowd-sourced sensors in the contiguous
United States with that of a gridded temperature product, the
NLDAS-2, that is not the gold-standard for temperature, but is
widely used in epidemiologic research. Although temperature
metrics from the sensors and NLDAS-2 products agreed well, this
agreement broke down on warm days. Our comparison showed that a
radiative-correction needs to be applied to the sensor data to reliably
use its measurements for health research. However, the spatial
granularity of the continental sensor network can reduce the
measurement error in exposure assignment compared to the
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NLDAS-2. Indoor sensor temperatures lagged outdoor temperatures
by 2 hours across climate zones and landcover types. This suggests that
considering such lags in epidemiological studies may be important for
defining critical windows of exposure to temperature. We identified
271 (2.5%) crowd-sourced sensors that were likely misclassified as
outdoor and may need to be reconsidered in analyses of ambient
temperature and air quality. Finally, we observed that the mean
difference between sensor and NLDAS-2 temperatures increased by
0.57oC for every operational year.
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