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Introduction: Green waste is the second largest organic solid waste beyond of
household waste in Chinese cities. Clarifying greenwaste generation is significant
for efficient management and utilization.

Methods: Unlike previous studies that mainly concentrated on quantifying green
waste at a single time point and within a particular region, this research is
grounded in the urban greening data of 30 provinces in China spanning from
2003 to 2022. It systematically computes and analyzes the overall green waste
generation scenario and its spatio - temporal distribution traits in China.
Moreover, it innovatively employs the adjusted IPAT - LMDI (Environmental
Impact = Population × Affluence × Technology - Logarithmic Mean Divisia
Index) model to probe into the key driving factors influencing green waste
production.

Results and Discussions: Research has found that: 1) From 2003 to 2022, the
total amount of landscaping waste resources in China showed an overall upward
trend, with a total of 10.7134million tons in 2003 and an increase of nearly 5 times
to 60.9705 million tons in 2022; 2) The overall density of resource generation
shows a fluctuating upward trend, with a characteristic of high in the east and low
in thewest, gradually evolving into high in the southeast and low in the northwest;
3) The factors of population size, economic development, and environmental
pressure all have a positive driving effect on the total increase of green waste
resources, but urban development shows a negative effect of decreasing the
number of green waste resources; 4) Anticipated against the backdrop of global
warming, urban sprawl, and improving urban green space management
standards, China’s green waste production is projected to persistently rise,
with forecasting an increase to between 83.35 million and 91.48 million tons
in total by 2030. Although this study has achieved some progress in quantifying
and analyzing the spatial - temporal characteristics and driving forces of China’s
green waste, there is still room for further improvement in terms of research
accuracy and scope in future studies.
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1 Introduction

In recent decades, the progression of urbanization and the
enlargement of green areas have significantly escalated the
generation of green waste worldwide (UN-habitat, 2022). In
2023, approximately 2.3 billion tons of solid waste were
generated globally, with green waste accounting for 11% (Kaza
et al., 2018; UNEP, 2024). China, as one of the world’s most
populous nation, has undergone a period of intensive urban
landscaping and green space expansion over the past 2 decades
concurrent with economic progress and escalating resident
demands. This dynamic has resulted in a sustained augmentation
of green cover, which, in turn, has led to a marked rise in green waste
output (Xin et al., 2023). Presently, green waste ranks as the second-
largest contributor to organic solid waste within Chinese cities,
generating between 40 and 70 million tons annually, thereby
accentuating the pressing concerns surrounding its treatment and
disposal (Song et al., 2023). The persistent escalation in the volume
of green waste is imposing a discernible strain on urban ecosystems,
rendering it an integral component of urban development that
cannot be neglected. Therefore, there exists an exigent necessity
for the implementation of scientifically rigorous disposal and
utilization strategies for this burgeoning challenge (Shi et al., 2013a).

Distinct from other categories of urban solid waste, green waste
exhibits a diverse array of origins and is generally considered cleaner
(Raja and Purushothaman, 2023; Reyes Torres et al., 2018). Its
composition encompasses a broad spectrum of plant residuals
generated through natural senescence, human intervention such
as pruning, or harsh weather conditions impacting landscaping
vegetation, including discarded twigs, fallen foliage, grass
clippings, decomposing flowers, and tree/shrub pruning remnants
(NAWDO, 1998; Inghels et al., 2019; Liu et al., 2020a). Relative to
other types of solid waste like municipal and industrial refuse, green
waste boasts ample organic content, high energy density, and unique
characteristics of being high in carbon but low in nitrogen,
qualifying it as a relatively clean energy source endowed with
considerable ecological, economic, and energy utilization
potential (Ahmed et al., 2018). Presently, the avenues for
utilizing green waste resources are continually broadening,
leading to the emergence of various utilization methods, such as
composting for fertilizer, physical mulching, material recycling, and
energy conversion (Suryawan et al., 2022; Wang Y. M. et al., 2022;
Mahari et al., 2020; Pan et al., 2024). However, there is still a certain
gap between the efficiency of green waste disposal and the level of
resource utilization in developed countries. In fact, the generation of
green waste is influenced by multiple factors, including natural and
socio-economic factors (Shu et al., 2021). However, natural factors
are exogenous and difficult to change through changes in
management strategies and behaviors. Therefore, Therefore,
clarifying green waste generation and exploring their socio-
economic driving factors holds immense significance for
optimizing the green waste management system. (Xin et al., 2023).

In previous studies, the quantitative methods for assessing green
waste primarily encompass direct measurement (Lelicińska-Serafin
et al., 2024; Ma et al., 2017) and indirect estimation (Shu et al., 2021;
Yu et al., 2009). Direct measurement techniques, such as Springer’s
(2012) calculation of green waste generated from 445 square meters
of green space annually, and Eades et al. s (2020) house-to-house

interview survey conducted in Hampshire, UK—which compared
variations in green waste generation between urban and rural
areas—yield accurate and real-time data for specific locales.
However, due to high costs, extended research cycles, and
geographical constraints, these methods are challenging to
implement on a large scale. Conversely, the indirect estimation
method relies on secondary data sources. For instance, Liu et al.
(2020b) estimated national garden waste generation in 2018 based
on national greening statistics. Schmidt and Pahl-Wostl (2007)
comprehensively utilized literature reviews and statistical data
while considering factors such as population density and types of
green spaces to calculate per capita green waste production in
Germany. Nonetheless, this approach is contingent upon the
accuracy and completeness of the underlying data; discrepancies
in statistical standards across different regions can lead to significant
errors. Moreover, with advancements in machine learning
technologies, recent studies have employed mathematical models
(Adeogba et al., 2019) and remote sensing techniques (Fu et al.,
2020) to quantify green waste yield. While these methodologies
facilitate rapid acquisition of large-scale information, challenges
remain regarding the classification accuracy of green spaces
within complex urban environments; accurately distinguishing
between various sources of green waste continues to be problematic.

In terms of research methodologies concerning influencing
factors, several scholars have employed techniques such as PEST
analysis, Analytic Hierarchy Process (AHP), and grey correlation
analysis to investigate the degree of correlation between green waste
production and its influencing factors (Mi et al., 2011; Li et al., 2015).
While these methods can effectively analyze the relationships among
various factors and identify key influencers in scenarios with limited
data and incomplete information, they fall short in quantitatively
decomposing the influence exerted by each factor. Additionally,
other researchers have utilized regression analysis to establish a
correlational model linking vegetation coverage with green waste
generation (Timilsina et al., 2014). However, this approach has
specific requirements regarding data distribution and linearity. It
struggles to account for interactions among multiple factors and
faces limitations when addressing complex variables that affect
green waste production. Furthermore, some studies have applied
artificial neural network models with time delays to examine the
relationship between green waste production and temperature (Vu
et al., 2019). This method is capable of identifying nonlinear
relationships between variables; however, it demands a
substantial amount of data. Moreover, it poses challenges in
elucidating internal change mechanisms, thereby limiting its
decision-support value in policy-making contexts.

