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Utilizing a panel dataset of 273 prefecture-level cities in China from 2000 to 2019,
this study evaluates the impact of the low-carbon city pilot (LCCP) policy on
green total factor productivity (GTFP). This study calculates GTFP via a hybrid
function model of the epsilon-based measure. Using a staggered difference-in-
differences framework, we found that the LCCP policy improves GTFP. Through
its implementation, the LCCP policy exerts an increasingly positive impact. We
identify promoting industrial structure optimization and technological innovation
as two plausible underlying mechanisms. Heterogeneity analysis finds that the
impact is more pronounced in central and western China, as well as in low-level
administrative and low-marketization cities. This study provides empirical
evidence for the optimization of the LCCP policy and the transformation of
the low-carbon economy, and provides a basis for policy-making.
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1 Introduction

The accelerated growth of the global economy has intensified the conflict between
industrialization and ecological balance, with anthropogenic CO2 emissions driving
irreversible climate change. Specifically, in the 21st century, the massive energy
consumption and consequent excessive CO2 emissions have become issues of great
concern worldwide. According to the US Energy Information Administration, the
global CO2 emissions have continued to increase since 2000. Although total carbon
emissions stabilized from 2013 to 2016, this figure continued to rise from 2017 onward,
approaching 40 billion tons. By the end of this millennium, the quasi-equilibrium amount
of CO2 in the atmosphere is estimated to increase by 40% relative to the pre-industrial peak
concentration (Solomon et al., 2009). Global efforts to mitigate this crisis vary significantly:
the European Union has prioritized carbon pricing mechanisms like the Emissions Trading
System (Dechezleprêtre et al., 2023), while the US Inflation Reduction Act (2022)
emphasizes renewable energy subsidies and tax incentives (United States Environmental
Protection Agency, 2025). Developing regions such as Africa face paradoxical outcomes,
where agricultural advancements risk increasing deforestation and emissions due to market
integration dynamics (China Meteorological Administration, 2014). Against this backdrop,
China’s low-carbon city pilot (LCCP) policy, initiated in 2010 across three batches of cities,
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stands out as a systemic experiment integrating spatial governance,
industrial restructuring, and innovation-driven decarbonization.
Unlike fragmented regional policies elsewhere, this initiative
exemplifies China’s unique role in bridging large-scale climate
governance with localized economic transformation, offering a
model for emerging economies.

As the world’s second-largest economy, largest energy importer
and exporter, and most populous country, China faces a severe
carbon emissions challenge. According to the Environmental
Performance Index report released in 2020, China ranks 120th
among 180 countries (Hao et al., 2020). China’s carbon intensity
remains 60% higher than the global average, with recent studies
highlighting persistent challenges in balancing industrial growth and
emissions control (Wang et al., 2022). For instance, centralized
environmental inspections have reduced regional emissions by
12%–15% but face implementation gaps in high-energy-
consuming sectors (Wang et al., 2022). Based on the current
national conditions, a 1% increase in China’s economic scale
would induce a sharp rise of approximately 15 metric tonnes in
its average annual carbon emissions (Tu, 2014). Undoubtedly,
increasing CO2 emissions is universally considered an inevitable
by-product of China’s economic growth. For instance, a high
dependence on exports and processing the trade of low-value-
added products results in high energy consumption and carbon
emissions per GDP unit. However, in the medium-to-long term,
rapid urbanization and modernization will generate more middle-
income people with energy- and carbon-intensive lifestyles (Qi
et al., 2013).

The necessity of this study is further underscored by China’s
evolving carbon governance framework. Recent analyses of
carbon markets reveal that trading mechanisms reduce corporate
emissions by 8%–12% but struggle to incentivize productivity
gains in state-owned enterprises (BIT Center for Energy and
Environmental Policy Research, 2025). Concurrently, biomass
burning, responsible for 1.21 billion tonnes of annual carbon
emissions from savanna fires alone, remains underregulated,
complicating emission inventories (People’s Daily, 2024). These
challenges highlight the urgency of evaluating the LCCP policy
through a green total factor productivity (GTFP) lens, which
integrates environmental and economic performance. By
employing a quasi-natural experimental design, this study
addresses the dual deficiency in prior literature: (1) the lack of
systemic assessment of how the pilot policy drives quality-oriented
growth beyond mere emission cuts (Zhu et al., 2013), and (2)
the need for spatially differentiated strategies to optimize
decarbonization in resource-dependent versus innovation-led
cities (Wang et al., 2022; Zeng et al., 2023).

To this end, this study examines the effect of the LCCP policy on
GTFP by analyzing a panel dataset spanning 273 prefecture-level
cities from 2000 to 2019. GTFP is measured using a hybrid epsilon-
based measure (EBM) model. Employing a staggered difference-in-
differences (DID) framework, the results reveal that the LCCP policy
significantly enhances GTFP, with its positive influence intensifying
over time. The primary mechanisms driving this improvement are
identified as the promotion of industrial structure optimization and
the stimulation of technological innovation. Heterogeneity analysis
indicates that the policy’s impact is more substantial in central and
western regions, as well as in cities with lower administrative status

and lower marketization levels. These findings offer empirical
support for refining the LCCP policy and advancing the
transition to a low-carbon economy, while providing actionable
insights for policymakers.

This study makes the following two contributions to the
literature. First, existing studies of the effectiveness of the pilot
policy scarcely consider GTFP, mostly focusing on the impact of the
pilot policy on carbon emissions as a direct economic consequence.
Using the latest EBMmethod, this study probes how the pilot policy
influences urban GTFP, plausible underlying mechanisms of the
pilot policy, and related heterogeneity to examine the urban
environmental regulation policy comprehensively. Second, using
a propensity score matching-difference-in-differences (PSM-DID)
model and a series of robustness checks, the study controls model
endogeneity effectively to verify the results of the benchmark
regression model. Moreover, the EBM for measuring GTFP
incorporates a hybrid of the radial and non-radial distance
functions, providing a more comprehensive method for
evaluating the efficiency of decision-making units. This method
partly offsets the deficiencies of traditional data envelopment
analysis (DEA) and slacks-based measure (SBM) models.

The remainder of this paper is organized as follows. Section 2
reviews related literature, introduces the LCCP policy’s institutional
background, and develops the hypotheses. Section 3 describes the
empirical framework, and Section 4 reports the baseline empirical
results and robustness checks. Section 5 is devoted to tests on
underlying mechanisms, heterogeneity tests, and further
economic consequence. Section 6 concludes and discusses policy
implications.

2 Related literature and hypothesis
development

2.1 Related literature

The existing literature on sustainable development policies and
their socioeconomic impacts can be systematically categorized into
four key themes: (1) policy effect assessment, (2) industrial
restructuring and economic transition, (3) technological
innovation and productivity, and (4) regional heterogeneity and
spatial dynamics.

A large number of studies evaluate the effectiveness of
environmental and energy policies. Zeng et al. (2023)
demonstrate that China’s LCCP policy, initiated in 2011,
significantly reduced urban carbon intensity through governance
improvements, industrial restructuring, and innovation, with
notable spatial spillover effects on neighboring cities. Similarly,
Zhou et al. (2019) confirm the policy’s sustained and incremental
impact on industrial upgrading. However, assessments of policy
costs, benefits, and welfare effects remain underexplored. For
instance, Song et al. (2019) highlight the balance between
corporate emission reductions and industrial upgrading, while
Qin et al. (2010) emphasize the need to evaluate comprehensive
socioeconomic welfare beyond narrow environmental or economic
metrics. Fang et al. (2022) and Fang et al. (2023) extend this
discourse by analyzing environmental taxes, revealing nonlinear
and time-dependent effects on renewable energy adoption.
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Research on industrial restructuring focuses on how policies
reshape economic activities. Li (2018) and Zhou et al. (2019) link the
LCCP policy to reduced energy intensity and industrial
modernization, particularly in non-capital cities. Dong and Li
(2020) and Gong et al. (2019) examine regional heterogeneity,
showing that foreign direct investment (FDI) and environmental
constraints interact differently across cities, with advanced regions
benefiting more from industrial upgrading. Zhang et al. (2025) add
nuance by identifying an N-shaped relationship between financial
development and sustainable economic development in the Yellow
River Basin, where excessive informatization may hinder progress.

Green technology innovation and productivity measurement are
pivotal mechanisms for achieving sustainability. Zhang et al. (2024a)
reveal that China’s new energy demonstration city policy (NEDCP)
boosts green patent applications, particularly in energy-saving
technologies, by alleviating financing constraints and enhancing
market environments. Zhang et al. (2024c) further highlight the role
of local government attention in driving GTFP through fiscal
decentralization and innovation incentives, with cumulative time-
lag effects. Complementing these studies, Guo et al. (2024) advance
methodological rigor by proposing the generalized Luenberger
productivity indicator (GLPI), which integrates distance elasticity
shares into production functions to measure urban GTFP. Using
stochastic frontier analysis, they decompose GTFP growth into
technological change, technical efficiency change, and scale
efficiency change. Their results demonstrate rapid GLPI growth
across Chinese cities from 2000 to 2019, validating the feasibility of
parametric approaches for productivity decomposition. This
methodological contribution enriches the understanding of GTFP
drivers, bridging micro-level innovation (e.g., patents) and macro-
level productivity trends.

However, innovation outcomes vary by enterprise ownership
(Zhong et al., 2020) and policy design. Fang et al. (2023) caution that
green tax policies lose efficacy at high innovation levels. A key
limitation is the overreliance on patent data as a proxy for
innovation, which overlooks non-technological advancements
(e.g., organizational or behavioral changes). Guo et al.’s (2024)
parametric decomposition addresses this gap by quantifying
efficiency and scale effects, offering a more granular lens to
evaluate how policies like the NEDCP or fiscal decentralization
translate into productivity gains.

Spatial spillovers and regional disparities are critical to policy
design. Zeng et al. (2023) and Zhang et al. (2025) confirm strong
spatial autocorrelation in sustainable economic development and
carbon intensity (Gehrsitz, 2017; Wolff, 2014), where policy effects
radiate beyond pilot cities. Zhang et al. (2024b) attribute the success
of the NEDCP to localized factors like human capital and fiscal
support, while Dong and Li (2020) stress that policy effectiveness
diminishes in less-developed regions due to institutional and
resource constraints.

2.2 Institutional background

As China’s economic growth enters the new normal (Li and
Zhang, 2015), the government has been actively making efforts to
carry out a green reform and enhance GTFP, thus establishing a
win–win path to environmental protection and economic growth.

Since 2010, the National Development and Reform Commission
(NDRC) has initiated the LCCP policy at three batches to explore a
path to environmental protection and economic growth. Hence, the
LCPP policy has garnered significant attention. Cities have always
been a major source of greenhouse gas emissions, but they are also
the fundamental arena for tackling climate change and
implementing the strategies of a low-carbon economy. As early
as 2005, the Fifth Plenary Session of the 16th Central Committee of
the Communist Party of China resolved to build a “resource-saving
and environment-friendly society.” A landmark speech delivered by
President Hu Jintao at the 15th APEC Informal Leaders’Meeting in
2007 heralded the beginning of China’s systematic low-carbon
development initiatives. In 2008, Shanghai and Baoding were
selected by the World Wildlife Fund for Nature to develop as
low-carbon cities. In 2010, the NDRC officially initiated the
LCPP policy, suggesting a new “point-to-plane” governance
model by the Chinese government. After this first batch, the
NDRC successively announced the second and third batches of
pilot cities in 2012 and 2017, respectively. Meanwhile, the number of
low-carbon pilot cities have increased to 81.

The core of the LCCP policy is to expand the scope of pilot cities
sequentially based on their early-stage experiences and enhance the
internal impetus for urban innovation and low-carbon development,
thus ensuring stable socioeconomic development (Zhuang, 2020). In
the current unfavorable situation, such as resource shortage and
environmental pollution, GTFP, as the ultimate impetus to China’s
economic development (Shu and Kong, 2019), is undoubtedly
closely related to the LCPP policy. Therefore, it is imperative to
explore the mechanisms underlying GTFP improvement while also
considering the important role of the national policy. This approach
is a non-negligible part of the effectiveness evaluation of the current
environmental policy.

The LCPP policy, being suited to the needs of different
development stages and regions, is a key component of China’s
climate change governance system, allowing to identify and solve
problems and learn from the experience. Through gradual
implementation over the past decade, some regions have
contributed to the improvement of GTFP by making green
innovations, optimizing the industrial structure, and improving
resource utilization per local conditions under the encouragement
and support of the central government. For example, Hangzhou, a
first-batch pilot city, implemented an environment-friendly and
low-carbon public bicycle project as a unique action program
and a good example for other cities by following the trends of
urban development. As the forerunner of the first batch of pilot
cities, Shenzhen implemented more than 10 low-carbon
demonstration projects, playing a leading role in low-carbon
innovation with the joint support of multiple central ministries
and commissions (e.g., Ministry of Transport, Ministry of Finance,
Ministry of Ecology and Environment, and Ministry of Science and
Technology). Zhenjiang, a second-batch pilot city, employed new
technologies to develop an intelligent cloud platform for carbon
emission management. Moreover, Chengdu, a third-batch pilot city,
set a policy orientation for a low-carbon economy via its remarkable
efforts (Zhuang, 2020).

From the long-term policy implementation perspective, by
considering the complexity of building low-carbon cities,
examining the impact of the pilot policy on economic growth
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and plausible underlying mechanisms has great theoretical and
practical significance. Further, it is imperative to empirically
evaluate the effectiveness of the pilot policy for the deficiencies
encountered in the policy implementation to promote policy
innovation in the transformation of China into a low-carbon
economy and provide useful evidence and suggestions for
subsequent policy adjustments and the implementation of
similar policies.

2.3 Hypothesis development

By comparing the two main effects of the pilot policy and given
the aims for a win–win situation (i.e., both environmental protection
and economic growth), GTFP can be used to examine the impact of
the pilot policy on urban GTFP more comprehensively and bridge
the gap in the literature on the single effect of the pilot policy. For
approved low-carbon pilot cities, preferential policies and industrial
support from the central and local governments will directly reduce
carbon emissions and based on the development of green
technologies and emerging industries, provide a lasting impetus
to urban economic sustainability in the new normal, thus improving
GTFP. The pilot policy reflects the core design of low-carbon city
initiatives, which integrate environmental and economic goals
through systemic reforms. GTFP is chosen as the outcome
variable because it captures the efficiency of economic output
relative to environmental costs (e.g., energy consumption,
pollution), making it a holistic metric for assessing the policy’s
success in achieving a win-win outcome. Existing literature
emphasizes that place-based policies like low-carbon pilots often
create direct incentives for cities to adopt green technologies and
reallocate resources efficiently, but prior studies have focused
narrowly on isolated effects (e.g., carbon reduction or GDP
growth). This study bridges this gap, leveraging GTFP to evaluate
the policy’s integrated impact. Therefore, this study proposes the
following hypothesis:

H1: The pilot policy improves urban GTFP.
Low-carbon pilot cities have developed green development plans

and guidelines suited to their resource endowments, industrial
characteristics, and advantages to achieve the greenhouse gas
emission reduction target of China by 2030. Most have resolved
to rationally allocate resources, reduce energy consumption, and
transform high-carbon industries via two key channels
(i.e., industrial structure optimization and green technological
innovation), thus building an environmentally friendly society
(She et al., 2020). Hence, this study conducts an in-depth
analysis of the possible channels through which the pilot policy
exerts an influence on GTFP.

The transformation and upgrading of the industrial structure are
important steps toward building low-carbon cities and developing a
low-carbon economy (Sun and Zhou, 2020). In academia, it is
universally accepted that low-carbon pilot cities can optimize
their industrial structure with the support of related preferential
policies and transform and upgrade the industrial structure
(i.e., from agriculture to the manufacturing industry and then to
the service industry) through a “structural effect,” thus reducing
CO2 emissions and improving environmental quality. First, from the

micro perspective of enterprises, implementing the pilot policy will
exert more survival pressure on traditional enterprises with high-
carbon emissions, high pollution, and high energy consumption and
reduce their profitability. Therefore, they may be forced to opt for a
low-carbon transformation or choose to relocate themselves (Cheng
et al., 2019). Hence, the capital structure of cities will continue to
improve; the industrial structure will gradually shift to an
environmentally-friendly, clean, and low-carbon pattern; and the
extensive development model will gradually be replaced by an
intensive development model that is knowledge- and technology-
intensive (Lu et al., 2020). For example, the Shanghai municipal
government gives priority to developing industries that use
resource-recycling technologies; Tianjin and Shenzhen are also
actively developing urban low-carbon industrial parks. Second,
from the primary, secondary, and tertiary industry perspectives,
the pilot policy can help the pilot cities develop industries suited to
their local characteristics (Han et al., 2019; Liu et al., 2018).
Specifically, it can help the pilot cities develop low-carbon
agriculture actively and establish a recyclable agro-ecology. For
the nine key energy-intensive industries, using energy-saving
technologies and equipment can reduce energy consumption and
improve energy efficiency. For the service industry, studies show
that the proportion of the producer service industry in pilot cities is
nearly 2.58% higher than that in non-pilot cities (Chen and Qian,
2020). Evidently, there have been extensive studies on the
relationship between the pilot policy and the transformation and
upgrading of the industrial structure. However, the influence of
industrial structure optimization (a mediating variable) is usually
ignored in model-based studies when the pilot policy and the
transformation and upgrading of industrial structure and GTFP
are included. Impelled by the pilot policy, the transformation and
upgrading of the industrial structure reduces energy consumption
and production costs in the short term but may foster new economic
growth points characterized by increasing marginal returns and
returns to scale in the long term. These knowledge- and technology-
intensive industries can effectively mitigate the constraints of
environmental pollution on economic development (i.e., improve
environmental quality while achieving economic growth), resulting
in a leap in urban GTFP. Industrial restructuring is prioritized as a
mediating channel because pilot policies explicitly target sectoral
transitions (e.g., shifting from energy-intensive manufacturing to
high-value services). Theoretical work on “ecological
modernization” argues that structural shifts toward cleaner
industries reduce emissions while unlocking new economic
opportunities (e.g., renewable energy sectors). Empirically, pilot
cities like Shanghai and Shenzhen have demonstrated that
industrial upgrades correlate with both GDP growth and
emission reductions. While prior studies acknowledge industrial
restructuring as a policy outcome, few link it mechanistically to
GTFP improvements. Therefore, we posit:

H2: The pilot policy improves urban GTFP by optimizing the local
industrial structure.