Based on this, this study adopts the IPAT-LMDI(Impact =
Population * Affluence * Technology - Logarithmic Mean Divisia
Index)model, which can decompose the environmental impact
(green waste generation) into the influence of multiple factors
such as population, wealth level, and technology, thus clearly
quantifying the contribution of each factor to green waste
generation, and better handling the interaction of multiple
factors. Meanwhile, the model is relatively concise in
mathematical principles, easy to understand and apply, and has
been widely validated and applied in the field of environmental
science, with high reliability and comparability. For example, Zaman
and Moemen (2017) used this model to confirm the relationship
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between economic growth, energy consumption, and carbon dioxide
emissions in countries at different stages of development. Ren et al.
(2023) used its extended version to evaluate the impact of various
technological interventions on China’s wastewater emissions.
Although some emerging machine learning models, such as
random forests and neural networks, have advantages in
handling complex nonlinear relationships, they often require a
large amount of data for training. In the current situation of
insufficient green waste production data, it is difficult to
intuitively reveal the intrinsic relationship between various factors
and the amount of green waste generated. Therefore, considering the
research objectives, data availability, and interpretability of the
model, this study selects the IPAT-LMDI model to quantitatively
analyze the driving factors of changes in green waste generation.

Currently, one of the crucial tasks in advancing the treatment
and resource utilization of green waste in China is to gain a
comprehensive understanding of the current state of urban green
waste, ascertain its total volume, distribution, and developmental
trends. Nevertheless, there is currently no official data available on
the total quantity of garden waste resources. Despite several studies
exploring the quantification and analysis of green waste, challenges
persist, including limited research scope, inconsistent
methodologies, and inadequate attention to dynamic shifts.
Regarding research scope, there is a notable absence of
comprehensive and comparative regional studies at the national
level. Most research efforts are centered on individual cities or
regions (Liu et al., 2020c; Peng et al., 2018; Li, 2018). In terms of
methodology, current studies typically employ surveys, estimations,
or a combination of both (Cai, 2019; Chun et al., 2009). The lack of
consensus on statistical methods and standards impedes
comparability across different regions. From a research
standpoint, existing studies primarily concentrate on single-point
analysis (Liu X. et al., 2020), with limited focus on the dynamic
changes in the quantity of green waste resources. Moreover, most
existing research remains at the stage of estimating green waste
production and qualitatively analyzing its influencing factors, with
few studies quantitatively assessing the impact of different factors.
Therefore, there is an urgent need to systematically and objectively
elucidate the dynamic changes and spatiotemporal characteristics of
green waste resources, conduct an in-depth analysis of the driving
factors behind these changes, and establish a foundation for
scientific disposal and resource utilization.

Based on this, this paper quantified the green waste generation
in China (excluding Tibet, Hong Kong, Macau, and Taiwan) from
2003 to 2022 and established an analytical framework encompassing
national, regional, and provincial levels. This framework explores
the dynamic spatiotemporal patterns of green waste output across
China at different spatial scales. Building on this foundation, we
improved the IPAT model and applied the enhanced IPAT-LMDI
model to quantitatively decompose the socioeconomic drivers of
changes in green waste resources. The methodology aims to identify
the key factors influencing the generation of green waste and
provides references for enhancing the scientific disposal and
utilization of green waste, thereby fostering cleaner and more
sustainable urban environments.

The remaining parts of this study are as follows. The second part
elaborates on the research methods and data sources in detail. The
third part presents the calculation results of green waste production,

analyzes the spatiotemporal characteristics and driving factors, and
discusses them. The fourth part summarizes the research results and
proposes targeted suggestions.

2 Methods and data

2.1 Calculation of green waste

Due to the serious lack of statistics on the amount of green waste
generation in China, existing statistics mostly focus on individual
cities or regions, with significant differences in statistical methods
and caliber. Based on literature review and field interviews, this
article defines green waste as the dead branches, fallen leaves, grass
debris, and trimmings generated during the growth and
management of trees, shrubs, and lawns used for urban greening
and beautification within the built-up area. Using the yield factor
method, the calculation formula for the annual generation of green
waste (in 10,000 tons) is set as Equation 1:

GW � GA × α (1)

Among them,GA (km2) is the green space area of urban built-up
areas; α is the green waste production factor (kg/m2), which is the
average annual green waste generated per square meter of urban
green space. Drawing on the findings from field research interviews
and prior research on green waste generation calculations (He et al.,
2012; Wu et al., 2010; Li, 2016; Gong, 2014; Zhu et al., 2023; Li, 2024;
Liu, 2014; Wu et al., 2014; Yan et al., 2016; Cai, 2019), this article
establishes a green waste generation factor of 1.7 kg/m2 to
standardize calculation and statistical methods. Taking into
account variations in climate and vegetation across different
regions, a sensitivity analysis is performed on this yield
coefficient. The coefficient is adjusted within a range of ±30%,
varying from 1.19 kg/m2 to 2.21 kg/m2, aligning with the range
of yield factors reported in current literature (Table 1). Utilizing a
single-factor sensitivity analysis approach, we alter only the yield
coefficient while maintaining all other factors constant (Equation 2).

Sensitivity coefficient � GW2 − GW1( )/GW1

α2 − α1( )/α1 (2)

In the formula, α1 represents the yield coefficient before the
change, while α2 denotes the yield coefficient after the change.
Therefore, the rate of change in the yield coefficient is calculated
as (α2 − α1)/α1. Additionally, the green waste generation amounts
before and after the corresponding yield coefficient changes are
calculated as GW1 and GW2, respectively. The rate of change in
green waste generation is denoted as (GW2 − GW1)/GW1 . The
ratio of these two rates of change represents the sensitivity
coefficient, which gauges the extent of the yield coefficient’s
impact on green waste production, thereby ensuring the scientific
rigor of our calculation results.

2.2 IPAT model construction and inference

Green waste, as an organic solid waste generated during urban
landscaping construction, if not scientifically disposed of, will bring
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certain pressure to the ecological environment. To illustrate the
impact of socio-economic factors on the ecological environment,
(Ehrlich and Holdrens, 1971), indicating that environmental
pressure (I) is determined by population size (P), affluence (A),
and technological level (T). As shown in Equation 3:

I � PAT (3)

To further explore the driving factors of green waste generation,
we considered the amount of green waste resources as
environmental pressure I in the IPAT model, with richness A
expressed in per capita gross domestic product (G/P) and
technological level expressed in green waste generation intensity
(GW/G), which is the amount of green waste resources per unit of
economic output. As shown in Equation 4:

I � GW � PAT � P ×
G

P
×
GW

G
(4)

Among them, the intensity of green waste generation can be
further decomposed into the product of green waste production
factor, urban green space rate, and unit output built-up area, As
shown in Equation 5:

T � GW

G
� GW

GA
×
GA

BA
×
BA

G
(5)

Therefore, the IPAT model can evolve into:

I � PAT � P ×
G

P
×
GW

G
� P ×

G

P
×
GW

GA
×
GA

BA
×
BA

G
� GW (6)

In the formula, P represents population, G represents regional
gross domestic product, GW represents annual green waste
resources, GA represents urban green space area, and BA
represents urban built-up area.