The impact of the pilot policy on enterprises is
multidimensional, while green innovation is of vital importance
to enterprises’ survival and development (Lu et al., 2020).
Implementing the pilot policy is accompanied by scientific and
technological innovation (i.e., beyond updating existing
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technologies, it will impel enterprises to develop green technologies
suited to the needs of low-carbon cities, fulfilling the Porter
Hypothesis). Specifically, a moderate intensity of environmental
regulation can offset the environmental compliance costs of
enterprises and improve their productivity and competitiveness
(Porter and van der Linde, 1995). For instance, the pilot policy
has both “actively” and “passively” stimulated the green revolution
of Chinese enterprises. First, the governments of pilot cities usually
allocate special low-carbon funds to subsidize new-technology and
new-energy enterprises, thus increasing their willingness for self-
independent innovation and R&D; moreover, the “halo effect” of
low-carbon pilot cities can help enterprises internalize pollution
control expenses, making them realize the negative results of high-
carbon emissions and high energy consumption and stimulating
them to conduct green technological innovation and technological
upgrading (Lu et al., 2020). Second, the pilot policy may be
considered a transitional buffer period that central and local
governments provide enterprises to transition to a green and
low-carbon path, coupled with consumers’ pressure for
information disclosure (Gong et al., 2019), hence preventing
enterprises from negative speculative behaviors (e.g., omitting
environmental investment) and “forcing” them toward green
reform. However, for foreign-funded enterprises with more
advanced green technologies, the significant positive impact of
the pilot policy on FDI provides a good prerequisite for the
dissemination of low-carbon innovation technologies because of
the spillover effect of technological innovation. Evidently, existing
studies on the pilot policy and green technological innovation are
extensive, but few incorporate GTFP into the analytical framework
to explore the relationship between them. It is only through the
above channel that the pilot policy provides an impetus both
subjectively and objectively; in an open and interconnected
market environment, the pilot policy provides significant support
to green innovation activities, promotes economic sustainability,
and improves GTFP. Green innovation has a dual role in mitigating
environmental harm and driving productivity gains, consistent with
the Porter Hypothesis. The pilot policy imposes regulatory pressures
and provides subsidies that incentivize firms to innovate (e.g.,
energy-efficient technologies), which can offset compliance costs
and enhance competitiveness. For example, studies note that low-
carbon cities attract FDI in green tech, creating spillover effects.
However, the literature often treats innovation as an independent
outcome rather than a mediator for GTFP. To test how innovation
translates policy inputs into sustainability-efficiency synergies, this
study proposes the following hypothesis:

H3: The pilot policy improves urban GTFP by promoting local
green technological innovation.

3 Empirical framework

3.1 Explained variable

GTFP is a green development indicator comprising human and
capital inputs and ecological and environmental problems in
economic growth. It considers undesirable outputs (e.g., energy

consumption and environmental pollution) on the basis of total
factor productivity. Thus, it comprehensively accords with the
development concept advocated in the economic new normal
context and poses great practical significance. In prior research,
GTFP is mainly measured using parametric and non-parametric
methods. Parametric methods must be based on certain hypotheses
(e.g., specific forms of production functions and accurate meanings
of related variables). Hence, non-parametric methods, which can
measure GTFP directly using the available data, have emerged. For
example, DEA is a non-parametric method that can evaluate relative
efficiency by inputting and describing data sufficiently without a
specific production function. Given the “inseparable and radial”
characteristics of undesirable outputs and the “separable and non-
radial” relationship between traditional input factors (e.g., human
and capital) and outputs, we adopt the EBM method (Tone and
Tsutsui, 2010) to measure radial and non-radial distance, which is
beyond the ability of traditional non-parametric methods (e.g., DEA
and SBM distance function model). Equation 1 describes the
EBM method:

efficiency* � min
γ,β,s−

γ − ϵx∑
n

i�1

wi
−si−

xik

γxik −∑m
j�1
βjxij − si

− � 0, i � 1, ..., n

∑m
j�1
βjyrj ≥yrk, r � 1, ..., s

βj ≥ 0
si
− ≥ 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
, (1)

where efficiency* denotes the efficiency (under optimal
conditions) measured by an EBM model, γ denotes the efficiency
measured under radial conditions, β denotes the relative weight of
each input factor, s denotes the looseness of each input factor under
non-radial conditions,wi

− denotes the importance of the i-th type of
input factors when the sum of the importance of all input factors is
equal to 1, (xik, yik) denotes the input-output vector of the k-th
decision-making unit, and parameter ϵx (with radial and non-radial
distance) meets condition 1≤ ϵx ≤ 1.

When desirable and undesirable outputs and radial and non-
radial conditions are considered, the EBM-based measurement of
GTFP is expressed as per Equation 2:

GTFP* � min
γ − ϵx∑n

i�1
wi

−si−
xik

ξ + ϵy∑s
r�1

wr
+sr+
yrk

+ ϵa∑q
p�1

wp
a−spa−
apk

s.t.

∑m
j�1
xijβj + si

− − γxik � 0, i � 1, ..., n

∑m
j�1
yrjβj + sr

+ − ξyrk � 0, r � 1, ..., s

∑m
j�1
apjβj + sp

a− − ξapk � 0, p � 1, ..., q

βj ≥ 0, si
− ≥ 0, sr+ ≥ 0, sp

a− ≥ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

The GTFP of each municipality directly under the central
government is calculated in terms of the average value of its
districts. Table 1 describes the specific level and meaning of the
input and output indices.
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3.2 Variables within the causal mechanism

Considering data availability and pilot policy effectiveness, the first
two batches of pilot cities were selected as our sample (Table 2). Overall,
the pilot cities gradually refocused toward western China, indicating
that central and local governments have considered the coordinated
development of different regions in the selection of pilot cities.

Following (Yang and Shao, 2018), the channel variable of industrial
structure optimization (ISO) is measured using the method proposed
by Gan et al. (2011), as described in Equation 3, where Yi

Y and Pi
P ,

respectively, denote the proportion of the tertiary industry of city i in
the corresponding provincial region and the proportion of the
population of city i in the corresponding provincial region:

ISOit � ∑n
i�1

Yi

Y
( ) ln Yi

Y
/Pi

P
( ). (3)

Given the strong correlation between technological innovation
and the number of patents (Jaffe, 1986), the channel variable of
technological innovation index (TII) is measured using the innovation
index of cities specified in the Report on the Innovation Ability of
Chinese Cities and Industries. Based on data from the China National
Intellectual Property Administration and State Administration of
Industry and Commerce, a model was constructed in the report to
measure the value of patents more objectively, changing the
traditional practice of using only the number of patents to
measure the innovation level (Huang and Zhang, 2020).

3.3 Control variables

Following extant empirical studies, the following five control
variables were selected to control for the heterogeneity of the

socioeconomic development among cities: (1) urban resource
endowment (Endowment), measured by the proportion of the
number of employees in the mining industry to the total number
of employees in a city; (2) urbanization level (Urbanization),
measured by the proportion of the registered population in the
municipal area of a city to the total registered population in the
whole city at the year-end; (3) educational resource allocation
(Education), measured by the proportion of the number of full-
time teachers to the number of enrolled students in general colleges;
(4) level of economic openness to the outside world (Openness),
measured by the proportion of actually used foreign capital to the
GDP in the current year; (5) degree of government intervention
(Intervention), measured by the proportion of local general public
budget expenditure to the GDP.

3.4 Empirical specification

This study adopts a PSM-DID model to assess the impact of the
pilot policy on GTFP for two reasons. First, the DID method can
reveal the treatment effect of the pilot policy by determining the
difference between the treatment and control groups before and
after implementing the pilot policy. In certain cases, the time of
policy intervention is different; thus, the staggered DID method is
warranted. For low-carbon pilot cities approved at different times,
the changes in GTFP may not entirely stem from the “pilot policy
effect” but from unobservable factors or regional development
inertia. Therefore, we use the staggered DID method to perform
a quasi-natural experiment with a treatment group of pilot cities and
a control group of non-pilot cities, and then extract the pilot policy
effect to be investigated. Second, the PSM method allows for
estimating the propensity score through logit regression and by

TABLE 1 Measurement indices for green total factor productivity.

Level-1 index Level-2 index Meaning

Input Human input Average number of employed population

Capital input Fixed assets (calculated by perpetual inventory)

Output Desirable output GDP

Undesirable output Industrial wastewater, industrial waste gas, carbon emissions, PM2.5 concentration

Abbreviations: GDP, gross domestic product; PM, particular matter.

TABLE 2 The three batches of low-carbon pilot cities.

Batch and
year

Eastern China Central China Western China

First batch
(2010)

Tianjin, Hangzhou, Shenzhen, Xiamen, Baoding Nanchang Chongqing, Guiyang

Second batch
(2012)

Beijing, Shanghai, Shijiazhuang, Qinhuangdao,
Suzhou, Huai’an, Zhenjiang, Ningbo, Wenzhou,
Nanping, Qingdao, Jiyuan, Guangzhou

Jincheng, Jilin, Daxing’anling, Chizhou, Jingdezhen,
Ganzhou, Wuhan

Hulunbuir, Guilin, Guangyuan, Zunyi,
Kunming, Yan’an, Jinchang, Urumqi

Third batch
(2017)

Nanjing, Changzhou, Jiaxing, Jinhua, Chuzhou,
Sanming, Jinan, Yantai, Weifang, Zhongshan,
Shenyang, Dalian, Chaoyang, Xunke, Sanya,
Qiongzhong

Hefei, Huaibei, Huangshan, Lu’an, Xuancheng,
Gongqingcheng, Ji’an, Fuzhou, Changyang,
Changsha, Zhuzhou, Xiangtan, Chenzhou

Wuhai, Liuzhou, Chengdu, Yuxi, Pu’er, Lhasa,
Ankang, Lanzhou, Dunhuang, Xining,
Yinchuan, Wuzhong, Changji, Yining, Hetian,
Ala’er

Source: Official website of the NDRC, China.
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matching each pilot city in the treatment group sample with a
“counterfactual” non-pilot city in the control group with similar
characteristics, thereby alleviating the constraints of the DID
method (including random sampling and parallel trend
hypothesis). According to the notice on low-carbon pilot cities
issued by the NDRC, China’s central government may consider
diverse factors (e.g., economic development, infrastructure levels,
and resource endowment) when reviewing and approving candidate
cities; therefore, the initially selected pilot cities may be designated
by superior level governments (Zhuang, 2020), thus disturbing the
grouping in the sample. Hence, to overcome this problem, the PSM
can be adopted to increase the accuracy of estimated results by the
DID method. The average treatment effect on the treated (ATT) of
the PSM-DID model is described in Equation 4, where Xt0 denotes
the covariants that affect the approval of candidate cities before the
pilot policy is implemented and Yc denotes the matched
counterfactual non-pilot city in the control group:

̂ATTPSM � E YT
t1
− YT

t0

∣∣∣∣Xt0, treated � 1( )
− E YC

t1
− YC

t0

∣∣∣∣Xt0, treated � 0( ). (4)

Considering the batched implementation of the pilot policy, we
adopt a staggered DID method to assess the impact of the pilot
policy on GTFP (i.e., verifying H1). The PSM-DID benchmark
model is expressed as Equation 5:

GTFPPSM
it � β0 + β1LCCPit + β2 ∑ controlit + Ci + Tt + δit + εit,

(5)
where i denotes a specific city, t denotes a specific year, and GTFP is
the explained variable, which denotes the GTFP of the city i in the
year t. Moreover, LCCP is a core independent variable (dummy
variable), which takes one if the city i begins to implement the pilot
policy in the year t; coefficient β1 denotes the impact of the pilot
policy on GTFP; controlit denotes a series of control variables; Ci

and Ti respectively denote the city fixed effect and year fixed effect;
δit denotes the province × year fixed effect to control the provincial-
level time-varying unobservable factors and alleviate endogeneity
caused by possible omitted variables; and εit is the stochastic
disturbance term.

Moreover, we further examine whether the pilot policy affects
GTFP through industrial structure optimization and technological
innovation (i.e., H2 and H3).

4 Materials and methods

4.1 The data

The data are gathered from the China City Statistical
Yearbook, China Regional Economic Statistical Yearbook,
CSMAR Database, and WIND Economic Database. The data
are merged according to city and year to create the sample for
the empirical analysis; there are 2,191 total observations. Although
the study accounts for some of the missing data via interpolation to
maintain a high degree of data consistency, areas with a significant
number of missing observations are excluded. Table 3 reports the
descriptive statistics of all variables, comprising 2,191 observations

of 273 Chinese cities during 2000–2019. All continuous variables
are winsorized at the 1% and 99% percentiles to limit the influence
of extreme values.

4.2 Testing grouping randomness

The use of the DID method is based on two major hypotheses,
parallel trend and grouping randomness. The parallel trend
hypothesis requires no systematic difference in the development
trend between the pilot cities before being approved as low-carbon
pilot cities; that is, their development trend must be consistent.
However, the pre-test results show that the hypothesis does not
hold and the prerequisite for DID estimation is not met. Hence,
PSM should be used in conjunction with the DID method. The
grouping randomness hypothesis requires that the shock of the
pilot policy is exogenous, that is, the grouping of the sample into
the treatment group and control groups is random. This
hypothesis is subsequently verified using logit regression and
survival analysis.

Following Luo and Hu (2021) and Zhen et al. (2011), this study
uses a logit model to regress the 2000–2009 sample data
(i.e., 10 years before the first batch of pilot cities were approved)
with the group variable as the explained variable to test whether the
selection of pilot cities is influenced by factors such as the urban
GTFP, urban resource endowment, urbanization level, educational
resource allocation, level of economic openness, and degree of
government intervention. If GTFP is significantly correlated with
the approval of low-carbon pilot cities, it violates the randomness
hypothesis for the DID method. Table 4 presents the
regression results.

Column 1 of Table 4 shows that the central government
considered diverse factors when selecting pilot cities. Thus, the
randomness hypothesis for grouping the unmatched sample does
not hold and the estimated results should be further amended using
the PSM method. The estimated coefficient on GTFP is not
significant, indicating that there is no two-way causality in the
model. This may also be because GTFP data are derived through
a complex EBM methodology rather than being readily available,
and they hold no practical significance. Moreover, the estimated
coefficients on other variables show that cities with higher
urbanization and economic openness levels are more likely to be
selected as low-carbon pilot cities. However, cities with higher
dependence on natural resources are less likely to be selected as
low-carbon pilot cities, likely because their economic development
pattern is mainly based on the development of traditional energy
sources (e.g., coal, oil, and natural gas), resulting in utilization
inefficiency and severe environmental pollution and significantly
reducing the possibility of being selected as pilot cities.

Logit regression can merely involve the grouping information of
“approved as a low-carbon pilot city,” while omitting the time
information contained in batched implementation of the pilot
policy and staggered DID. Hence, the grouping randomness
hypothesis is further tested using the survival analysis method.
Survival analysis can be used to examine the relationship
between many influencing factors and time toward the outcome
of “approved as a low-carbon pilot city” by analyzing whether the
selection of pilot cities is influenced by related factors (e.g., GTFP,
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urban resource endowment, urbanization level, educational resource
allocation, level of economic openness, and degree of government
intervention) and the relationship between the factors and time of
approval. Column 2 of Table 4 lists the Cox regression results.
Evidently, the results of survival analysis are similar to the logit
regression results, verifying the necessity of PSM treatment for the
sample data.

4.3 Propensity score matching

Based on the model setup and hypotheses, the effectiveness of
the pilot policy is empirically tested using a PSM-DID model. When
applying the PSM procedure, we perform a year-by-year matching.
We first estimate a logit model based on all sample cities with non-
missing matching variables in the year prior to the implementation
of the pilot policy. In the logit model, the dependent variable is a
Treat dummy that equals one for pilot cities and zero otherwise. We
include all control variables, including resource endowment,
urbanization, educational resource allocation, economic openness,
and government intervention in the logit regression. In addition, we
include city and year dummies in the logit model. Using the nearest
neighbor matching method, combined with caliper matching, each
city in the treatment group was matched with a city in the control
group with very similar characteristics in various aspects using the
predicted probabilities (propensity scores) obtained from the logit
model estimation to realize PSM. Afterwards, we conduct the DID
regression of Equation 5 for the new control group from the
matching and original treatment groups. Further, a balance test
was conducted on the matched data, and the results are shown
in Table 5.

4.4 Baseline estimates

Based on the matched data, regression analysis was conducted
using the DID model. The Hausman Test determines that the Fixed
Effects estimator should be used in the regression model. Table 6
shows the regression results. Columns 1 and 2 list the regression
results with and without control variables, respectively. The regression
results are significantly positive at the 5% level, indicating that the
pilot policy improves urban GTFP. These approved pilot cities can
obtain special policy support from central and local governments,
ultimately enjoying certain advantages in economic transformation
and promoting local low-carbon consumption and production. This
finding underscores the effectiveness of targeted policy interventions
in driving sustainable urban development. Moreover, the
demonstration effect of the pilot cities can help local market
players conduct structural optimization and technological reform,
promote optimal utilization of energy, and develop a low-carbon
industrial system, thus internally encouraging continuous GTFP

TABLE 3 Descriptive statistics.

Variable Meaning Observation Mean Standard deviation Minimum Maximum

GTFP Green total factor productivity 2,191 1.010 0.029 0.961 1.059

Endowment Urban resource endowment 2,191 0.057 0.091 0 0.437

Urbanization Degree of urbanization 2,191 0.666 0.384 0.109 1.446

Education Educational resource allocation 2,191 0.068 0.066 0.009 2.300

Openness Level of economic openness 2,191 0.021 0.023 0 0.121

Intervention Degree of government intervention 2,191 0.155 0.083 0.050 0.489

ISO Industrial structure optimization 2,191 0.023 0.031 0.003 0.205

TII Technological innovation index 2,191 7.928 26.924 0.011 200.627

TABLE 4 Grouping randomness tests.