2.3 Decomposition of driving factors

Based on field research and previous research, and based on the
construction and evolution of the IPAT model mentioned earlier,
Utilizing the Logarithmic Mean Divisia Index (LMDI) method to
decompose the driving factors of green waste generation enables

efficient elimination of residual terms and a thorough breakdown of
the overall impact. Accordingly, the driving factors for the variation in
green waste generation can be decomposed into four factors

GW � P ×
G

P
×
GW

GA
×
GA

BA
×
BA

G
� P ×

G

P
×
GW

BA
×
BA

G

� P × A × S × U (7)

In Equation 7, the driving factors affecting the generation of
green waste resources are decomposed into population size factor P,
denoted by the regional population count; economic development
factor A, enoted by the per capita economic output value (G/P);
environmental pressure factor S, expressed as the product of the
green waste generation factor and the urban green space ratio, which
is the amount of green waste generated per unit area (GW/BA); and
urban development factorU, reflected by the reciprocal of the output
per unit area of built-up areas (BA/G). The specific meanings of
indicators are shown in Table 2.

Based on Equation 6 above, the change in green waste
production in year t relative to the base period is:

ΔZ � Zt − Z0 � PtAtStUt − P0A0S0U0 � ΔZP + ΔZA + ΔZS + ΔZU

(8)
In Equation 8, ΔZP, ΔZA, ΔZS and ΔZU respectively represent the
changes in population size effect, output size effect, environmental
pressure effect, and urban development effect relative to the base
period in the tth year, that is, the contribution values of each factor
to the changes in green waste production.

Using LMDI to decompose the changes in per capita green waste
production, the decomposition results of each factor are shown in
Equation 9:

ΔZP � W ln
Pt

P0 � W lnDP

ΔZA � W ln
At

A0 � W lnDA

ΔZS � W ln
St

S0
� W lnDS

ΔZU � W ln
Ut

U0 � W lnDU

(9)

TABLE 1 Green waste production factors in public literature.

Research area Statistic-al year Statistical methods Green waste production factor (kg/m2) Literature sources

Wuxi, Jiangsu 2009 Classification calculation 1.42 He et al. (2012)

Beijing 2010 Estimate 1.83 Wu et al. (2010)

Tianshui, Gansu 2012 Statistics 1.43 Liu (2014)

Suzhou, Jiangsu 2012 Statistics 0.70 Wu et al. (2014)

Xi’an, Shanxi 2013 Classification calculation 0.53 Li (2016)

Foshan, Guangdong 2014 Statistics 1.55 Yan et al. (2016)

Jing’an,Shanghai 2014 Classification calculation 1.31 Gong (2014)

Huai’an, Jiangsu 2018 Statistics 0.79 Cai (2019)

Shanghai 2020 Classification calculation 0.64 Zhu et al. (2023)

Dezhou, Shandong 2022 Estimate 2.1 Li (2024)
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Among them The value of W is shown in Equation 10:

W � Zt − Z0

lnZt − lnZ0
(10)

2.4 Data sources and visualization

This study focuses on 30 provinces, autonomous regions, and
municipalities in mainland China from 2003 to 2022. Due to the
complex geographical environment, Tibet was excluded from the
study due to difficulties and gaps in data statistics in some years,
whichmade it challenging to ensure the integrity and accuracy of the
data. Additionally, Hong Kong, Macao Special Administrative
Region, and Taiwan were also excluded due to differences in
statistical systems and data collection standards compared to
mainland China. To ensure the consistency and comparability of
the research data, they were not included in this study. This research
meticulously investigates the spatial-temporal patterns and
underlying driving factors associated with the green waste
resources within these regions. Data pertaining to population
size, GDP, and green space area utilized in the study were
obtained from authoritative sources such as the China Statistical
Yearbook (covering the years 2003–2022) and the Urban
Construction Statistical Yearbook (also covering the same
period). Among them, some missing data were filled in using
linear interpolation method.

ArcGIS, a geographic information system (GIS) software crafted
by the American firm Environmental Systems Research Institute
(ESRI), holds a prominent position as one of the most extensively
used tools in the global GIS sector. Our research employed this
powerful software to map and visualize the generation and spatial
distribution of green waste, capitalizing on a series of official urban
boundary datasets disseminated by China’s Ministry of Natural
Resources for the years 2003, 2008, 2012, 2017, and 2022. This
analytical endeavor illuminated temporal shifts and regional
disparities in green waste production across China.

Advancing our investigation, we also adopted prospective urban
expansion boundary data for the period of 2022–2030, as proposed
by Huang et al. (2022a), which encompass diverse socioeconomic
scenarios and alternative models of urban sprawl. This adoption
allowed for a nuanced discussion on the prospective trends in green
waste generation in China, considering the compounding effects of
urban growth patterns under various development frameworks.

3 Results

Considering the vastness of China’s territory, which
encompasses a multitude of terrains, climates, cultures,
economies, and political structures, this study delves deeper into
the temporal and spatial distribution patterns of green waste
resources across the nation (excluding Tibet, Hong Kong, Macao,
and Taiwan). Leveraging a scientific and multidimensional
approach that incorporates factors such as geography, history,
and ethnicity, the country is divided into six distinct regions:
North China (Beijing, Tianjin, Hebei Province, Shanxi Province,
Inner Mongolia), Northeast (Liaoning, Jilin, Heilongjiang), East
China (Shanghai, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi,
Shandong), Central South (Henan, Hubei, Hunan, Guangdong,
Guangxi, Hainan), Southwest (Chongqing, Sichuan, Guizhou,
Yunnan), and Northwest (Shaanxi, Gansu, Qinghai, Ningxia,
Xinjiang). To investigate the changes in green waste generation
over time, the years 2003–2022 are segmented into four phases, each
consisting of 5-year intervals.

3.1 Total amount and distribution of
green waste

3.1.1 Total amount of green waste
Employing the production factor approach, an estimated

60.97 million tons of green waste were generated across the
nation in the year 2022. At the same time, considering the
differences in climate and vegetation conditions in different
regions, the yield factors in the northwest, northeast, and north
China regions were reduced by 30%, 20%, and 10% respectively,
while the yield factors in the southwest, central southern, and east
China regions were increased by 30%, 20%, and 10% respectively.
Sensitivity coefficients were calculated, and the range and sensitivity
coefficients of green waste production obtained are shown
in Table 3.

The calculated sensitivity coefficient of the yield factor is
approximately 0.18. This indicates that for every 1% change in
the yield factor based on 1.7 kg/㎡, the generation amount of green
waste will change by approximately 0.18%. The green waste
generation is not very sensitive to minor changes in the yield
factor, which means that the shift in the yield coefficient within a
certain range will not have a significant impact on the generation
amount of green waste.

TABLE 2 Variable description table.

Dimension Symbol Formula Variable Symbol Variable description

Environmental effect I PAT Green waste annual resource quantity GW /10,000 tons

Population P P Regional population P /10,000 people

Affluence A G
P

Per capita gross domestic product G Regional gdp/100 million yuan

Technical factors T GW
G

Green waste discharge intensity — GW
G � GW

GA × GA
BA × BA

G

Environmental pressure level S GW
BA

Green waste output per unit area GA Green space area in built-up areas/hectare

Urban development level U BA
G

Output per unit area of built-up areas (reciprocal) BA Built-up area/hectare
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To further validate the effectiveness of the research results, in
Table 3, this study systematically compared the estimation results
based on the yield factor method with the actual values of green
waste production reported in previous studies. Given that most of
the previous related research focused on single-time points and
lacked long-term and coherent data monitoring, resulting in the
absence of data for some years, this study conducted a precise
comparative analysis only for the years with complete data.

The comparison results show that the prior studies values of
green waste production are basically consistent with the estimated
values and the adjusted value ranges of this study (Shi et al., 2013a;
Wan et al., 2023; Liu, 2014). This result strongly validates the
rationality of the selection of the yield factor and the accuracy of
the calculation results in this study, providing reference data support
and method verification for the quantitative research on green waste
generation.

3.1.2 Distribution of green waste
Figure 1 illustrates the provincial heterogeneity of green waste

generation across China in 2022. The chromatic scale reflects total
annual green waste yield, with darker hues corresponding to higher
production intensities. The geographical dispersion of green waste
generation within China demonstrates a prevailing trend of higher
volumes in the southeastern regions and relatively lower quantities
in the northwestern territories. Notably, East China and Central
South China collectively account for the most substantial amount of

total resources, topping the national distribution chart. Following
closely behind are the northeastern, northern, and southwestern
regions of the country. In contrast, the northwest region registers the
least overall volume of green waste production.

3.2 Dynamic evolution of spatiotemporal
pattern of green waste generation

3.2.1 National green waste generation
Over the past 20 years, China has witnessed a steady overall

increase in the cumulative volume of green waste resources. In the
year 2003, the nationwide production of green waste stood at
10.71 million tons, which escalated to a staggering 60.97 million
tons by 2022, representing an almost quintuple increase. The
changes in the amount of green waste generated and growth rate
are shown in Figure 2.

The growth rate of total green waste resources initially
exhibited a pattern of fluctuation followed by stabilization.
Post-2010, the growth rate steadied. The pronounced
fluctuations during this initial phase might be attributed to
the revisions made by the Ministry of Construction to the
“Urban Construction Statistical Reporting System” in 2006.
These revisions included adjustments to the urban boundaries
and statistical standards, which likely impacted the
comparability and interpretability of the data during those

TABLE 3 Comparison of green waste generation in public literature with our study.

Year Estimated value Adjustment value (−) Adjustment value (+) Sensitivity coefficient Prior studies

2003 10.71 10.13 12.01 0.1780

2004 22.47 21.45 25.28 0.1852 21.54 (Shi et al., 2013a)

2005 24.96 23.89 28.15 0.1866 23.92 (Shi et al., 2013b)

2006 22.44 21.47 25.19 0.1875 21.52 (Shi et al., 2013a)

2007 29.29 27.53 32.60 0.1779 27.86 (Shi et al., 2013b)

2008 29.96 28.68 33.80 0.1871 28.88 (Shi et al., 2013a)

2009 33.85 32.46 38.12 0.1889

2010 36.25 34.72 40.80 0.1883

2011 38.08 36.47 42.85 0.1882 22.45 (Shu et al., 2021)

2012 40.19 38.42 45.16 0.1873

2013 41.20 39.34 46.23 0.1872

2014 42.90 40.95 48.11 0.1871

2015 45.29 43.17 50.77 0.1864

2016 47.26 45.10 53.06 0.1866

2017 49.58 47.25 55.59 0.1862 >30 (Wang et al., 2022c)

2018 51.70 49.30 58.05 0.1861 34.12 (Liu et al., 2020c)

2019 53.50 51.02 60.06 0.1859 33.13 (Shu et al., 2021)

2020 56.20 53.55 63.08 0.1854

2021 59.05 56.29 66.43 0.1847 52.1 (Wan et al., 2023)

2022 60.85 58.01 68.49 0.1846 70 (Liu, 2024)
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years. Currently, the annual growth rate of total green waste
resources in China maintains a stable trajectory, hovering
between 3% and 5%.

3.2.2 Regional green waste generation
(1) Dynamic changes in regional green waste generation

From the absolute value of annual green waste production,
the green waste production in different regions has shown an
increasing trend over time (Figure 3A). In the early phase
(2003–2007), East China topped the list with the highest
average annual green waste resources, followed by Central
South, Northeast, North China, Southwest, and Northwest
respectively. However, during the middle period (2008–2012),
there was a notable surge in the green waste production in East
and North China, overtaking Central South and Northeast
regions. The new hierarchy, based on average annual resource
levels, shifted to Central South > East China > North China >

Northeast > Southwest > Northwest. Moving into the next phase
(2013–2017), the growth rate of green waste resources in
Northeast China slowed down, with its average annual
resource quantity marginally exceeding that of the Southwest
region. Finally, in the latest segment (2018–2022), the Southwest
region saw a significant increase in green waste production,
eventually surpassing the Northeast region, securing the
position as the third-highest producer of green waste
resources in the country.

(2) Dynamic changes in the growth of regional green waste
generation

In terms of the annual growth of green waste resources across
China, the general pattern reflects a fluctuating yet declining
tendency (Figure 3B). While most regions have been witnessing
an increase in the number of green waste resources every year, the
Northeast region uniquely registered a negative annual growth rate

FIGURE 1
Spatial distribution of green waste generation across Chinese provinces in 2022 (Unit: 10,000 tons).
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between 2008 and 2012, signifying a decrease in its green waste
production. During the period from 2003 to 2007, the East China,
Central South, and Northeast regions demonstrated relatively high
average annual growth rates, with increases surpassing 1 million
tons. Conversely, North China, Southwest, and Northwest China
experienced more modest increments, adding roughly 200,000 to
300,000 tons annually. Between 2008 and 2012, the average annual
growth rates in all regions declined to differing extents. The

Northeast region saw the sharpest drop, entering negative growth
territory. From 2013 to 2017, the average annual growth rate in
North China, Northeast China, and Northwest China rose
compared to the preceding period, whereas there was a minor
dip in the growth rates for East China, Central South China, and
Southwest China. Lastly, in the final period from 2018 to 2022, the
Northeast, Central South, and Southwest regions experienced an
upturn in their average annual growth rates compared to the

FIGURE 2
Time series changes in total resource quantity and growth rate.

FIGURE 3
Changes in the amount of greenwaste resources in the region (A)Dynamic changes in regional greenwaste generation; (B)Dynamic changes in the
growth of regional green waste generation; (C) Dynamic changes in the growth rate of regional green waste generation; (D) Dynamic changes in the
contribution rate of regional green waste generation growth to national growth.
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previous period. However, North China, East China, and Northwest
regions noted a decrease in their respective average annual
growth rates.

(3) Dynamic changes in the growth rate of regional green waste
generation

Overall, while the annual growth rate of green waste resources
across China has generally decreased over time, there are variations
in the changing trends among different regions (Figure 3C).
Specifically, the annual growth rates in North China and
Northeast China have consistently decreased over the years,
aligning with the overarching national trend of diminishing
annual growth in green waste resources. In contrast, the
Northeast and Southwest regions display a pattern of decline
followed by an upturn. Their average annual growth rates
dropped from 2003 to 2017, but then slightly recovered from
2018 to 2022. Meanwhile, the Central, Southern, and
Northwestern regions exhibit a fluctuating downward trend.
Their growth rates dipped from 2003 to 2012, and then showed
a temporary rise followed by another decline between
2013 and 2017.