(1) (2)

Treat Distance to event year

GTFP −3.2599* −1.0487

(1.7247) (2.0794)

Endowment −1.1555* −3.0936***

(0.6710) (1.0303)

Urbanization −1.2962*** 1.7409***

(0.1462) (0.2591)

Education 2.9490** 18.2867***

(1.2135) (2.2755)

Openness 9.7974*** −4.1519***

(1.9376) (0.8132)

Intervention −2.8117*** 8.4457***

(0.6654) (1.7352)

_cons 3.4266* −1.8746***

(1.7555) (0.3877)

Province FE Yes Yes

Year FE Yes Yes

N 1,990 2,160

pseudo R2 0.5517 0.1035

LR χ2 786.95 822.71

Log-likelihood −1184.7058 −2060.878

Note: The values in parentheses are standard errors; *p < 0.1, **p < 0.05, ***p < 0.01.
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improvement and fostering new economic growth points in the low-
carbon economy context. Hence, H1 is preliminarily supported. The
success of pilot cities highlights the importance of tailored financial,
regulatory, and technological support from central and local
governments. The pilot policy demonstrates that coordinated top-
down support and bottom-up market innovation can drive
sustainable growth. Policymakers should focus on institutionalizing
these gains, such as providing grants for green infrastructure and tax
incentives for low-carbon industries. Besides, policymakers can scale
interventions equitably, and embed GTFP principles into broader
economic and environmental strategies. This approach not only
addresses climate challenges but also positions cities as engines of
inclusive, low-carbon prosperity. Moreover, policymakers can
incentivize industries to adopt energy-efficient technologies and
circular production models. For example, subsidizing R&D in
renewable energy and carbon capture, and enforcing stricter
emissions standards while providing transition support to affected
industries would effectively accelerate this transition.

4.5 Testing the parallel trend and the
dynamic effect

The pilot policy is implemented by the Chinese government based
on the principle of “point to plane”; over time, the pilot policy will be
implemented more clearly and comprehensively. The positive effects
of the pilot policy on urban GTFP may become increasingly
pronounced over time; this dynamic effect constitutes a key focus
of our analysis. Further, the DID estimation should be based on the
hypothesis of ex-ante parallel trend between sample data; specifically,
without policy intervention, the treatment and control groups follow
the same development trend and are comparable. Based on the post-
PSM sample data, an interaction term of the grouping dummy
variable and year variable was created. As per the significance of
its coefficient before the implementation of the pilot policy, the
parallel trend hypothesis was tested and the effect of PSM was
verified. Table 7 and Figure 1 show the test results of the parallel
trend and dynamic effect. The regression results of Table 7 and the left
side of the graph in Figure 1 show that the differences in the two
groups’ coefficients of Treat × Before1–3 are not statistically
significant, indicating that there was no significant difference in
GTFP between the two groups of cities before the pilot policy was
implemented. This is consistent with the parallel trend assumption.

Within 3 years after implementing the pilot policy, the
differences in the two groups’ coefficients of Treat × Current and
Treat × After1–3 are all significantly positive. This indicates that the
pilot policy can significantly improve growth in pilot cities’ GTFP
for 3 years after the pilot policy was implemented. The
implementation of the pilot policy is a “snowball” process.
Specifically, the demonstration effect of pilot cities encourages
more local governments to learn and apply their typical
experience with the approval of superior governments. Moreover,
the requirements and content of the pilot policy can be constantly
optimized according to the current situation and a new round of
policy objectives. Thus, policy effectiveness is enhanced
and emerging.

TABLE 5 PSM balance test results.

Variable Unmatched Mean %Reduct t-test

Matched Treated Control %bias |bias| t p>|t|

Endowment U 0.033 0.060 −32.500 −7.260 0.000

M 0.033 0.035 −6.000 122.300 −1.502 0.380

Urbanization U 0.716 0.660 15.100 3.520 0.000

M 0.716 0.718 −0.600 95.700 −0.120 0.906

Education U 0.068 0.066 3.800 0.560 0.576

M 0.068 0.068 0.500 671.100 0.120 0.904

Openness U 0.032 0.019 52.500 14.070 0.000

M 0.032 0.034 −6.100 88.400 −0.970 0.333

Intervention U 0.148 0.156 −10.200 −2.270 0.024

M 0.148 0.144 5.600 44.700 1.060 0.290

The results show the standardized deviations (% bias) of variables after matching are significantly reduced, and the standardized deviations of all variables are less than 1%. Moreover, the t-test

results show the differences between the treated and the control samples after matching are all insignificant. All the above indicates that the matching effect is effective.

TABLE 6 LCCP impact on GTFP.

(1) (2)

GTFP GTFP

LCCP 0.0078** 0.0076**

(0.0036) (0.0036)

Controls No Yes

City FE Yes Yes

Year FE Yes Yes

Province × Year FE Yes Yes

N 2,191 2,191

adj. R2 0.2473 0.2476

Note: The values in parentheses are standard errors; *p < 0.1, **p < 0.05, ***p < 0.01.
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4.6 Testing alternative PSM methods

The robustness of the results was also tested using kernel
matching and radius matching. The results are shown in Table 8.
Columns (1) and (2) show that the regression coefficients on LCCP
are both significant at the 5% significance level. These results confirm
that GTFP improved following the implementation of the pilot policy.

4.7 Placebo tests

The use of the PSM-DIDmodel for policy evaluationmay face the
following problem: “policy effectiveness” may be influenced by other
policies or random factors in the same period. Following Tan and
Zhang (2018), we conduct a counterfactual test by changing the initial
implementation time of the pilot policy. Assuming that the initial
implementation time of the pilot policy is advanced by N years, we
observe the significance level of the estimated coefficient on the core
variable, LCCP. If the coefficient on LCCP is not significant, the pilot
policy improves urban GTFP and the estimated results are reliable.
However, if the coefficient on LCCP is significant, the improvement of
urban GTFP is likely to be influenced by other factors beyond the pilot

policy. Hence, the estimated results are not reliable. Table 9 lists the
counterfactual test results.

The regression results in Table 9 show that the estimated
coefficient on LCCP is not significant, regardless of whether the
initial implementation time of the pilot policy is advanced by 1 year,
2 years, or 3 years, verifying that the improvement of urban GTFP
stems from the pilot policy rather than other policies or random
factors. Therefore, H1 is further supported.

Although the Province × Year fixed effect can control the
provincial-level time-varying unobservable factors, there may
exist some other unobservable factors, given the data constraints.
Following Zhou et al. (2018), a placebo test was conducted
repeatedly on the random process. From Equation 6, the
estimated coefficient on the pilot policy can be expressed as follows:

β̂1 � β1 + γ
cov lowcarbonit, εit|control( )
var lowcarbonit|control( ) , (6)

where control denotes a vector of control variables (if the estimated
coefficient on β1 is unbiased, γ � 0). It is impossible to test γ � 0

TABLE 7 Parallel trend test and the dynamic effect.

(1)

GTFP

Treat × Before3 −0.0008

(0.0084)

Treat × Before2 0.0014

(0.0066)

Treat × Before1 0.0023

(0.0070)

Treat × Current 0.0071

(0.0071)

Treat × After1 0.0072*

(0.0039)

Treat × After2 0.0084**

(0.0039)

Treat × After3 0.0103**

(0.0047)

Controls Yes

City FE Yes

Year FE Yes

Province × Year FE Yes

N 2,191

adj. R2 0.2493

Note: The values in parentheses are standard errors; *p < 0.1, **p < 0.05, ***p < 0.01.

FIGURE 1
Parallel trend test.

TABLE 8 Tests on alternative PSM methods.

(1) (2)

Kernel matching Radius matching

GTFP GTFP

LCCP 0.0075** 0.0072**

(0.0032) (0.0028)

Controls Yes Yes

City FE Yes Yes

Year FE Yes Yes

Province × Year FE Yes Yes

N 2,191 2,191

adj. R2 0.2473 0.2476
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directly (i.e., it is impossible to directly judge whether the estimated
coefficient on β1 is influenced by the unobservable random
disturbance term). Hence, lowcarbon is replaced by randomly
assigning a value to the approval as a low-carbon pilot city to
ensure that the variable does not influence GTFP theoretically
(i.e., β1 � 0). If β1 � 0 is determined, we can reversely infer that
γ � 0, verifying that the estimated coefficient is unbiased and passes
the placebo test. Accordingly, the process of random value
assignment is performed repeatedly 1,000 times to ensure that
the placebo test can effectively identify a causality. Figure 2
shows the kernel density distribution of the estimated coefficient
values of the pilot policy variable.

After a value is randomly assigned to the coefficient on the policy
variable 1,000 times, its estimated values are densely distributed
around 0 and are far from the coefficient value in the baseline
estimates results (the dotted line in Figure 2). Therefore, we can
reversely infer that γ is equal to 0, corroborating that unobservable
random disturbing factors are not likely to be influential. The pilot
policy variable with a randomly assigned value does not influence
urban GTFP; we can reversely infer that the pilot policy improves
urban GTFP. Hence, H1 is further supported.

4.8 Testing the removal of
confounding effects

To control for confounding effects, we remove the observations
in the year when the pilot cities were approved. Besides, we remove
the observations after the supply-side reform of 2016, which may
influence urban GTFP. Moreover, we remove cities in the two-
control zones (i.e., acid rain control zone or sulfur dioxide pollution
control zone). Table 10 lists the test results after the confounding
factors are eliminated. The coefficient on LCCP remains significant,
further verifying the robustness of the regression results.

4.9 Testing policy endogeneity

As noted, an important prerequisite for DID estimation is that
the implementation of the pilot policy is random for the treatment
and control groups, which may not be the case in practice. When
determining pilot cities, the central government may consider the
heterogeneity in regional development and select or directly
designate pilot cities per the application information and local
economic and environmental status of candidate cities. Therefore,
the selection of the treatment group may be endogenous and induce
inaccurate estimation results. In this study, this endogeneity
problem is addressed through instrumental variables.