(4) Dynamic changes in the contribution rate of regional green
waste generation growth to national growth

The analysis reveals that nearly 60% of the overall growth in
green waste resources in China can be attributed to the expansion
in the East China and Central South regions (Figure 3D).
However, in recent years, East China’s contribution rate to this
growth has been on a declining path, while the Central South
region’s contribution has stayed relatively constant but with some
fluctuations. The Southwest region is emerging as a significant
contributor, with its share in the growth of national green waste
resources increasing and showing a rising trend. By 2018 to 2022,
the Southwest region’s contribution rate reached 19%. In contrast,
the contribution rates of growth for North China and Northwest
China were on the rise prior to 2018, but they experienced a
substantial decline afterward. From 2018 to 2022, North China’s
contribution rate fell to 4%, while Northwest China’s contribution
dropped to 6%. The Northeast region displays a highly variable
contribution rate. Between 2003 and 2007, it accounted for 22% of
the total national green waste resource growth. Nevertheless, from
2008 to 2012, the decline in green waste resources in the Northeast
negatively impacted the overall national figure. Starting from
2013, however, the Northeast region’s contribution rate began
to steadily recover, reaching 13% by 2018–2022.

3.2.3 Provincial green waste generation
When examining the situation province by province, from

2018 to 2022, the six provinces with the highest average annual
green waste resources were Guangdong, Jiangsu, Shandong,
Zhejiang, Shanghai, and Liaoning—all situated along the
coastlines (Table 4-Rank A). Notably, Guangdong Province
recorded an average of 8.1917 million tons of green waste
annually between 2018 and 2022, while Jiangsu Province
generated an average of 5.2095 million tons per year, placing
them firmly at the forefront of the nation. The elevated green

waste production in these coastal provinces could be attributed
to their high levels of economic development. As a result, residents
have a higher demand for quality living environments, leading to
increased investment by local governments in urban landscaping
construction and upkeep. This emphasis on landscaping has led to a
larger scale of green space development and consequently, a higher
volume of green waste being produced. Moreover, inland provinces
such as Sichuan, Henan, Anhui, Hubei, and Hebei also reported
relatively high amounts of green waste resources over the
past 2 decades.

3.3 Spatiotemporal patterns of green waste
generation density

3.3.1 National green waste density
The density of green waste resources, defined as the ratio of

green waste generated to the total built-up area, has displayed
a predominantly fluctuating yet ascending trend over time.
Between 2003 and 2010, this growth rate was particularly
brisk. Initially, in 2003, the green waste generation density
in China’s built-up areas stood at 378.46 tons per square
kilometer, which soared to 905.89 tons per square kilometer
by 2010—a significant leap. From 2010 to 2013, there was a
noticeable decline in the volatility of this growth rate, after
which it resumed a steady climb. By 2022, the density of green
waste generated within China’s built-up areas hit 935.91 tons
per square kilometer, reflecting an average annual growth rate
of approximately 1%–2% over the years. The temporal
variation of green waste generation density is shown
in Figure 4.

3.3.2 Regional and provincial green waste density
Figures 5A–E illustrate annual green waste generation density

(tons/km2/year) across provinces for 2003, 2007, 2012, 2017, and
2022. Color intensity scales with production density (see legend),
where dark green indicates high-intensity zones and light green
represents low-density regions. The spatial distribution of green
waste resource generation density follows a clear pattern where it is
significantly higher in the eastern part of China and lower in the
western regions. Over time, the resource density in the southern
areas has escalated rapidly, creating a geographic distinction where
the southeast holds a higher density, while the northwest remains
relatively low.

3.3.3 Provincial green waste density
Provinces with the highest green waste resource generation per

unit area are primarily concentrated in eastern coastal regions,
including Beijing and Tianjin in North China, Heilongjiang and
Liaoning in Northeast China, Shanghai, Jiangsu, Shandong,
Zhejiang, and Anhui in East China, Hainan in Central South
China, and Chongqing in Southwest China (Table 4-Rank B).
This uneven distribution can be attributed to the rapid economic
development of the eastern coastal provinces. These areas initiated
urban landscaping projects earlier and have maintained a high
standard of management and conservation. Consequently, they
have a larger volume of green waste resources per unit area and
a faster growth rate over time.
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TABLE 4 Top 10 provinces with annual green waste generation and density.

Rank
A

2022–2018 2017–2013 2012–2008 2007–2003 Rank
B

2022–2018 2017–2013 2012–2008 2007–2003

Province Yield Province Yield Province Yield Province Yield Province Density Province Density Province Density Province Density

1 Guangdong 879 Guangdong 741 Guangdong 684 Guangdong 422 1 Shanghai 432.0 Shanghai 344.5 Shanghai 277.7 Shanghai 69.3

2 Jiangsu 521 Jiangsu 464 Jiangsu 382 Jiangsu 253 2 Beijing 93.9 Beijing 79.5 Beijing 62.2 Beijing 47.7

3 Shandong 446 Shandong 365 Shandong 265 Shandong 160 3 Tianjin 64.6 Jiangsu 45.4 Guangdong 38.1 Jiangsu 24.7

4 Zhejiang 303 Zhejiang 242 Shanghai 176 Heilongjiang 130 4 Jiangsu 51.0 Tianjin 44.1 Jiangsu 37.3 Guangdong 23.5

5 Shanghai 274 Shanghai 218 Liaoning 160 Liaoning 114 5 Guangdong 48.9 Guangdong 41.3 Tianjin 27.8 Tianjin 21.4

6 Liaoning 237 Liaoning 206 Zhejiang 153 Sichuan 93 6 Zhejiang 29.3 Zhejiang 23.4 Hainan 24.5 Shandong 10.0

7 Sichuan 221 Anhui 159 Sichuan 121 Zhejiang 86 7 Shandong 28.1 Shandong 23.0 Shandong 16.7 Zhejiang 8.3

8 Henan 207 Sichuan 158 Anhui 120 Beijing 78 8 Liaoning 16.0 Liaoning 13.9 Zhejiang 14.8 Liaoning 7.7

9 Anhui 204 Henan 154 Heilongjiang 115 Hubei 77 9 Anhui 14.6 Chongqing 11.5 Liaoning 10.8 Hainan 7.0

10 Hubei 179 Hebei 139 Henan 114 Anhui 72 10 Chongqing 14.6 Anhui 11.4 Anhui 8.6 Anhui 5.2

The unit of yield in Rank A is 10,000 tons. The unit of density in Rank B is t/km2.
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3.4 Analysis of driving factors for changes in
green waste production

The LMDI model was employed to decompose the driving
factors of green waste production, with the results presented in
Table A1 (in the Appendix). As illustrated in Figure 6, from 2003 to
2022, population size, economic development, and environmental

pressure exhibited relatively stable positive impacts on green waste
generation. Among these factors, economic development emerged
as the most significant driver, contributing 143.05% to the increase
in green waste generation. The contribution rates of environmental
pressure and population size were 39.75% and 10.16%, respectively.
Conversely, urban development exerted a consistently negative
influence, contributing 92.97% to the reduction of green waste

FIGURE 4
Time series variation of green waste generation density and growth rate.

FIGURE 5
Spatial distribution of green waste resource density (Unit: t/km2). (A) 2003, (B) 2007, (C) 2012, (D) 2017, (E) 2022.
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generation. Specifically, the economic development effect
contributed the most to the total effect of the change of green
waste resources, which was the most important driving factor,
indicating that the increase of per capita GDP had a strong
explanatory ability for the increase of green waste resources, and
showed an accelerating trend over time. The environmental pressure
effect positively drove the increase of green waste production, but
the contribution rate fluctuated greatly in different years. The
driving effect of population size on the increase of green waste
production was small and relatively stable, and the driving effect
showed an inverted U-shape over time. On the whole, the effect of
urban development is negative, that is, the decrease of the measured
value of urban development level and the increase of actual
urbanization level have a negative driving effect on green waste
resources, and the driving effect is first enhanced and
then weakened.

4 Discussions and policy
recommendations

4.1 Discussions

4.1.1 Spatiotemporal heterogeneity of green waste
generation

The analysis reveals a persistent upward trajectory in China’s
green waste generation from 2003 to 2022, aligning with the
temporal patterns identified by Shi et al. (2013b). This trend
likely reflects synergistic effects of rapid urbanization and
population growth, which have elevated environmental quality
standards nationwide. Consequently, municipal authorities have
substantially increased investments in urban greening
infrastructure, resulting in both spatial expansion of green areas
and enhanced maintenance practices that collectively contribute to
amplified green waste outputs.

Our quantification methodology yields higher estimates than
those reported by Shu et al. (2021) and Liu et al. (2019), primarily
due to expanded parameter definitions encompassing herbaceous
residues (grass clippings, leaf litter, etc.). This comprehensive
approach positions our 49.58 million tonne estimate for
2017 within the broader spectrum of Wang et al. (2022b) 30-
million-tonne threshold projection. While Shi et al. (2013b)
documented dry-weight biomass equivalents for
2004–2008 through field-calibrated literature synthesis, our
moisture-adjusted calculations demonstrate temporal consistency
with their baseline data, though offering superior temporal
resolution and contemporary relevance.

Spatiotemporal analysis identifies distinct geographic
disparities, mirroring regional economic gradients. Southeastern
provinces exhibit disproportionately high waste generation
(58.7% national total), attributable to their advanced
urbanization, substantial green space investments, and favorable
subtropical climates that accelerate plant metabolism. This spatial
pattern corroborates regional studies (Shu et al., 2021), yet our
longitudinal analysis reveals previously unquantified dynamics in
growth trajectories.

Notably, the southwestern region emerged as an accelerated
growth pole post-2015, its national contribution rising from 8.2% to

13.6% within the study period. This surge correlates with western
development initiatives (Go West Policy) and parallel increases in
municipal greening budgets (+214% 2015–2020). Conversely,
northeastern provinces displayed cyclical fluctuations–rapid early
growth (2003–2007: +12.8% p. a.) followed by recessionary declines
(2008–2012: 3.1% p. a.) and subsequent recovery (2013–2022: +5.4%
p. a.). These oscillations mirror regional economic restructuring
phases, where industrial slowdowns precipitated reduced green
space maintenance, later counterbalanced by ecological
restoration mandates under the Northeast Revitalization Strategy.

4.1.2 Discussion on influencing factors of green
waste generation

The IPAT-LMDImodel was employed to decompose the driving
factors behind changes in green waste generation. The findings
indicated that economic development, environmental pressure, and
population size exerted positive influences on green waste
generation, whereas urban development acted as a restraining
factor, inhibiting the increase in green waste generation. These
results align with the study by Shu et al. (2021), but this research
further elucidates the temporal variations in the degree of influence
exerted by different factors.

The scale of the population has a positive driving effect on the
resource utilization of green waste, which is consistent with the
findings of Han et al. (2018) in developing countries. However, this
study further reveals that over time, the impact of population size on
green waste resource utilization exhibits an inverted U-shaped
trend, with a turning point identified in 2011. This phenomenon
can be attributed to the relatively rapid population growth prior to
2011, where the annual growth rate was approximately 6‰. To meet
the production and living needs of urban residents, built-up areas
gradually expanded and green space increased, resulting in greater
amounts of green waste generated. After 2011, influenced by
changes in fertility concepts and awareness, national population
growth rates slowed down to an average annual rate of 4‰;
nevertheless, residents’ demand for urban green spaces continued
to rise alongside increasing urban greenery area. Consequently,
despite slow population growth during this period still exerting a
positive influence on green waste resources. However, as urban
space became increasingly saturated and population numbers
declined by 2022, changes in population size began to exert a
negative driving effect on variations in green waste resources.

Economic development serves as the most significant driving
force behind increases in green waste generation (Wang Z. et al.,
2022). As GDP per capita rises, residents’ expectations regarding
environmental quality also increase—prompting governments to
enhance investments in urban landscaping—which subsequently
leads to higher volumes of generated green waste. For instance,
between 2008 and 2012 China actively responded to economic crises
by promoting technological innovation and ecological construction;
during this period there were notable improvements in urban
greening infrastructure and management levels leading economic
development’s impact on green waste output to reach its peak value.
Nonetheless, current challenges facing resource utilization from
organic wastes include poor product sales performance and high
costs among others. Future research should focus on optimizing
industrial chains related to organic waste recycling while improving
resource efficiency through cost reduction strategies aimed at
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enhancing market competitiveness for products derived from
such processes.

The relationship between environmental pressure and quantities
of generated organic wastes is complex. Previous studies have
indicated that increased vegetation cover can suppress overall
refuse generation (Wang et al., 2020a), whereas most research
concerning organic wastes suggests a significant positive
correlation between their volume produced relative expansion
within vegetative areas (Shu et al., 2021). During periods
characterized by rapid city expansion (2003–2013), contributions
made towards generating organic refuse fluctuated considerably due
largely because when built-up zones expand faster than new
greenspace developments do then temporary reductions occur;
conversely increases arise under opposite conditions instead.
From years spanning across both intervals ranging from year
fourteen until twenty-two however,with limited available spatial
capacity now existing,urban greening efforts shifted focus onto
upgrading pre-existing landscapes thus creating sustained positive
influences stemming forth via heightened pressures upon
environment impacting total outputs seen here. This indicates
how shifts occurring within developmental models along with
respective greening strategies significantly affect relationships
observed amongst these variables moving forward into future
investigations exploring dynamic interactions present amidst
differing forms taken up throughout various cities providing
more targeted recommendations applicable towards planning
initiatives surrounding both aspects mentioned earlier.

Urban development levels negatively influence quantities
associated with produced organics (Yu et al., 2024; Wang
et al.,2020b), meaning improved efficiencies achieved through
advancements made will ultimately lead lessened outputs being
recorded overall. As land-use effectiveness improves across
metropolitan regions available spaces become increasingly
allocated toward commercial/residential purposes thereby
indirectly constraining expansions witnessed previously around
public parks reducing resultant figures accordingly too.

Simultaneously though emphasis placed upon maintaining
balance found amid ecological/economic pursuits encourages
innovations emerging within greener industries fostering
betterment seen throughout landscape management practices
influencing outcomes experienced here once again yet another
layer needing exploration remains evident going forward whereby
effective controls could potentially emerge allowing rationalized
utilizations taking place concurrently alongside enhanced
operational efficacies realized thereafter.

In addition beyond four factors analyzed herein other studies
indicate natural elements including temperature fluctuations types
exhibited among local flora precipitation patterns extreme weather
events policy guidance resident awareness pertaining eco-friendly
practices all contribute likewise affecting totals reported concerning
organics produced (Lu et al.,2022; Shi et al.,2021). Therefore when
formulating policies directed towards managing said materials
sustainably implementing interventions necessitates
comprehensive considerations encompassing multiple interacting
influences ensuring scientific efficient governance achieved
effectively overall.