To mitigate potential endogeneity issues arising from the non-
random selection of pilot cities, following Du and Liao (2024), this
study adopts two instrumental variables for the LCCP policy: the
proportion of extreme high-temperature events (EHTE) and the
inverse of the air change rate (IACR). Excessive carbon emissions
lead to frequent extreme weather events, making cities with higher
proportions of extreme heat more likely to prioritize energy
conservation and emission reduction. Besides, cities with lower air
change rate experience slower pollutant dispersion, resulting in
diminished synergistic effects on carbon dioxide reduction, thereby
increasing governmental attention to environmental governance. Both
factors directly influence environmental policy formulation and fulfill
the requirement of correlation between instrumental and endogenous
variables. These natural meteorological indicators exhibit inherent
randomness and unpredictability. Their formation mechanisms are
independent of urban economic systems, showing no direct correlation
with GTFP. This satisfies the exclusion restriction as they affect
outcomes solely through policy channels rather than directly
impacting GTFP. Thus, both of the above instrumental variables
fulfill the requirements of correlation and exogeneity.

Columns (1) and (3) of Table 11 show the results of the first stage
regression. From the results, it can be seen that the probability of a city
becoming a low-carbon pilot city increases with the increase of
extreme high-temperature events and the increase of the inverse of
the air change rate. In the weak instrumental variables test, the F-value
of the Cragg-Donald Wald test is much higher than the Stock-Yogo
10% critical value of 16.38, and the test of non-identifiability rejects

TABLE 9 Placebo tests falsifying the LCCP launch year.

(1) (2) (3)

GTFP GTFP GTFP

LCCP_1 0.0012

(0.0064)

LCCP_2 0.0003

(0.0063)

LCCP_3 −0.0016

(0.0077)

Controls Yes Yes Yes

City FE Yes Yes Yes

Year FE Yes Yes Yes

Province × Year FE Yes Yes Yes

N 2,191 2,191 2,191

adj. R2 0.2458 0.2457 0.2458

Note: The values in parentheses are standard errors; *p < 0.1, **p < 0.05, ***p < 0.01.

FIGURE 2
Placebo test for 1,000 times.
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the hypothesis of “insufficient identification of instrumental variables”
at the 1% significance level, which verifies the relevance of the
instrumental variables. Columns (2) and (4) show the results of
the second stage regression, respectively. As can be seen from the
results, the direction and significance of the regression coefficients of
the main explanatory variables are consistent with those of the
benchmark regression, indicating that the positive effect of the
pilot policy on GTFP still exists after further mitigating the
potential endogeneity problem, and the results are robust and reliable.

To further eliminate the influence of unobservable factors, we use a
generalized method of moments (GMM) model to address the
autocorrelation or heteroskedasticity of the disturbance term more
effectively and conduct a robustness test on the effectiveness of the pilot
policy. Table 12 presents the regression results. Column 1 lists the
results of difference GMM regression when the lagged first order of the
explanatory variable is used as an instrumental variable. Column 2 lists
the results of system GMM regression, further addressing the potential
problemof weak instrumental variables. The coefficient on the lag term
of urban GTFP is significant at the 1% level and the coefficient on
LCCP passes the statistical test at the 5% significance level, verifying the
robustness of the regression results.

4.10 Goodman-Bacon decomposition

Goodman-Bacon (2021) found that, when multiple treatment
effects occur at different times, the DID standard error may be biased,
as the treatment group of an earlier periodmay be the control group of
the treatment group of a later period. Considering that two staggered
policy changes in different years were used in this study, we followed
Goodman-Bacon (2021) and performed a decomposition on the
estimates of different treatment times. The two-way fixed-effects
DID model is the weighted average of all likely 2 × 2 variance
estimators in the data. The results are shown in Tables 13.

The decomposition shows comparisons between different time
groups (early-treatment versus late-treatment groups and late-
treatment versus early-treatment groups), the units of treatment

and control groups (treat versus control), and changes within the
control group. The findings demonstrate that only approximately
11% of the estimated difference originated from the comparisons of
temporal heterogeneity among the treatment effects. More
importantly, the majority of the estimated differences originated
from the comparison between the control group and expanding
treatment group. The coefficient on LCCP is 0.00645 (while the
coefficient is 0.0076 in column (2) of Table 6). In conclusion, the
results are largely unchanged after addressing the potential biases
related to the temporal heterogeneity of treatment effects.

4.11 Testing alternative DID methods

To further address the heterogeneity from treatment timing, three
alternativeDIDmethods were introduced, namely themethod proposed
by Callaway and Sant’Anna (2021), the method proposed by Sun and
Abraham (2021), and the stackedDIDmethod proposed byCengiz et al.
(2019). Table 14 reports the static effect estimates of the impact of the
pilot policy on GTFP. The sample included pilot cities impacted
within −5 to +5 years relative to the event year during the sample
period, as well as pure control cities (observations that were never
impacted) for which data were available for all sample years. The
coefficients on LCCP are 0.0075 (Callaway and Sant’Anna, 2021),
0.0077 (Sun and Abraham, 2021), and 0.0078 (Cengiz et al., 2019),
respectively. The results are statistically significant at the 5% level. The
economic significance of these coefficients is comparable to that in
column (2) of Table 6 (0.0076) for the benchmark regression.

5 Further tests

5.1 Plausible underlying mechanisms

As noted, the pilot policy significantly improves urban GTFP.
Thus, through which channels does the pilot policy affect urban
GTFP? From the model setup and hypotheses, we create interaction

TABLE 10 Removing confounding effects.

(1) (2) (3)

Eliminating observations in the
year of approval

Eliminating observations after the
supply-side reform

Eliminating observations in the
two-control zones

GTFP GTFP GTFP

LCCP 0.0087** 0.0084** 0.0081*

(0.0040) (0.0042) (0.0042)

Controls Yes Yes Yes

City FE Yes Yes Yes

Year FE Yes Yes Yes

Province ×
Year FE

Yes Yes Yes

N 2,007 1,567 1,799

adj. R2 0.2443 0.3148 0.2640

Note: The values in parentheses are standard errors; *p < 0.1, **p < 0.05, ***p < 0.01.
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terms (LCCP × ISO and LCCP × TII) between the core policy
variable (LCCP) and both the channel variable of industrial structure
optimization (ISO) and channel variable of technological innovation
index (TII) to explore the possible influencing mechanism. Table 15
presents the regression results.

The results in Table 15 show that the regression coefficients on
the interaction terms are significantly positive at the 1% level,
indicating that the pilot policy can improve urban GTFP by
promoting industrial structure optimization and technological
innovation. Hence, H2 and H3 are supported.

From an industrial structure perspective, the pilot policy
catalyzes urban GTFP improvement through a multi-layered
structural transformation mechanism. Regulatory pressure and
market incentives jointly phase out “three-high” enterprises.
Stringent environmental standards raise compliance costs for

polluting industries, while tax incentives and subsidies redirect
capital toward low-carbon sectors. Besides, resource reallocation
drives industrial upgrading. As traditional industries shrink, labor,
capital, and energy are redistributed to emerging
sectors—recyclable manufacturing, energy-efficient agriculture,
and high-value services—enhancing resource productivity.
Mechanistically, this shift reduces energy intensity per unit of
GDP (structural decarbonization) while fostering knowledge
spillovers in service-oriented economies (e.g., green finance,
smart logistics). Moreover, policy-backed industrial clustering
amplifies synergies. Eco-industrial parks and circular economy
hubs create closed-loop production systems, minimizing waste and
cross-sectoral carbon footprints. Over time, these structural
changes compound: short-term emission cuts from phasing out
inefficient industries transition into long-term GTFP gains
through tertiary sector dominance and innovation-driven
productivity growth.

From a technological innovation perspective, the pilot policy
amplifies green innovation through three interactive mechanisms.
First, the “low-carbon city” branding acts as a market signal,
triggering a subjective innovation cycle: enterprises adopt green
certifications to align with the city’s eco-image, which attracts
sustainability-conscious consumers and investors, further
incentivizing R&D. Second, policy tools objectively lower
innovation risks. Government grants de-risk green patents, while
carbon pricing internalizes environmental costs, making clean
technologies cost-competitive. Third, a self-reinforcing ecosystem
emerges: public R&D institutes partner with firms to commercialize
breakthroughs like carbon capture, while consumer demand for
green products accelerates market adoption. Critically, innovation
diffusion occurs through dual channels. Process innovation
characterized by AI-driven energy management systems cuts

TABLE 11 Instrumental variables.

(1) (2) (3) (4)

Stage 1 Stage 2 Stage 1 Stage 2

LCCP GTFP LCCP GTFP

EHTE 4.2855***

(0.102)

IACR 4.4172***

(0.052)

LCCP 0.0224** 0.0588**

(0.0096) (0.0268)

Controls Yes Yes Yes Yes

City FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

N 2,191 2,191 2,191 2,191

adj. R2 0.4817 0.0313 0.4813 0.0214

Cragg-Donald Wald F statistic 15928.845 114625.824

Kleibergen-Paap rk LM 196.539 197.028

TABLE 12 GMM.

(1) (2)

Difference GMM System GMM

GTFP GTFP

L.GTFP 0.0043*** 0.0063***

(0.0016) (0.0022)

LCCP 0.0041** 0.0011**

(0.0017) (0.0005)

Controls Yes Yes

N 1,890 1,890

Note: The values in parentheses are standard errors; *p < 0.1, **p < 0.05, ***p < 0.01.
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factory emissions. Product innovation like renewable energy
equipment exports creates new growth poles. These dynamics
collectively elevate GTFP by decoupling economic output from
resource inputs, embedding sustainability into urban growth
trajectories.