4.1.3 Scenarios for variations in green waste
generation factor

The Intergovernmental Panel on Climate Change (IPCC,
2023)’s Sixth Assessment Report (AR6), “Climate Change 2023,”
highlights a 1.1°C increase in global mean temperature compared to
pre-industrial levels, emphasizing the severity of climate change.
This is accompanied by a rise in extreme weather events. Research
by Lin et al. (2010) shows that global warming has led to an 8.4%–
16.3% increase in terrestrial plant biomass, suggesting a
corresponding rise in green waste yield per unit area. This
indicates that current estimates of green waste production may
be conservative. Moreover, with economic development and
growing environmental awareness, the management and
maintenance of urban green spaces are expected to improve.
Optimized urban greening strategies, with intensified

FIGURE 6
Decomposition of driving factors for changes in green waste resources.
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maintenance and higher vegetation densities, could lead to increased
green waste yields.

Considering the changes in plant biomass, the production of
green waste per square meter of green space is likely to rise to
1.84–1.98 kg in the near future. For example, in 2022, the
recalculated amount of green waste generated in China was
estimated to be between 65.96 million and 70.876 million tons,
with the production density in urban built-up areas rising to
1.01–1.09 kg per square meter. These shifts pose new challenges
for managing green waste but also provide opportunities for more
efficient and sustainable practices, contributing to the circular
economy and reducing carbon emissions.

Globally, green waste, as a significant biomass resource, exhibits
distinct generation patterns across nations and regions, closely tied
to socioeconomic structures, environmental policies, and statistical
frameworks. In China, green waste mainly comes from urban public
areas and is collected by municipal departments. Based on this, the
output per unit of green area becomes a reasonable measurement
parameter. However, in other countries, part of the green waste
originates from privately - owned areas, making it difficult to
accurately calculate the green area. Thus, the per - capita green
waste output has become a commonly used calculation parameter.
This difference makes it challenging to directly compare green waste
data among different countries and also reflects the necessity of
unifying the definition and statistical methods of green waste at the
global level.

In terms of per - capita green waste output, there are obvious
imbalances among different countries and regions. The calculation
by Lu et al. (2022) shows that the global green waste generation
ranges from 1 to 336 kg/cap/year, with a weighted average of 47 kg/
cap/year. Maldives, Puerto Rico, and Denmark rank among the top
three in per - capita green waste output, reaching 336, 246, and
240 kg/cap/year respectively. Western Europe and the United States
have relatively high per - capita green waste output, while Asia and
South America have relatively low per - capita green waste output.
For example, the per - capita green waste output in the United States
increased from 74 kg/cap/year in 2008 to 97.8 kg/cap/year in 2014
(EPA, 2016; MacFarlane, 2009). The average generation rate of per -
capita green waste in the European Union is estimated to be between
61.5–77.0 kg/cap/year, while in India it is only 20 kg/cap/year, which
is much lower than that in Europe and the United States.

Green waste generation also has obvious seasonal
characteristics. Taking Denmark as an example, the study by
Boldrin and Christensen (2010) distinguished the green waste
generation coefficients in winter and summer in Denmark. The
summer coefficient can reach 19.4 kg/cap/month, much higher than
2.5 kg/cap/month in winter. In addition, there are differences in
green waste output between rural and urban households. The study
by Eades et al. (2020) found that rural households produce 1.96 ±
1.35 kg per day, while urban households produce 0.64 ± 0.46 kg per
day. This is mainly because rural households usually have larger
yards and more private green spaces and may engage in certain
agricultural production activities, all of which lead to higher green
waste generation in rural households than in urban households.

Overall, the global green waste generation situation is complex
and diverse, affected by a combination of various factors. In future
research and practice, on the one hand, it is necessary to further
clarify a unified definition and statistical standard for green waste to

enable more accurate international comparison and analysis. On the
other hand, it is necessary to fully consider the actual situations of
different countries and regions, formulate local - specific green waste
management strategies, improve the resource utilization efficiency
of green waste, and achieve sustainable development.

4.1.4 Projected trends in green waste generation in
the future

While urban territories occupy merely 3% of the Earth’s total
land area, they accommodate over half of the global population
(Nations, 2018), positioning them as pivotal drivers of numerous
environmental and societal transformations (Gao and O’Neill,
2020). Numerous scholars have ventured predictions on the
expansion trajectory of urban built-up areas under diverse
socioeconomic scenarios and varying modes of spatial growth.

Urban green spaces constitute a vital component of urban
ecological environments, playing a pivotal role in beautifying city
landscapes, providing leisure spaces for residents, and maintaining
ecological balance (Chen et al., 2021). As outlined in the “National
Land Greening Plan Outline (2022–2030)” issued by the National
Greening Committee of China (2022), China aims to significantly
enhance urban greening by 2030, targeting a 43% green coverage
rate in urban constructed areas. This goal underscores the nation’s
steadfast commitment to fostering green and livable urban
environments.

According to in-depth projections by Huang et al. (2022b), in
tandem with accelerating urbanization, China’s urban built-up areas
are projected to expand to a range of 105,500 to 107,500 square
kilometers by 2030 (Huang et al., 2022a). Consequently, urban green
space is anticipated to witness a remarkable increase, spanning an
area of 45,300 to 46,200 square kilometers. While this expansion
symbolizes progress towards sustainable urban development, it also
forecasts a substantial rise in green waste generation, estimated to
reach between 83.35 million and 91.48 million tons. This anticipated
upsurge in green waste not only imposes heightened demands on
municipal solid waste management systems but also opens avenues
for resource recovery and utilization.

4.2 Policy recommendations

To effectively address the challenges faced by China’s green
waste management and achieve scientific treatment and resource
utilization of green waste, it is imperative to establish a
comprehensive and targeted policy framework. This should
involve fully leveraging international best practices while
adapting them to domestic conditions through innovative
implementation, thereby overcoming obstacles in policy execution.

(1) Differentiated regional governance frameworks will be
constructed to enhance local adaptation of international
experiences.

Given China’s vast territory and significant regional
development disparities, multi-level green waste management
strategies must be designed according to regional development
gradients. In highly urbanized eastern coastal areas, characterized
by developed economies, dense populations, and large volumes of
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green waste, an urban agglomeration green waste (GW) metabolism
network can be established by emulating Germany’s Rhine-Ruhr
region cross-city collaborative model. For instance, within the
Guangdong-Hong Kong-Macao Greater Bay Area, leveraging the
existing carbon trading mechanism, cities with strong processing
capabilities like Shenzhen can treat green waste generated in
Dongguan and convert it into local carbon allowances for
Shenzhen. This approach not only alleviates disposal pressures
on individual cities but also optimizes resource allocation via
market mechanisms, promoting coordinated regional green
waste treatment.

In ecologically fragile western regions, greater emphasis should
be placed on ecological protection during green waste treatment.
Drawing from Japan’s Kanto Plain urban-rural complementarity
mechanism, green waste treatment and ecological restoration can be
closely integrated. For example, following Inner Mongolia’s Kubuqi
model, enterprises could receive management rights to 1 mu of
desertified land for every 10 tons of green waste resources processed,
attracting social capital to participate in ecological construction and
green waste treatment in the west. To ensure smooth
implementation of these regional-specific policies and support
corresponding financial incentives, it is recommended that the
central government establish a “Western GW Governance
Transfer Payment Fund” for equipment procurement, sharing
local financial burdens.