This study emphasizes policy-driven improvements in
green metrics, specifically targeted environmental policies
enhance green productivity. The results are consistent with that
of (Zhang et al., 2024a; Zhang et al., 2024b; Zhang et al., 2024c),
which emphasis on financial and market factors. This study
focuses on different channels by exploiting structural and
technological shifts.

5.2 Heterogeneity tests

Given the imbalance of regional development in China, this
study discusses the effectiveness of the pilot policy from a
heterogeneity perspective to further reveal how it
affects urban GTFP.

The sample cities are grouped into eastern China and central
and western China. Table 16 lists the regression results. The pilot
policy effectiveness significantly differs between the two regions.
Specifically, the effectiveness in improving GTFP is significant at the
1% level among the cities in central and western China but is not
significant among the cities in eastern China. The regional
disparities in the effectiveness of the pilot policy on GTFP
between eastern China and central/western China can be
attributed to a confluence of structural, institutional, and socio-
economic factors. Eastern China is already industrialized and
economically advanced. Eastern regions have transitioned to
service-oriented or high-tech industries, which are closer to the
technological frontier. Their mature industrial structure offers
limited room for GTFP gains from incremental policy
interventions. Central/western China rely more on traditional
manufacturing, resource extraction, or agriculture. The pilot
policy drives structural shifts toward cleaner industries (e.g.,
renewable energy, eco-tourism) and incentivizes technological
adoption, creating more visible GTFP improvements. Besides,
eastern China’s coastal geography facilitates global trade, foreign
investment, and access to advanced infrastructure (ports, highways,
and digital networks). Existing efficiency reduces the marginal
impact of new policies. Inland locations of central/western China
historically limited connectivity and market access. The policy likely
addresses infrastructure gaps (e.g., renewable energy grids, logistics
networks), enabling productivity leaps and reduced carbon
intensity. Moreover, high-skilled labor pools, top universities, and
R&D hubs in east China mean existing industries already leverage
advanced practices. Policy-driven innovation faces diminishing
returns. In contrast, lower human capital levels in central/western
China create untapped potential. The policy may fund vocational
training, attract talent via incentives, or support localized R&D,
leading to significant productivity gains. Therefore, the pilot policy’s
effectiveness in central/western China stems from its ability to
address structural gaps, leverage untapped resources, and catalyze
institutional change. In contrast, eastern China’s advanced

TABLE 14 Alternative DID methods.

Callaway and Sant’ Anna (2021) Sun and Abraham (2021) Cengiz et al. (2019)

LCCP 0.0075 0.0077 0.0078

TABLE 15 Underlying mechanisms of the policy effect on GTFP.

(1) (2)

GTFP GTFP

LCCP 0.0063** 0.0051**

(0.0031) (0.0024)

ISO 0.0321***

(0.0112)

TII 0.0011***

(0.0003)

LCCP × ISO 0.5150***

(0.1961)

LCCP × TII 0.0003***

(0.0001)

Controls Yes Yes

City FE Yes Yes

Year FE Yes Yes

Province × Year FE Yes Yes

N 2,191 2,191

adj. R2 0.2510 0.2497

Note: The values in parentheses are standard errors; *p < 0.1, **p < 0.05, ***p < 0.01.

TABLE 13 Goodman-Bacon decomposition.

Regression coefficients Total weight

Comparison between time-groups 0.00085 0.112

Comparison between the control group and expanding treatment group 0.00645 0.849

Changes in control variables within the group 0.00030 0.040
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development stage and saturated innovation ecosystem limit
incremental gains. Future policies could tailor measures to
regional contexts—e.g., focusing eastern regions on high-tech
green R&D, while central/western regions benefit from
infrastructure investments and industrial diversification.

In the economic and political context of China, the
administrative levels of cities differ. Accordingly, the sampled
cities are divided into two groups: (1) general prefecture-level
cities and (2) sub-provincial cities and municipalities. Table 17
lists the regression results. The effectiveness of the pilot policy
differs significantly between the two groups of cities. Specifically,
the effectiveness in improving GTFP is significant at the 5% level
among general prefecture-level cities but not significant among sub-
provincial cities and municipalities. Sub-provincial cities/
municipalities already possess greater administrative power,
financial resources, and decision-making autonomy due to their
higher political status. They have well-established institutional
frameworks and access to advanced infrastructure, reducing the
marginal impact of additional policy interventions. Pilot policies
may offer little new autonomy compared to their existing
capabilities, limiting perceived benefits. Prefecture-level cities’
lower administrative status means they traditionally operate with
constrained resources and centralized oversight. The pilot policy
grants them tailored autonomy (Zhuang, 2020), enabling
experimentation with localized solutions (e.g., tax incentives for
green tech, land-use reforms). Resource injections such as central
funding and talent programs address structural gaps, leading to
measurable GTFP improvements. Besides, sub-provincial cities/
municipalities are economically advanced, with industries often
oriented toward services, finance, or high-tech sectors that are
already closer to technological and environmental efficiency
frontiers. Pilot policies did not result in much GTFP gains, as
existing industries may already comply with stricter
environmental standards. Prefecture-level cities are more reliant
on traditional manufacturing, resource extraction, or agriculture,
which have higher pollution and energy intensity. The pilot policy

drives structural shifts toward low-carbon industries (e.g.,
renewable energy, eco-tourism) and incentivizes retrofitting
outdated infrastructure, creating visible GTFP gains. Moreover,
the pilot policy’s bottom-up, innovation-oriented design favors
cities with fewer legacy systems. Moreover, sub-provincial cities/
municipalities already have high baseline GTFP levels due to
advanced infrastructure and human capital, and leave limited
room for significant improvements. While prefecture-level cities
have lower baseline GTFP, so even modest improvements (e.g.,
adopting solar energy in coal-heavy regions) may lead to
significant increase in GTFP. The “catch-up” effects amplify the
perceived success of the policy. Therefore, The pilot policy’s
effectiveness in general prefecture-level cities stems from their
structural flexibility, resource gaps, and alignment with central
incentives for localized innovation. In contrast, sub-provincial
cities/municipalities face diminishing returns due to their
advanced development, redundant policies, and complex
governance structures. To optimize outcomes, future policies
could adopt differentiate incentives. The government can target
sub-provincial cities with high-tech green R&D grants, while
prefecture-level cities benefit from infrastructure investments.
The government can strengthen horizontal coordination by
encouraging knowledge-sharing between cities to avoid
duplication and scale best practices.

Developing low-carbon pilot cities is a means the central and
local governments uses to intervene in economic development and
address the problem of market failure. Based on the Marketization
Index of China’s Provinces: NERI Report (Wang et al., 2019), the
study divided the sampled cities into two groups (cities with a low
marketization level and cities with a high-marketization level) per
the average annual overall marketization index to examine the
differences in the pilot policy’s effectiveness in improving GTFP
between cities with different marketization levels. Table 18
presents the regression results. The pilot policy can significantly
improve GTFP among cities with a low marketization level;
however, its effectiveness in improving GTFP is not significant

TABLE 16 East regions versus central and western regions.

(1) (2)

Central and Western China Eastern China

GTFP GTFP

LCCP 0.0167*** −0.0028

(0.0053) (0.0051)

Controls Yes Yes

City FE Yes Yes

Year FE Yes Yes

Province × Year FE Yes Yes

N 1,212 979

adj. R2 0.2695 0.2311

Subsample comparison of coefficients on LCCP 0.0195 (p < 0.001)

Note: The values in parentheses are standard errors; *p < 0.1, **p < 0.05, ***p < 0.01. Subsample comparison of coefficients using Fisher’s permutation is also reported.
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among cities with a high-marketization level. Low marketization
cities have weak market mechanisms (e.g., underdeveloped
financial systems, limited competition) and therefore fail to
allocate resources toward green innovation. High marketization
cities’ efficient markets already incentivize firms to adopt green
practices (e.g., cost savings from energy efficiency, consumer
demand for sustainability). Existing market-driven initiatives
(e.g., carbon trading, ESG investments) overlap with pilot
policies, diluting their marginal impact. Besides, low
marketization cities lack capital, technology, and skilled labor
for green transitions. Pilot policies provide critical funding and
technical assistance (e.g., state-backed R&D programs). Weak
regulatory frameworks and enforcement mechanisms make
government-led policies essential to drive structural change.
High marketization cities have strong infrastructure, advanced

R&D ecosystems, and mature regulatory systems, reducing their
reliance on top-down policies. Entrenched industries (e.g., finance,
tech) may resist disruptive policy changes that conflict with
market-driven strategies. Moreover, in low marketization cities,
firms and local governments are accustomed to following
central directives, making them more responsive to state-led
initiatives. Transitioning to green practices is often the
only viable path for growth in resource-constrained settings. In
high marketization cities, firms prioritize consumer preferences,
investor demands, and competitive pressures over government
mandates. Future strategies must balance the “visible hand” of the
state with the “invisible hand” of the market, tailored to local
institutional and economic contexts. This approach ensures that
environmental governance adapts to China’s heterogeneous
development landscape.

TABLE 17 High administrative level cities versus low administrative level cities.

(1) (2)

Prefecture-level cities Sub-provincial cities or municipalities

GTFP GTFP

LCCP 0.0091** −0.0014

(0.0043) (0.0104)

Controls Yes Yes

City FE Yes Yes

Year FE Yes Yes

Province × Year FE Yes Yes

N 1,952 110

adj. R2 0.2582 0.7480

Subsample comparison of coefficients on LCCP 0.0105 (p < 0.001)

Note: The values in parentheses are standard errors; *p < 0.1, **p < 0.05, ***p < 0.01. Subsample comparison of coefficients using Fisher’s permutation is also reported.