(2) Innovative cost control mechanisms across the entire chain
are essential to address financing and benefit
coordination issues.

High costs remain a key bottleneck in green waste management.
By integrating Singapore’s DBOmodel with California’s SB 1383 act
experience, a “risk-sharing - pollution payment” strategy can be
implemented. In financially robust regions such as the Yangtze River
Delta, adopting the design-construction-operation (DBO)
integrated bidding model would require successful bidders to
bear 50% of investment and financing risks, thus leveraging
corporate expertise while reducing initial government investment.
Considering the lagging infrastructure in county areas, promoting
simple composting and other low-cost green waste recycling models
can effectively meet local treatment needs. Additionally, improving
reward and punishment mechanisms, including implementing
“waste reduction performance rewards,” can resolve conflicts of
interest among stakeholders in green waste management.

(3) A dynamic regulatory system will be enhanced to lay the
foundation for efficient use.

Based on the EU Circularity Check and New York’s Local Law
77 mandatory disclosure principle, a multi-level monitoring
network will be established. Cities at or above the municipal level
will be required to publish a biennial green waste metabolism audit
report, with non-compliant areas losing eligibility for ecological
compensation funds. Data sharing and collaboration among various
regulatory links will be strengthened. A unified green waste
management information platform will integrate data on green
waste sources, transportation processes, and treatment facility
operations, enabling real-time access to accurate information for

government departments, enterprises, and the public, ensuring
transparent supervision throughout the process. Combining this
with green waste production prediction models will forecast
trends in different regions and seasons, providing a scientific
basis for planning treatment capacity and resource allocation
in advance.

5 Conclusion and prospect

5.1 Conclusion

This study employed the yield factor method to quantify and
analyze the spatiotemporal characteristics of green waste across
30 provinces in Chinese mainland (excluding Tibe) from 2003 to
2022. Quantify the actual impact of population size, economic
development, environmental pressure, and urbanization on the
total amount of green waste based on the IPAT-LMDI model
framework. The main conclusions are as follows.

(1) From 2003 to 2022, China’s total green waste resources
exhibited an overall upward trend, with an initial
production total of 10.71 million tons in 2003, escalating
to 608.53 million tons by 2022, marking a nearly five-fold
increase. Presently, the annual growth rate of total green waste
hovers stably between 3% and 5%.

(2) The distribution of green waste resources shows a clear
pattern of higher volumes in the southeast and lower in
the northwest, with a faster growth rate observed in
western regions compared to slower growth in eastern and
northern parts. Provincially, from 2018 to 2022, the top six
provinces in terms of annual average resource
volume—Guangdong, Jiangsu, Shandong, Zhejiang,
Shanghai, and Liaoning—were all coastal provinces.

(3) The production density of green waste resources has
demonstrated an overall fluctuating yet ascending trend,
reaching 935.91 tons per square kilometer in built-up areas
nationally by 2022. Spatially, the resource density is
characterized by higher values in the east and lower in
the west, with southern regions experiencing a more rapid
increase over time, leading to a gradient of higher densities
in the southeastern regions and lower in the northwest.

(4) The LMDI analysis revealed that, collectively, population size,
economic development, and environmental pressures exert
positive influences on the increment of green waste resources.
Conversely, the urbanization effect (operating negatively)
serves to mitigate the increase in green waste quantities to
some extent.

(5) Anticipated against the backdrop of global warming, urban
sprawl, and improving urban green space management
standards, China’s green waste production is projected to
persistently rise, with estimates forecasting an increase to
between 83.35 million and 91.48 million tons by 2030.

These conclusions underscore the imperative for strategic
planning and adaptive management strategies to address the
growing challenge of green waste amidst ongoing urbanization
and climate change.
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5.2 Limitations and future perspectives

While this study advances the quantification of China’s green
waste dynamics, several limitations must be acknowledged to guide
future research.

(1) The estimation of green waste production in this study is
based on municipal statistical reports and relatively stable
production factors. However, this approach may overlook the
heterogeneity among different cities within the province as
well as the green waste generated from private areas. Future
research should aim to enhance measurement accuracy by
incorporating remote sensing technology to develop a more
precise model for estimating green waste output.

(2) The generation of green waste is influenced by a multitude of
factors. While this study quantitatively decomposed the social
and economic factors impacting green waste production, it
did not account for natural factors such as climate,
temperature, and vegetation type, which also significantly
influence green waste output, nor did it consider human
factors like construction frequency. Future research should
delve deeper into the complex mechanisms affecting green
waste production and develop a more robust predictive model
for green waste yield by integrating machine learning
methodologies.
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ixTABLE A1 Contribution of driving factors for changes in green waste resource quantity.

Annual
interval

Changes in green waste
production (10,000 tons)

Population size effect Economic development
effect

Environmental stress
effect

Urban development
effect

Value
(10,000 tons)

Rate
(%)

Value
(10,000 tons)

Rate
(%)

Value
(10,000 tons)

Rate
(%)

Value
(10,000 tons)

Rate
(%)

2003–2004 1175.72 14.41 1.23 238.86 20.32 1027.64 87.40 −105.19 −8.95

2004–2005 248.71 7.29 2.93 359.15 144.40 87.08 35.01 −204.81 −82.35

2005–2006 −252.26 27.85 −11.04 341.75 −135.47 −330.10 130.86 −291.76 115.66

2006–2007 685.76 26.49 3.86 477.97 69.70 546.62 79.71 −365.32 −53.27

2007–2008 66.81 32.39 48.48 457.22 684.36 −57.23 −85.66 −365.58 −547.19

2008–2009 388.64 37.49 9.65 236.08 60.74 225.30 57.97 −110.22 −28.36

2009–2010 240.53 46.73 19.43 536.46 223.03 50.94 21.18 −393.59 −163.64

2010–2011 182.92 53.78 29.40 566.44 309.66 −10.09 −5.52 −427.21 −233.55

2011–2012 210.97 43.08 20.42 335.29 158.93 41.03 19.45 −208.43 −98.80

2012–2013 100.81 35.10 34.82 352.24 349.41 −91.31 −90.58 −195.22 −193.65

2013–2014 170.01 36.34 21.38 297.46 174.96 11.69 6.88 −175.47 −103.21

2014–2015 239.18 25.48 10.65 266.16 111.28 48.71 20.37 −101.17 −42.30

2015–2016 197.03 35.77 18.15 321.32 163.08 18.89 9.59 −178.95 −90.82

2016–2017 231.38 31.30 13.53 458.09 197.98 73.88 31.93 −331.88 −143.44

2017–2018 212.5 24.06 11.32 437.45 205.86 −0.43 −0.20 −248.58 −116.98

2018–2019 179.51 21.21 11.82 345.84 192.66 10.65 5.93 −198.19 −110.41

2019–2020 270.48 11.68 4.32 141.32 52.25 116.19 42.96 1.29 0.48

2020–2021 284.92 5.24 1.84 699.50 245.51 142.65 50.07 −562.46 −197.41

2021–2022 180.36 −6.17 −3.42 304.14 168.63 81.11 44.97 −198.73 −110.18

Total 5013.98 509.53 10.16 7172.71 143.05 1993.21 39.75 −4661.47 −92.97
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