TABLE 18 High marketization versus low marketization.

(1) (2)

Low marketization level High-marketization level

GTFP GTFP

LCCP 0.0095* −0.0004

(0.0054) (0.0057)

Controls Yes Yes

City FE Yes Yes

Year FE Yes Yes

Province × Year FE Yes Yes

N 1,213 967

adj. R2 0.3100 0.2352

Subsample comparison of coefficients on LCCP 0.0099 (p < 0.001)

Note: The values in parentheses are standard errors; *p < 0.1, **p < 0.05, ***p < 0.01. Subsample comparison of coefficients using Fisher’s permutation is also reported.
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5.3 Economic consequence

This study further changes the explained variable and uses the
PSM-DID benchmarkmodel to, test the impact of the pilot policy on
economic development. We use DMSP/OLS and NPP/VIIS
nighttime light data to measure economic development. The
DMSP/OLS and NPP/VIIS nighttime light data are not
comparable. Based on a deep learning model, we perform the
cross-sensor correction of DMSP/OLS and NPP/VIIS remote
sensing data through a self-encoder and constructed a nighttime
light dataset for 2000 to 2019. Table 19 presents the regression
results. The coefficient on the core policy variable, LCCP, is
significant at the 1% level, indicating that the pilot policy can
effectively promote urban economic growth, and relevant
supporting policies can help build an environmentally friendly
society, achieving a win–win situation (i.e., both environmental
protection and economic growth).

6 Conclusion and policy implications

The policy implications have practical and academic merit in
evaluating the effectiveness of the pilot policy, exploring a new
pattern of economic growth free of high-carbon emissions, inducing
continuous improvement. By integrating robustness tests, this study
examines the impact of the pilot policy on GTFP. With the
continuous growth of the global economy and rapid
advancement of industrialization, the living environment has
been overloaded with excessive carbon emissions, an inevitable
by-product of China’s economic growth pattern. China’s
economic growth has entered the new normal. This concept is
widely used to describe the fact that annual GDP growth has slowed
to 7.0%–7.5% compared to the double-digit levels of the high-
growth period. This is attributed to the now weakened traditional
driving forces of growth; that is, the original output growth rates of
the labor and capital factors have decreased. China is trying to
promote green reform to explore a win–win path to economic
growth and environmental protection and improve GTFP
steadily. As the main source of greenhouse gas emissions, cities

have become the basic arena for tackling climate change and
developing a low-carbon economy. Since 2010, the NDRC has
initiated a pilot policy in three batches, involving 81 pilot cities
in six provinces. Therefore, it is imperative to examine the impact of
the point-to-plane pilot policy on urban GTFP based on China’s
actual status. The findings are thus of great academic and practical
significance to achieving energy conservation and emission
reduction and exploring a new pattern of economic growth free
of high-carbon emissions.

Preliminary test of the effectiveness of the pilot policy through a
PSM-DID model shows that the coefficient on the core policy
variable is significantly positive, indicating that the pilot policy
can improve urban GTFP. Moreover, the results of the
robustness tests show that the conclusion remains true,
supporting H1. The test of the dynamic effect shows that the
effectiveness of the pilot policy is not significant in the year
when pilot cities are approved. Instead, the effectiveness in
improving GTFP gradually emerges (as per the gradual increase
in the significance level of the coefficient on the core policy variable
and continuous increase in the value of such coefficient) over several
years after pilot cities are approved in batches. It also supports the
original intention of the “snowball” implementation of the pilot
policy. Specifically, the pilot policy undergoes an initial exploration,
known as “crossing a river by feeling the stones.” Over time, the
demonstration effect and typical experience of pilot cities play an
active role with the support of the central and local governments.
Finally, other cities develop pilot schemes suited to their
development characteristics, making the impact of the pilot
policy on GTFP more visible. The test of the influencing
mechanism shows that the pilot policy improves urban GTFP by
promoting industrial structure optimization and technological
innovation. Thus, H2 and H3 are supported. Impelled by the
pilot policy, transforming and upgrading urban industrial
structure and technological innovation can improve enterprise
productivity and energy efficiency and promote the development
of knowledge- and technology-intensive industries, reducing the
constraints of environmental pollution on economic growth and
fostering an internal impetus to urban GTFP. The heterogeneity test
shows that, beyond the differences in geographical location
(i.e., eastern China and central/western China) and
administrative and marketization levels, the effectiveness of the
pilot policy also differs across the pilot cities. Specifically, the
effectiveness in improving GTFP is significant among cities in
central and western China, general prefecture-level cities, and
cities with low marketization levels but it is not significant
among cities in eastern China, sub-provincial cities and
municipalities, and cities with high-marketization levels. This
study underscores the critical role of a targeted policy in
advancing sustainability, offering nuanced insights into China’s
transition toward low-carbon and innovation-driven growth
paradigms. This study provides empirical evidence from an
emerging economy, and sets examples of implementation of
similar policies in other countries or regions in the world.

Given that the pilot policy improves urban GTFP, the study
provides support for the popularization of related policies.
Accordingly, it offers the following suggestions.

First, the finding that the pilot policy serves to improve urban
GTFP implies that the pilot policy can be considered an important

TABLE 19 LCCP impact on nighttime light.

(1)

DN

LCCP 1.7868***

(0.2991)

Controls Yes

City FE Yes

Year FE Yes

Province × Year FE Yes

N 2,191

adj. R2 0.9481

Note: The values in parentheses are standard errors; *p < 0.1, **p < 0.05, ***p < 0.01.
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path to achieving a win–win situation (i.e., environmental
protection and economic growth) in China in the context of the
new normal. The central government should expand the scope of
pilot cities continuously and as planned, develop a medium- and
long-term strategy for high-quality development of the urban low-
carbon economy and give market signals of energy conservation and
emission reduction to the public. The plan of low-carbon pilot cities
should focus on industrial structure optimization and technological
innovation to contribute to new economic growth points. For
example, local governments may take appropriate measures (e.g.,
developing hi-tech industrial parks and knowledge sharing
platforms), to promote the development of recyclable primary
industry, extricate secondary industry from high-carbon
emissions, and actively develop tertiary industry and high-value-
added environmental protection industry. Moreover, local
governments should create an overall urban innovation
atmosphere and increase enterprises’ willingness toward green
R&D and adopt a low-carbon business model. Considering the
heterogeneity of regional development in China, it is necessary to
develop differentiated guidelines for pilot policy implementation,
evaluation criteria for policy effectiveness, and relevant elimination
mechanisms. During the implementation of the pilot policy, it is
advisable to learn useful experience from pilot cities, optimize the
specific implementation per local conditions constantly, develop a
green investment and financing support mechanism, and highlight
the role of local enterprises as market players in a low-carbon
economy. Rather than expanding the scope of pilot cities blindly,
it is also advisable to regularly evaluate the effectiveness of policy
implementation and deepen it accordingly, as well as increase the
participation willingness of non-pilot cities by taking both economic
and political incentive measures. The government can also
encourage enterprises to actively participate in low-carbon
technology innovation and guide the public to form green
consumption concepts, forming a joint force for the whole
society to jointly promote low-carbon development.

Several limitations of the study warrant consideration to
contextualize the findings and guide future research. The analysis
may be influenced by unobserved variables that affect GTFP but
were not included in the model. For instance, local governance
quality, cultural attitudes toward sustainability, or informal
economic activities could shape policy outcomes. Besides, the
generalizability of the findings requires careful interpretation.
Differences in local enforcement, resource allocation, or political
prioritization of low-carbon goals could lead to divergent results not
fully captured by the analysis. Therefore, variability in policy
implementation across cities may affect outcomes and limit the
applicability of results to non-pilot cities, particularly in
underdeveloped regions or cities with differing governance
frameworks. The study’s emphasis on regional heterogeneity
partially addresses this, but broader replication across diverse
contexts is needed to validate the policy’s scalability. Future
evaluations should track implementation fidelity and integrate
process indicators (e.g., budget allocations, stakeholder
engagement) to assess how execution quality mediates impact.

We conclude by outlining related questions that are beyond the
scope of this paper. Considering the availability of data and lag in
policy effectiveness, this study does not cover the latest batch of pilot
cities. Hence, further studies must consider policy effectiveness for the

most recent pilot cities. To be specific, how does the effectiveness of the
latest pilot cities compare to earlier cohorts? Have adaptive policy
adjustments over time enhanced GTFP outcomes?What is the optimal
timeframe for evaluating policy efficacy given implementation lags?
Besides, this study employed staggered DID models to account for
rolling policy adoption, future research can leverage machine learning
techniques to isolate time-varying confounders. Besides, this study
merely considered two influencing channels (industrial structure
optimization and technological innovation). Other potential
channels (e.g., government preference) that may negatively influence
policy effectiveness warrants future research. Moreover, although this
study showed that the pilot policy has a positive impact on urban
GTFP, it did not examine policy effectiveness from the perspective of
spatial correlation. In addition, for the analysis of the heterogeneity of
policy effects, the interactive impact of more factors and the pilot policy
to reveal the reasons for the differences in policy effects are yet to be
exploited. Future studies may further probe into the spillover effect and
radius of influence of the pilot policy.
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